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Abstract

Let N = pq be an RSA modulus with unknown factorization. Some
variants of the RSA cryptosystem, such as LUC, RSA with Gaussian
primes and RSA type schemes based on singular elliptic curves use a
public key e and a private key d satisfying an equation of the form ed −
k
(
p2 − 1

) (
q2 − 1

)
= 1. In this paper, we consider the general equation

ex−
(
p2 − 1

) (
q2 − 1

)
y = z and present a new attack that finds the prime

factors p and q in the case that x, y and z satisfy a specific condition.
The attack combines the continued fraction algorithm and Coppersmith’s
technique and can be seen as a generalization of the attacks of Wiener
and Blömer-May on RSA.

1 Introduction

In 1978, Rivest, Shamir and Adleman [20] proposed RSA, the first and widely
most used public key cryptosystem. The security of RSA is mainly based on
the hardness of factoring large composite integers, nevertheless, RSA has been
extensively studied for vulnerabilities by various non factorization attacks. The
public parameters in RSA are the RSA modulus N = pq which is the product
of two large primes of the same bit-size and a public exponent e satisfying
gcd(e, (p − 1)(q − 1)) = 1. The correspondent private exponent is the integer
d < N satisfying ed ≡ 1 (mod (p − 1)(q − 1)) which can be rewritten as a key
equation ed − k(p − 1)(q − 1) = 1. In RSA, the encryption and decryption
time are proportional to the bit-length of the public and the private exponents.
To reduce encryption or decryption time, one may be tempted to use small
public exponents or private exponents. While a few attacks on RSA with small
public exponent e have been launched (see [10]), many attacks on RSA with
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small or special private exponent d exploit the algebraic properties of the key
equation. In 1990, Wiener [24] presented an attack on RSA that solves the key
equation and factors N if d is sufficiently small, namely d < 1

3N
0.25. Wiener’s

attack consists on finding k
d among the convergents of the continued fraction

expansion of e
N and then using k

d to factor N . Wiener’s attack on RSA has been
extended in many ways using lattice reduction and Coppersmith’s method [7]
(see [2], [11], [17]). In 1997, Boneh and Durfee [4] used lattice reduction and
Coppersmith’s method to improve the bound to d < N0.292. In 2004, Blömer
and May studied the variant equation ex + y ≡ 0 (mod (p − 1)(q − 1)) and
showed that the RSA modulus can be factored if the unknown parameters satisfy
x < 1

3N
0.25 and |y| ≤ cN− 3

4 ex for some constant c ≤ 1.
In order to improve the implementation of the RSA cryptosystem, many schemes
have been presented giving rise to RSA type cryptosystems [3]. One way to
extend RSA is to consider a prime-power modulus of the form N = prq with
r ≥ 2 (see [22]) or a multi-prime modulus of the form N = p1p2 . . . pr. Another
way to extend RSA is to consider the modulus N = pq and the exponent e
with specific arithmetical operations such as elliptic curves [14] [13], Gaussian
domains [8] and quadratic fields [19].
In 1995, Kuwakado, Koyama and Tsuruoka [14] presented a scheme based on
using an RSA modulus N = pq and a singular cubic equation with equation
y2 = x3 + bx2 mod N where a message M = (mx,my) is represented as a point
on the singular cubic equation. In this system, the public exponent e and the
private exponent d satisfy an equation of the form ed− k

(
p2 − 1

) (
q2 − 1

)
.

In 2002, Elkamchouchi, Elshenawy and Shaban [8] adapted RSA to the Gaussian
domain by using a modulus of the form N = PQ where P and Q are two
Gaussian primes. The public exponent e and the private exponent d satisfy
ed ≡ 1 (mod (|P | − 1) (|Q| − 1)). When P = p and Q = q are integer prime
numbers, the equation becomes ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
) = 1.

In 1993, Smith and Lennon proposed LUC [21], where the public exponent e
and the private exponent d are such that ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
).

In 2007, in connection with LUC, Castagnos [6] proposed a scheme that uses an
RSA modulus N = pq and a public exponent e. The two public parameters N
and e are such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1 which implies the existence of

two positive integers d and k satisfying the equation ed−k
(
p2 − 1

) (
q2 − 1

)
= 1.

The former four variants of RSA use a modulus N = pq and a public exponent e
satisfying an equation of the form ed−k

(
p2 − 1

) (
q2 − 1

)
= 1. In [5], an attack

is presented that solves the former equation when d satisfies d <
√

2N3−18N2

e .

The attack, which is related to Wiener’s attack on RSA, is based on applying the
continued fraction algorithm to find k

d among the covergents of the continued
fraction expansion of e

N2− 9
4N+1

. In this paper, we consider an extension of this

attack by studying the more general equation ex−
(
p2 − 1

) (
q2 − 1

)
y = z where

the unknown parameters x, y, z satisfy

xy < 2N − 4
√

2N
3
4 and |z| < (p− q)N 1

4 y.
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The new attack uses the convergents of the continued fraction expansion of
e

N2+1− 9
4N

to find y
x and then applies Coppersmith’s technique [7] to find p and

q.

The remainder of the paper is organized as follows. In section 2, we recall
some RSA type schemes that are based on a modulus of the form N = pq
with a public exponent satisfying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1. In Section

3, we briefly review some basic results used in the paper, including continued
fractions and Coppersmith’s technique. In Section 4, we present some lemmas
that will be used in the paper. In Section 5, we present our new method. In
Section 6, we give a numerical example. We conclude the paper in Section 7.

2 Variant RSA schemes

Let N = pq be an RSA modulus and e a public integer. In this section, we
briefly describe three schemes that are variants of the RSA cryptosystem with
a modulus N = pq and with a public key e and a private key d satisfying
ed−k

(
p2 − 1

) (
q2 − 1

)
= 1. As this equation does not depend on the underlying

variant schemes, we then generalize it to the equation ex−
(
p2 − 1

) (
q2 − 1

)
y =

z which is the main focus of this paper.

2.1 LUC cryptosystem

In 1993, Smith and Lennon [21] proposed a variant of the RSA cryptosys-
tem, called LUC, based on a Lucas functions. In LUC, the modulus is a
RSA modulus N = pq and the public exponent e is a positive integer sat-
isfying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
which can be rewritten as an equation ed −

k
(
p2 − 1

) (
q2 − 1

)
= 1. A more general equation is ex−

(
p2 − 1

) (
q2 − 1

)
y = z

with the unknown parameters x, y and z.

2.2 Castagnos cryptosystem

In 2007, Castagnos [6] proposed a cryptosystem related to LUC and RSA
where the modulus N = pq and the public exponent e satisfy the condition
gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
or equivalently ed − k

(
p2 − 1

) (
q2 − 1

)
= 1 for some

integers d and k. This equation can be extended to a more general one, namely
ex−

(
p2 − 1

) (
q2 − 1

)
y = z.

2.3 RSA with Gaussian primes

In 2002, Elkamchouchi, Elshenawy and Shaban [8] proposed a generalization of
the RSA cryptosystem to the domain of Guassian integers. A Gaussian integer
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is a complexe number z = a + bi where a and b are both integers. A Gaussian
prime is a Gaussian integer that is not the product of two non-unit Gaussian
integers, the only units being ±1 and ±i. The Gaussian primes are of one of
the following forms

• P = ±1± i,
• P = a where |a| is an integer prime with |a| ≡ 3 (mod 4),
• P = ai where |a| is an integer prime with |a| ≡ 3 (mod 4),
• P = a+ ib where |P | = a2 + b2 ≡ 1 (mod 4) is an integer prime.

In the RSA variant with Gaussian integers, the modulus is N = PQ, a prod-
uct of two Gaussian integer primes P and Q. The Euler totient function is
φ(N) = (|P | − 1) (|Q| − 1) and the public exponent e is a positive integer sat-
isfying gcd(e, φ(N)) = 1. When P = p and Q = q are integer primes, then
φ(N) =

(
p2 − 1

) (
q2 − 1

)
and the public exponent satisfies the key equation

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1 which can be extended to a more general equation

ex−
(
p2 − 1

) (
q2 − 1

)
y = z.

2.4 RSA type schemes based on singular cubic curves

Let N = pq be an RSA modulus. For an integer b ∈ Z/nZ, consider the cubic
curve EN (b) defined over the ring Z/nZ given by the Weierstrass equation

EN (b) : y2 = x3 + bx2 mod N.

In 1995, Kuwakado, Koyama, and Tsuruoka [14] proposed a new cryptosystem
based the elliptic curve EN (b). The encryption key is a positive integer satisfy-
ing gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
and the decryption key is the integer d satisfying

ed ≡ 1 (mod
(
p2 − 1

) (
q2 − 1

)
), or equivalently ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

The encryption and the decryption procedures use operations on the singu-
lar cubic curve EN (b). Using the continued fraction algorithm, it is possi-
ble to attack the scheme using the key equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

A more general attack on the scheme can be launched by using the equation
ex−

(
p2 − 1

) (
q2 − 1

)
y = z and by combining the continued fraction algorithm

and Coppersmith’s method.

3 Preliminaries

In this section, we present the mathematical preliminaries.
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3.1 Continued fractions

Let x be a real number. Define the sets (x0, x1, . . .) and [a0, a1, . . .] by x0 = x
and by the recurrences

ai = bxic, xi+1 =
1

xi − ai
, i = 0, 1, . . . .

The set [a0, a1, · · · ] is the continued fraction expansion of x and satisfies

x = a0 +
1

a1 +
1

a2 +
1

. . .

.

The convergents of x are the rational numbers pn

qn
, n = 0, 1, . . . satisfying

pn
qn

= a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

.

Continued fractions have numerous properties and applications in cryptography.
The following useful result characterizes the approximations to a real number x
(see Theorem 184 of [9]).

Theorem 1 (Legendre) If a, b be positive integers and

0 <
∣∣∣x− a

b

∣∣∣ < 1

2b2

then a
b is a convergent of the continued fraction of x.

Note that when x = r
s is a rational number, then the list of the convergents

of the continued fraction expansion of r
s can be done in polynomial time in

log(max(a, b)).

3.2 Coppersmith’s method

In 1997, Coppersmith [7] introduced an algorithm to find small solutions of
univariate modular polynomial equations and another algorithm to find small
roots of bivariate polynomial equations. Since then, Coppersmith’s method has
been applied in various applications in cryptography, mainly to attack the RSA
cryptosystem. A typical example is the following result.
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Theorem 2 Let N = pq be the product of two unknown primes such that q <
p < 2q. Given an approximation p̃ of p with an additive error term at most N

1
4 ,

one can find p and q in polynomial time in log(N).

As a consequence of Coppersmith’s Theorem, one can show that if N = pq with
|p− q| < N

1
4 , then N can be factored (see [18]). Thus, throughout this paper,

we will consider that the prime difference p− q satisfies |p− q| > N
1
4 .

4 Useful Lemmas

One of the main RSA standard recommendations for safe parameters is to choose
the prime factors factors p, q of the same bit-size. More precisely, p and q should
satisfy 1 < p

q < 2 or equivalently q < p < 2q. Under this assumption, one can

find intervals for p, q, p− q, p+ q and p2 + q2 in terms of N . We begin by the
following results (see [18]).

Lemma 1 Let N = pq be an RSA modulus with q < p < 2q. Then
√

2

2

√
N < q <

√
N < p <

√
2
√
N and 0 < p− q <

√
2

2

√
N.

We will need the following result.

Lemma 2 Let N = pq be an RSA modulus with q < p < 2q. Then

2
√
N < p+ q <

3
√

2

2

√
N and 2N < p2 + q2 <

5

2
N.

Proof. Assume that N = pq with q < p < 2q. Then 1 < p
q < 2. The function

f(x) = x+ 1
x is increasing on [1,+∞). Hence, f(1) < f(p

q ) < f(2), that is

2 <
p

q
+
q

p
<

5

2
.

Multiplying by N = pq, we get

2N < p2 + q2 <
5

2
N.

Similarly, since 1 <
√

p
q <
√

2, then f(1) < f(
√

p
q ) < f(

√
2), or equivalently

2 <

√
p

q
+

√
p

q
<

3
√

2

2
.

Hence, multiplying by
√
N =

√
pq, we get

2
√
N < p+ q <

3
√

2

2

√
N.

This terminates the proof. �
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5 The New Attack

In this section, we present our new attack to solve the equation ex−
(
p2 − 1

) (
q2 − 1

)
y =

z when x, y and z are suitably small. The new method combines two techniques,
the continued fraction algorithm and Coppersmith’s method.

Theorem 3 Let N = pq be an RSA modulus with q < p < 2q. Let e be a
public exponent satisfying an equation ex−

(
p2 − 1

) (
q2 − 1

)
y = z with coprime

positive integers x and y. If

xy < 2N − 4
√

2N
3
4 and |z| < (p− q)N 1

4 y,

then one can find p and q in polynomial time in log(N).

Proof. Suppose that N = pq with q < p < 2q and that a public exponent e
satisfies the equation

ex−
(
p2 − 1

) (
q2 − 1

)
y = z, (1)

with x > 0, y > 0 and gcd(x, y) = 1. Then

ex−
(
N2 + 1− 9

4
N

)
y = ex− (p2 − 1)(q2 − 1)y −

(
p2 + q2 − 9

4
N

)
y

= z −
(
p2 + q2 − 9

4
N

)
y.

(2)

From this we deduce∣∣∣∣ e

N2 + 1− 9
4N
− y

x

∣∣∣∣ ≤ |z|
x
(
N2 + 1− 9

4N
) +

∣∣p2 + q2 − 9
4N
∣∣ y

x
(
N2 + 1− 9

4N
) . (3)

Using Lemma 2, we get that
∣∣p2 + q2 − 9

4N
∣∣ < 1

4N . Suppose in addition that

|z| < |p− q|N 1
4 y. Then, using Lemma 1, we get

|z| < |p− q|N 1
4 y <

√
2

2

√
N ·N 1

4 y =

√
2

2
N

3
4 y. (4)

Hence (3) leads to∣∣∣∣ e

N2 + 1− 9
4N
− y

x

∣∣∣∣ <
√
2
2 N

3
4

N2 + 1− 9
4N
· y
x

+
1
4N

N2 + 1− 9
4N
· y
x

=
N + 2

√
2N

3
4

4N2 + 4− 9N
· y
x
.

(5)

Now, suppose that xy < 2N − 4
√

2N
3
4 . A straightforward calculation shows

that

2N − 4
√

2N
3
4 <

4N2 + 4− 9N

2N + 4
√

2N
3
4

.
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Then xy < 4N2+4−9N
2
(
N+2

√
2N

3
4

) and N+2
√
2N

3
4

4N2+4−9N < 1
2xy . Using this in (5), we get

∣∣∣∣ e

N2 + 1− 9
4N
− y

x

∣∣∣∣ < N + 2
√

2N
3
4

4N2 + 4− 9N
· y
x
<

1

2xy
· y
x

=
1

2x2
.

Hence, if this condition is fulfilled, then one can find y
x amongst the conver-

gents of the continued fraction expansion of e
N2+1− 9

4N
as stated in Theorem 1.

Moreover, since gcd(x, y) = 1, the values of x and y are the denominator and
numerator of the convergent. Plugging x and y in (1), we get

p2 + q2 = N2 + 1− ex

y
+
z

y
. (6)

Adding 2N to both sides of (6), we get

(p+ q)2 = (N + 1)2 − ex

y
+
z

y
. (7)

Similarly, subtracting 2N to both sides of (6), we get

(p− q)2 = (N − 1)2 − ex

y
+
z

y
. (8)

Observe that (7) can be transformed into∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣×
∣∣∣∣∣p+ q +

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =
|z|
y
,

from which we deduce∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =

|z|∣∣∣∣p+ q +

√∣∣∣(N + 1)2 − ex
y

∣∣∣∣∣∣∣ y <
|z|

(p+ q)y
.

By (4) we have |z| <
√
2
2 N

3
4 y and by Lemma 2 we have p+ q > 2

√
N . Then∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ <

√
2
2 N

3
4

2
√
N

=

√
2

4
N

1
4 < N

1
4 .

This means that

√∣∣∣(N + 1)2 − ex
y

∣∣∣ is an approximation of p+q with error term

less than N
1
4 . In a similar way, using (8), we get∣∣∣∣∣p− q −

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣×
∣∣∣∣∣p− q +

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =
|z|
y
,
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which leads to∣∣∣∣∣p− q −
√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =

|z|∣∣∣∣p− q +

√∣∣∣(N + 1)2 − ex
y

∣∣∣∣∣∣∣ y <
|z|

(p− q)y
.

Using the assumption |z| < (p− q)N 1
4 y, we get∣∣∣∣∣p− q −

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ < (p− q)N 1

4 y

(p− q)y
= N

1
4 .

Hence,

√∣∣∣(N − 1)2 − ex
y

∣∣∣ is an approximation of p − q with an error term less

than N
1
4 . Combing the approximations of p+ q and p− q, we get∣∣∣∣∣p− 1

2

(√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣+

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
)∣∣∣∣∣

<
1

2

∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣+

1

2

∣∣∣∣∣p− q −
√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣

<
1

2
N

1
4 +

1

2
N

1
4

= N
1
4 .

This gives an approximation of p with an error term of at most N
1
4 . Hence,

using Coppersmith’s Theorem 2, one can find p which leads to q = N
p . Since

every step in the proof can be done in polynomial time in log(N), then the
factorization of N can be obtained in polynomial time in log(N). �

We note that, when gcd
(
ex,
(
p2 − 1

) (
q2 − 1

))
= 1, the diophantine equation

ex −
(
p2 − 1

) (
q2 − 1

)
y = z is equivalent to the modular equation ex ≡ z

(mod
(
p2 − 1

) (
q2 − 1

)
). Moreover, the exponent e satisfies

e ≡ z

x
(mod

(
p2 − 1

) (
q2 − 1

)
).

Hence, Theorem 3 implies that one can factor N = pq for such exponents e in
the case where xy < 2N − 4

√
2N

3
4 and |z| < (p− q)N 1

4 y.

We now consider an application of Theorem 3 to the private exponent d. We
recall that d satisfies ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
). Instead of this modular

equation, we consider the key equation

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1.
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Corollary 1 Let N = pq be an RSA modulus with q < p < 2q. Let e <(
p2 − 1

) (
q2 − 1

)
be a public exponent. If the private exponent d satisfies

d <

√
2N − 4

√
2N

3
4 ,

then one can find p and q in polynomial time in log(N).

Proof. Suppose that q < p < 2q and e <
(
p2 − 1

) (
q2 − 1

)
. Since the private

exponent d satisfies ed− k
(
p2 − 1

) (
q2 − 1

)
= 1 for a positive integer k, then

k =
ed− 1

(p2 − 1) (q2 − 1)
< d · e

(p2 − 1) (q2 − 1)
< d.

Then dk < d2. Now, assume that d2 < 2N−4
√

2N
3
4 . Then, dk < 2N−4

√
2N

3
4

and d, k fulfill the conditions of Theorem 3 wich leads to the factorization of N
in polynomial time in log(N). �

6 A Numerical Example

In this section we give a detailed numerical example to explain our method as
developed in Theorem 3. Let us consider the small public key

N = 204645825996541,

e = 26384989321053458213237.

It is obvious that equation ex −
(
p2 − 1

) (
q2 − 1

)
y = z has infinitely many

solutions (x, y, z) with positive integers x, y and non zero integer z. Our aim
is to find the solution that satisfies the conditions of Theorem 3, if any. Define
We want to find y

x among the convergents of the continued fraction expansion
of e

N2+1− 9
4N

. Following the technique of Theorem 3, for each convergent y
x of

e
N2+1− 9

4N
with xy < 2N−4

√
2N

3
4 ≈ 4.089×1014, we compute an approximation

p̃ of p using

p̃ =
1

2

(√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣+

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
)
,

and apply Coppersmith’s Theorem 2 with p̃. Using the convergent

y

x
=

16052

25478743725
,

we get p̃ ≈ 19126518. Coppersmith’s Theorem outputs the prime factor p =
19126831 from which we deduce the second prime factor q = N

p = 10699411.
This completes the factorization of N .
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7 Conclusion

In this paper, we considered some variants of the RSA cryptosystem that use a
modulus N = pq and a public exponent d satisfying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
.

We studied the general equation ex −
(
p2 − 1

) (
q2 − 1

)
y = z and combined

the continued fraction algorithm with Coppersmith’s technique to find x and y
and then to factor the RSA modulus N . Our new method can considered as
an extension to some RSA type schemes of two former methods that work for
RSA, namely Wiener’s attack and Blömer-May attack.
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