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Abstract

Invented in 1977 by Rivest, Shamir and Adleman, the RSA cryptosystem
has played a very important role in the development of modern cryptography.
Its various applications in industry, Internet, banking, online shopping, cell
phones, smart cards, secure information transfers and electronic signatures
have made RSA a standard at the heart of modern technologies. This chapter
explores the mathematics behind the RSA cryptosystem including the encryp-
tion, decryption and signature schemes of RSA. We give a survey of the main
methods used in attacks against the RSA cryptosystem. This includes the
main properties of the continued fraction theory, lattices, the LLL algorithm
of Lenstra, Lenstra and Lovász and the lattice reduction based technique of
Coppersmith for solving modular polynomial equations.

1 Introduction

The concept of the public-key cryptosystem was proposed by Diffie and Hellman [5]
in 1976. Since then, a number of public-key cryptosystems have been proposed to
realize the notion of public-key cryptosystems. At the moment some of them are
present in industrial standards. In 1977, Ronald Rivest, Adi Shamir and Leonard
Adleman [10] proposed a scheme which became the most widely used asymmetric
cryptographic scheme, RSA. For instance, the RSA public-key cryptosystem is used
for securing web traffic, e-mail, remote login sessions, and electronic credit card pay-
ment systems. The underlying one-way function of RSA is the integer factorization
problem: Multiplying two large primes is computationally easy, but factoring the result-
ing product is very hard. It is also well known that the security of RSA is based on
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the difficulty of solving the so-called RSA problem: Given an RSA public key (e,N)
and a ciphertext c ≡ me (mod N), compute the plaintext m. The RSA problem is not
harder to solve than the integer factorization problem, because factoring the RSA
modulus N leads to computing the private exponent d, and to solving the RSA
problem. However, it is not clear, if the converse is true.

In the RSA cryptosystem, the public modulus N = pq is a product of two
primes of the same bit size. The public and private exponent e and d satisfy the
congruence

ed ≡ 1 (mod φ(N)),

where φ(N) = (p − 1)(q − 1) is the Euler totient function. Encryption, decryp-
tion, signature and signature-verification in RSA require the computation of heavy
exponentiations. To reduce the encryption time or the signature-verification time,
one can use a small public exponent e such as 3 or 216 + 1. On the other hand, to
reduce the decryption time or the signature-generation time, one can be tempted to
use a small private exponent d. Many attacks show that using a very small private
exponent is insecure. Indeed, Wiener [12] showed in 1990 how to break RSA when
d < N0.25 using Diophantine approximations. The bound was improved by Boneh
and Durfee [2] in 1999 to d < N0.292 using Coppersmith’s lattice reduction based
method [4].

In this chapter, we survey the state of research on RSA cryptography. We
start from reviewing the basic concepts of RSA encryption, decryption, signature
and signature-verification schemes, and subsequently review some algebraic attacks
on RSA using elementary methods as well as tools from the theory of continued
fractions and lattices. This includes the lattice reduction algorithm LLL of Lenstra,
Lenstra and Lovász [8] and the technique of Coppersmith for solving univariate
modular polynomial equations [4].

The rest of the paper is structured as follows. In section 2 we will introduce
the basic mathematics behind the RSA cryptosystem including the encryption, de-
cryption and signature schemes as well as some elementary attacks on the RSA
cryptosystem. In Section 3, we review the theory of the continued fractions and
present two applications in the cryptanalysis of RSA. In Section 4, we focus on lat-
tices and their reduction using the LLL algorithm and review Coppersmith’s method
for finding small modular roots of univariate polynomial equations and some appli-
cations in the cryptanalysis of RSA. We conclude in section 5.
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2 The Mathematics of the RSA Cryptosystem

2.1 The basic mathematics

The elementary arithmetic of the RSA cryptosystem is based on the rings N, Z and
ZN = Z/NZ.

Definition 2.1 (Division Algorithm for Integers). Let a, b ∈ Z with b > 1. Then
there exist unique q, r ∈ Z such that

a = bq + r, 0 ≤ r < b.

If r = 0, we say that b divides a and denote this by b|a.

Definition 2.2 (Greatest common divisor). Let a, b ∈ Z. A positive integer d is
the greatest common divisor of a and b if

1. d|a and d|b,

2. if c is a positive integer satisfying c|a and c|b, then c|d.

The greatest common divisor of a and b is denoted by gcd(a, b).

Primality and Coprimality play a central role in the arithmetic of the RSA
cryptosystem.

Definition 2.3 (Prime Integer). An integer p ≥ 2 is said to be prime if its only
positive divisors are 1 and p.

Definition 2.4 (Relatively Prime Integers). Two integers a and b are said to be
relatively prime or coprime if gcd(a, b) = 1.

Definition 2.5 (RSA Modulus). Let p and q be large prime numbers such that
p 6= q. The product N = pq is called an RSA modulus.

In the most standards of RSA, the modulus is a large integer of the shape
N = pq where p and q are large primes of the same bit-size. It is clear that the most
direct method of breaking RSA is to factor the RSA modulus N . Consequently, the
security of RSA is mainly based on the difficulty of factoring large integers.

Theorem 2.1 (The Fundamental Theorem of Arithmetic). Given a positive integer
n ≥ 2, the prime factorization of n is written

n = pa1
1 p

a2
2 · · · p

ak
k =

k∏
i=1

paii ,

where p1, p2, · · · , pk are the k distinct prime factors of n, each of order ai ≥ 1.
Furthermore, the factorization is unique.
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A very important number theoretical function in the RSA cryptosystem is the
Euler totient function.

Definition 2.6 (The Euler Totient Function). Given a positive integer n ≥ 2, the
Euler totient function φ(n) is defined by

φ(n) = #Z∗n = # {a, 0 < a < n, gcd(a, n) = 1} .

The set Z∗n is called the group of units modulo n.

It is easy to see that φ(p) = p − 1 whenever p is prime. The Euler totient
function has many useful properties.

Theorem 2.2. Let m and n two positive integers such that gcd(m,n) = 1. Then

φ(mn) = φ(m)φ(n).

Proof. Suppose that gcd(m,n) = 1. Consider the map

π : Zmn −→ Zm × Zn

[x]mn 7−→ ([x]m , [x]n),

where [x]a denotes x modulo a. We want to show that π is bijective. Let x, y ∈ Zmn

such that π(x) = π(y). Then

[x]m = [y]m ⇔ [x− y]m = 0⇔ x− y ≡ 0 (mod m).

Similarly, we get x−y ≡ 0 (mod n). Since gcd(m,n) = 1, this implies that x−y ≡ 0
(mod mn). On the other hand, |x − y| < mn. Hence x − y = 0 and x = y. This
shows that π is injective. To show that π is surjective, let (a, b) ∈ Zm × Zn. Define
M ∈ Zn, N ∈ Zm and x ∈ Zmn by

M ≡ m−1 (mod n), N ≡ n−1 (mod m), x ≡ aNn+ bMm (mod mn).

Then

x ≡ aNn+ bMm ≡ aNn ≡ a (mod m),

x ≡ aNn+ bMm ≡ bMm ≡ b (mod n).

It follows that the map π is surjective and finally bijective. Moreover, we have
gcd(a,mn) = 1 if only if gcd(a,m) = 1 and gcd(a, n) = 1. This implies that

π (Z∗mn) = Z∗mn × Z∗mn.

Then φ(mn) = φ(m)φ(n).
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Theorem 2.3. Let p be a prime number and e ≥ 1. Then

φ (pe) = pe−1(p− 1).

Proof. We have

φ (pe) = # {a, 0 < a < pe, gcd(a, pe) = 1}
= # {a, 0 < a < pe, gcd(a, p) = 1}
= pe −# {a, 0 < a < pe, gcd(a, p) > 1} .

Notice that # {a, 0 < a < pe, gcd(a, p) > 1} is the number of positive integers
not exceeding pe that are not coprime to p. Such integers are p, 2p,..., pe−1p. Hence

φ (pe) = pe − pe−1 = pe−1(p− 1),

which terminates the proof.

If the factorization of n is given, then φ(n) can be expressed as in the following
theorem.

Theorem 2.4. Let

n =
k∏
i=1

paii ,

be the factorization of n ≥ 2. Then

φ(n) =
k∏
i=1

pai−1
i (pi − 1).

Proof. Using Theorem 2.2 and Theorem 2.3, we get

φ(n) = φ

(
k∏
i=1

paii

)
=

k∏
i=1

φ (paii ) =
k∏
i=1

pai−1
i (pi − 1).

As we will see later, the decryption process of RSA is based on the following
result.

Theorem 2.5 (Euler). Let n be a positive integer. If a is an integer such that
gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).
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Proof. Recall that φ(n) = #Z∗n where

Z∗n =
{
a1 = 1 < a2 < · · · < aφ(n)

}
.

Suppose that gcd(a, n) = 1 and consider the set{
aa1 (mod n), aa2 (mod n), · · · , aaφ(n) (mod n)

}
.

If aai ≡ aaj (mod n) for some i, j, then a(ai−aj) ≡ 0 (mod n). Since gcd(a, n) = 1,
then ai − aj ≡ 0 (mod n) and since |ai − aj| < n, then ai = aj. Hence{

a1, a2, · · · , aφ(N)

}
=
{
aa1 (mod n), aa2 (mod n), · · · , aaφ(N) (mod n)

}
.

Next, consider the product of the integers in both sides. We get

φ(n)∏
i=1

ai =

φ(n)∏
i=1

(aa1 (mod n)) ≡ aφ(n)

φ(n)∏
i=1

ai (mod n).

Since each ai satisfies gcd(ai, n) = 1, then gcd
(
n,
∏φ(n)

i=1 ai

)
= 1. Simplifying by∏φ(n)

i=1 ai, we get
aφ(n) ≡ 1 (mod n).

Let a, e and n be positive integers. A practical concern in implementing RSA
and many cryptographic protocols is the computation of ae (mod n). Suppose that
the binary representation of e is

e =
k∑
i=0

2iei, ei ∈ {0, 1}.

Then

ae =

(
· · ·
(((

(aek)2 aek−1
)2
aek−2

)2

aek−3

)2

· · ·

)2

ae0 .

We summarize the modular exponentiation in Algorithm 1.

2.2 The basic RSA cryptosystem

The RSA cryptosystem was created in 1977 by Ronald Rivest, Adi Shamir and
Leonard Adleman [10]. It has become fundamental to e-commerce and is widely used
to secure communication in the Internet and ensure confidentiality and authenticity
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Algorithm 1 Square-and-multiply algorithm for exponentiation in Zn

INPUT: a ∈ Zn and an integer 0 < e < n whose binary representation is e =∑k
i=0 2iei.

OUTPUT: b ≡ ae (mod n).
1: Set b = 1.
2: for i from k down to 0 do
3: Compute b ≡ b2 (mod n).
4: if ei = 1 then
5: Compute b ≡ ba (mod n).
6: end if
7: end for
8: Print b and stop.

of e-mail. The RSA cryptosystem is based on the generation of two random primes,
p and q, of equal bit-size and the generation of random exponents, d and e satisfying
ed ≡ 1 (mod φ(N)) where φ(N) = (p − 1)(q − 1) is Euler’s totient function. The
RSA modulus N is the product N = pq. The pair n and e are made public and
p, q, d are secret. The integer e is sometimes called the public exponent and d the
private exponent. The generation process is illustrated in Algorithm 2. The pair
(N, e) is often called the public key and (N, d) the private key.

Algorithm 2 : Standard RSA key generation

INPUT: A number k of bits of the primes.
OUTPUT: A public key (N, e) and a private key (N, d).

1: Pick random primes p and q of bit-size k.
2: Set N = pq and φ(N) = (p− 1)(q − 1).
3: repeat
4: Pick a random integer e < φ(N),
5: until gcd(e, φ(N)) = 1.
6: Compute d ≡ e−1 (mod φ(N)).
7: Return (N, e) and (N, d).

Now, we describe the encryption, decryption and the signature schemes of the
RSA cryptosystem.

• RSA Encryption
INPUT: The public key (N, e) and the plaintext message m.
OUTPUT: The cyphertext c.

1. Represent the message as an integer m < N such that gcd(m,N) = 1.
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2. Compute c ≡ me (mod N).

3. Return c.

• RSA Decryption
INPUT: The private key (N, d) and the cyphertext c.
OUTPUT: The plaintext message m.

1. Compute m ≡ ce (mod N).

2. Return m.

• RSA Signature
INPUT: The public key (NA, eA), the private key (NB, dB), and the plaintext
message m.
OUTPUT: The cyphertext c and the signature S.

1. Compute c ≡ meA (mod NA).

2. Compute S ≡ cdB (mod NB).

3. Return c and S.

• RSA Signature Verification
INPUT: The private key (NA, dA), the public key (NB, eB), cyphertext c and
the signature S.
OUTPUT: The cyphertext c and the signature S.

1. Compute S ′ ≡ SeB (mod NB).

2. Return c and S ′. The signature is verified if S ′ = c.

To show that encryption and decryption are inverse operations, recall that ed ≡ 1
(mod φ(N)). Therefore

ed = 1 + kφ(N),

for some positive integer k. Hence

cd ≡ med ≡ m1+kφ(N) = m×
(
mφ(N)

)k ≡ m (mod n),

where we used Euler’s Theorem 2.5.
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2.3 Elementary attacks on RSA

It is well known that most successful attacks on RSA, are not based on factoring the
modulus N . Rather, they exploit the mathematical weakness of the RSA algorithm
or the improper use of the RSA system, such as lower exponents, common modulus,
and knowledge of parts of the private exponent. We shall study here two elementary
attacks on the RSA system.

Let N = pq be an RSA modulus with q < p < 2q. Suppose that an adversary
knows the Euler totient function φ(N) in addition to N . Then he can easily break
the RSA system.

Proposition 2.6. Let N = pq be an RSA modulus. Suppose that φ(N) is known.
Then one can factor N .

Proof. Suppose that N = pq and φ(N) are known. Consider the equations in p, q{
pq = N,
p+ q = N + 1− φ(N).

Then, eliminating q, we get

p2 − (N + 1− φ(N))p+N = 0.

This leads to the solutions

p =
N + 1− φ(N) +

√
(N + 1− φ(N))2 − 4N

2
,

q =
N + 1− φ(N)−

√
(N + 1− φ(N))2 − 4N

2
.

Another well known attack on RSA makes use of the Fermat method for fac-
toring. suppose that p and q are too close, namely |p − q| < cN0.25 for some small
constant c. de Weger [11] showed in 2002 that Fermat’s factoring method could find
the primes p and q.

Theorem 2.7. Let N = pq be an RSA modulus with |p − q| < cN1/4 where c is a
positive constant. Then one can factor N in time polynomial in c.

Proof. Fermat’s method consists in finding two integers x, y such that

4N = x2 − y2 = (x+ y)(x− y).
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If x− y 6= 2, then the factorization of N is given by

p =
x+ y

2
, q =

x− y
2

.

To find x, y, we consider the sequence of candidates for x defined by

xi =
[
2
√
N
]

+ i, yi =
√
x2
i − 4N, i = 0, 1, · · · , k,

where [x] is the integral part of x. We stop the process when x2
k − 4N is a perfect

square. Since p = xk+yk
2

and q = xk−yk
2

, then xk = p + q. Now, suppose that
|p− q| < cN1/4. Then

k = xk −
[
2
√
N
]

= p+ q −
[
2
√
N
]

< p+ q − 2
√
N + 1

=
(p+ q)2 − 4N

p+ q + 2
√
N

+ 1

=
(p− q)2

p+ q + 2
√
N

+ 1

<
c2
√
N

2
√
N

+ 1

<
c2

2
+ 1.

It follows that Fermat’s method can factor N in less than c2

2
+ 1 steps, which is

efficient for small values of c.

If RSA is not used properly, it may be possible to break the RSA encryption
by recovering the secret message m without use of any knowledge of the private key
(N, d). One such improper use is the use of two public keys (N, e1) and (N, e2) with
common modulus N and message m.

Theorem 2.8. Let N = pq be an RSA modulus and m a secret message. Let e1
and e2 be two public exponents such that gcd(e1, e2) = 1. If c1 ≡ me1 (mod N) and
c2 ≡ me2 (mod N) are public, then one can recover m.

Proof. Suppose that the encrypted messages c1, c2 defined by

c1 ≡ me1 (mod N),

c2 ≡ me2 (mod N),
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are public. If e1 and e2 are public with gcd(e1, e2) = 1, then there exist integers x1

and x2 such that e1x1 − e2x2 = 1. Hence

cx1
1 c
−x2
2 ≡ me1x1m−e2x2 ≡ me1x1−e2x2 ≡ m (mod N).

This terminates the proof.

The RSA cryptosystem standards recommends to generate the primes p, q
with the same bit size, that is q < p < 2q. This leads to the following result.

Proposition 2.9. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2N

1
2 < q < N

1
2 < p < 2

1
2N

1
2 ,

and

2N
1
2 < p+ q <

3
√

2

2
N

1
2 .

Proof. Assume that q < p < 2q. Then multiplying by q, we get q2 < N < 2q2

and 2−
1
2N

1
2 < q < N

1
2 . Since p = N

q
, this gives easily N

1
2 < p < 2

1
2N

1
2 . Next,

consider f(p) = p + q = p + N
p

. The derivative satisfies f ′(p) = 1 − N
p2
> 0, hence

f
(
N

1
2

)
≤ f(p) ≤ f

(
2

1
2N

1
2

)
and

2N
1
2 < p+ q <

3
√

2

2
N

1
2 .

This terminates the proof.

3 Diophantine Approximations

In this section we introduce the basics of continued fractions and see how they arise
out from attacking the RSA cryptosystem in some cases. For a general background
we refer to [6] and [3].

3.1 Continued fractions

Let x ∈ R such that bxc 6= x where bxc is the integral part of x. Write x0 = x and

x0 = a0 +
1

x1

,
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where a0 = bx0c and x1 > 1. If x1 6= 0, then write

x1 = a1 +
1

x2

,

where a1 = bx1c and x2 > 1. Next, if x2 6= 0, then write

x2 = a2 +
1

x3

,

where a2 = bx2c and x3 > 1. Observe that

x = a0 +
1

x1

= a0 +
1

a1 +
1

x2

= a0 +
1

a1 +
1

a2 +
1

x3

.

Alternatively, one may write x = [a0, a1, a2, x3].

Definition 3.1 (Continued Fraction Expansion). The continued fraction represen-
tation of a real number x will be denoted by x = [a0, a1, · · · , am] where

[a0, a1, · · · , am] = a0 +
1

a1 +
1

· · ·+ 1

am

,

and m may be infinite. All ai, called partial quotients, are positive integers, except
for a0 which may be any integer.

Definition 3.2 (Convergent). Let x ∈ R with x = [a0, a1, · · · , am]. For 0 ≤ n ≤ m,
the nth convergent of the continued fraction expansion of x is [a0, a1, · · · , an].

Proposition 3.1. For each n ≥ 0, define integers pn and qn as follows:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2.

Then, for 0 ≤ n ≤ m, the nth convergent of the continued fraction expansion of x
is [a0, a1, · · · , an] = pn

qn
.

Proof. We use induction. We have p0 = a0p−1 + p−2 = a0 and q0 = a0q−1 + q−2 = 1
so that

[a0] =
p0

q0
.
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Suppose the proposition is true for n− 1, that is

[a1, a2, a3, · · · , an−1] =
an−1pn−2 + pn−3

an−1qn−2 + qn−3

.

Then

[a0, a1, a2, · · · , an−1, an] = [a0, a1, a2, · · · , an−1 +
1

an
]

=

(
an−1 + 1

an

)
pn−2 + pn−3(

an−1 + 1
an

)
qn−2 + qn−3

=
(an−1an + 1) pn−2 + anpn−3

(an−1an + 1) qn−2 + anqn−3

=
an (an−1pn−2 + pn−3) + pn−2

an (an−1qn−1 + qn−3) + qn−2

=
anpn−1 + pn−2

anqn−1 + qn−2

=
pn
qn
,

Hence the proposition is true for n.

Proposition 3.2. For −2 ≤ n ≤ m− 1, we have

pnqn+1 − qnpn+1 = (−1)n+1

Proof. We use induction. For n = −2, we have p−2q−1 − q−2p−1 = −1 = (−1)−2+1.
Assume that pn−1qn − qn−1pn = (−1)n. Using Proposition 3.1 for n+ 1, we get

pnqn+1 − qnpn+1 = pn(an+1qn + qn−1)− qn(an+1pn + pn−1)

= pnqn−1 − qnpn−1

= −(−1)n

= (−1)n+1,

which terminates the proof.

As a consequence, we easily get the following result.

Proposition 3.3. For 0 ≤ n ≤ m, the fraction pn
qn

is in lowest terms, that is

gcd(pn, qn) = 1.

Proof. By Proposition 3.2, for 0 ≤ n ≤ m− 1, we have pnqn+1 − qnpn+1 = (−1)n+1,
then gcd(pn, qn) = 1 and gcd(pn+1, qn+1) = 1.
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The following result is a direct consequence of Proposition 3.1 and Proposi-
tion 3.2.

Corollary 3.4. For n ≥ 0, let pn
qn

be a convergent of the continued fraction expansion
of x. Then

(a) (qnx− pn)(qn+1x− pn+1) < 0.

(b) |qn+1x− pn+1| < |qnx− pn|.

Proof. (a) Write x = [a1, a2, a3, · · · , an, xn+1] = [a0, a1, a2, · · · , an+1, xn+2] where
xn+1 = [an+1, · · · ] and xn+2 = [an+2, · · · ]. For n ≥ 0, we have

x− pn
qn

=
xn+1pn + pn−1

xn+1qn + qn−1

− pn
qn

=
pn−1qn − pnqn−1

qn(xn+1qn + qn−1)
=

(−1)n

qn(xn+1qn + qn−1)
.

Hence

qnx− pn =
(−1)n

xn+1qn + qn−1

, qn+1x− pn+1 =
(−1)n+1

xn+2qn+1 + qn
.

It follows that (qnx− pn)(qn+1x− pn+1) < 0.

(b) To show |qnx − pn| > |qn+1x − pn+1|, write xn+1 = an+1 + 1
xn+2

with xn+2 > 1.
Then

an+1 < xn+1 < an+1 + 1.

Hence

xn+1qn + qn−1 < (an+1 + 1)qn + qn−1 = qn+1 + qn < xn+2qn+1 + qn,

which leads to
1

xn+1qn + qn−1

>
1

xn+2qn+1 + qn
.

We get finally
|qnx− pn| > |qn+1x− pn+1|,

which terminates the proof.

Theorem 3.5. For n ≥ 0, let pn
qn

be a convergent of the continued fraction expansion

of x. Let p
q

be a rational number with gcd(p, q) = 1.

(a) If q < qn+1, then |qnx− pn| ≤ |qx− p|.

(b) If q ≤ qn, then
∣∣∣x− pn

qn

∣∣∣ ≤ ∣∣∣x− p
q

∣∣∣ .
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Proof. (a) Assume 0 < q < qn+1. To show |qnx− pn| ≤ |qx− p|, write p and q as

p = apn + bpn+1,

q = aqn + bqn+1,

where
a = (−1)n+1(pqn+1 − qpn+1), b = (−1)n+1(qpn − pqn).

Since q < qn+1, then the expression of q implies that ab < 0. On the other hand, we
have

qx− p = (−1)n+1(aqn + bqn+1)x− (−1)n+1(apn + bpn+1)

= (−1)n+1a(qnx− pn) + (−1)n+1b(qn+1x− pn+1).

Observe that, using Corollary 3.4, the product of the terms gives

ab(qnx− pn)(qn+1x− pn+1) > 0.

Then
|qx− p| = |a(qnx− pn)|+ |b(qn+1x− pn+1)| ≥ |qnx− pn|,

and the first assertion follows.

To prove (b), assume that q ≤ qn. Then∣∣∣∣x− pn
qn

∣∣∣∣ =
|qnx− pn|

qn
≤ |qx− p|

q
=

∣∣∣∣x− p

q

∣∣∣∣ ,
which proves the second assertion.

In 1798 Legendre proved the following result. This is the main result from the
theory of continued fractions that we use to attack RSA.

Theorem 3.6. Let x ∈ R and p
q

be a rational fraction such that gcd(p, q) = 1 and

q < b if x = a
b

with gcd(a, b) = 1. If∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
,

then p
q

is a convergent of the continued fraction expansion of x.

Proof. Let p
q

be a rational number with gcd(a, b) = 1. Let pn
qn

be a convergente of x

such that qn ≤ q < qn+1. Suppose that
∣∣∣x− p

q

∣∣∣ < 1
2q2
. Using Theorem 3.5, we get∣∣∣∣pq − pn

qn

∣∣∣∣ =

∣∣∣∣pq − x+ x− pn
qn

∣∣∣∣ ≤ ∣∣∣∣pq − x
∣∣∣∣+

∣∣∣∣x− pn
qn

∣∣∣∣ ≤ 2

∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
.

Hence
|pqn − pnq| <

qn
q
≤ 1,

which leads to pqn − pnq = 0 and p
q

= pn
qn

.
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3.2 Attacks on RSA using continued fractions

Let N = pq be an RSA modulus and e, d be the public and private exponents of the
RSA cryptosystem satifying ed ≡ 1 (mod φ(N)) where φ(N) = (p − 1)(q − 1). A
well known attack on RSA, described by Wiener [12], uses continued fractions, and
applies when the private exponent d is small.

Theorem 3.7 (Wiener). Let N = pq be an RSA modulus with q < p < 2q. If

d < 1
3
N

1
4 , then one can factor N in polynomial time.

Proof. Suppose that e < φ(N) and q < p < 2q. Then N = pq > q2, and q <
√
N .

Expanding φ(N) = (p− 1)(q − 1), we get

N − φ(N) = p+ q − 1 < 2q + q − 1 < 3q < 3
√
N.

On the other hand, since ed ≡ 1 (mod φ(N)), then

ed = kφ(N) + 1,

for some positive integer k and, since e < φ(N), it satisfies

k =
ed− 1

φ(N)
<

ed

φ(N)
< d.

Using N − φ(N) < 3
√
N , we have∣∣∣∣ eN − k

d

∣∣∣∣ =
|ed− kN |

Nd

=
|ed− kφ(N)− kN + kφ(N)|

Nd

=
|1− k(N − φ(N))|

Nd

<
k(N − φ(N))

Nd

<
3k
√
N

Nd

=
3k

d
√
N
.

Using k < d < 1
3
N

1
4 , we get

3k

d
√
N
<

N
1
4

d
√
N

=
1

dN
1
4

<
1

3d2
<

1

2d2
.
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Hence
∣∣ e
N
− k

d

∣∣ < 1
2d2

and therefore, from Theorem 3.6, it follows that k
d

is one of
the convergents in the continued fraction expansion of e

N
. Notice that the continued

fraction algorithm gives the convergents in polynomial time. Using this convergent,
we get

φ(N) =
ed− 1

k
,

which, by Proposition 2.6, leads to the factorization of N .

The bounds on the private exponent can be increased considerably when there
are three instances of RSA, having the same modulus, with small private exponents.
As described in [7], an unpublished attack by Guo can be used to factor the modulus

when the private exponents are each smaller than N
1
3 .

Theorem 3.8 (Guo). Let N = pq be an RSA modulus. Consider three instances of
RSA with a common modulus N and public exponents e1, e2, e3 satisfying

e1d1 ≡ 1 (mod φ(N)), e2d2 ≡ 1 (mod φ(N)), e3d3 ≡ 1 (mod φ(N)).

If all the ki and di are pairwise relatively prime and di < N
1
3
−ε for i = 1, 2, 3, with

ε > 0, then factor N can be factored in polynomial time.

Proof. Transforming the three congruences eidi ≡ 1 (mod φ(N)), i = 1, 2, 3 to
equations, we get

e1d1 = 1 + k1φ(N), e2d2 = 1 + k2φ(N), e3d3 = 1 + k3φ(N),

where k1, k2, k3 are positive integers. Removing φ(N), we get the system

e1d1k2 − e2d2k1 = k2 − k1,

e1d1k3 − e3d3k1 = k3 − k1,

e2d2k3 − e3d3k2 = k3 − k2.

Dividing the first equation by d1k2e2, we get∣∣∣∣e1e2 − d2k1

d1k2

∣∣∣∣ =
|k2 − k1|
d1k2e2

.

Under the conditions gcd(d2k1, d1k2) = 1 and |k2−k1|
d1k2e2

< 1
2(d1k2)2

, Theorem 3.6 implies

that d2k1
d1k2

is a convergent of the continued expansion of e1
e2

. The last condition leads
to

d1 <
e2

2k2|k2 − k1|
.
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Similarly, d3k1
d1k3

is a convergent of the continued expansion of e1
e3

if

d1 <
e3

2k3|k3 − k1|
,

and d3k2
d2k3

is a convergent of the continued expansion of e2
e3

if

d2 <
e3

2k3|k3 − k2|
.

Assuming that all the ki and di are pairwise relatively prime, we get

d1 = gcd(d1k2, d1k3), k1 = gcd(d2k1, d3k1),

which leads to φ(N) = ed1−1
k1

and finally to the factorization of N . If we suppose

that ki < di < N δ for a positive constant δ, and e1 < N , then the condition
|k2−k1|
d1k2e2

< 1
2(d1k2)2

can be rewritten as

N3δ <
1

2
N = N1−3ε,

or equivalently δ < 1
3
− ε, where ε > 0 is a small constant depending only on N .

4 Lattices

In this section we give some basic backgrounds about lattices and the LLL algo-
rithm [8]. This includes definitions about lattices, some very useful lattice properties
and some necessary theorems that will allow us to try some attacks on RSA. For
more information about the algorithmic theory of lattices, see [3].

4.1 Lattices preliminaries and the LLL algorithm

A lattice L is a discrete additive subgroup of Rm.

Definition 4.1 (Lattice). Let b1, · · · , bn ∈ Rm be n ≤ m linearly independent
vectors. The lattice generated by {b1, · · · , bn} is the set

L =
n∑
i=1

Zbi =

{
n∑
i=1

xibi | xi ∈ Z

}
.

The set B = 〈b1 . . . , bn〉 is called a lattice basis for L. The lattice dimension is
dim(L) = n. If n = m then L is said to be a full rank lattice.
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A lattice L can be represented by a basis matrix. Given a basis B, a basis
matrix M for the lattice generated by B is the n×m matrix defined by the rows of
the set {b1 . . . , bn}

M =

 b1
...
bn

 .
It is often useful to represent the matrix M by B. A very important notion for the
lattice L is the determinant.

Definition 4.2 (Determinant). Let L be a lattice generated by the basis B =
〈b1 . . . , bn〉. The determinant of L is defined as

det(L) =
√

det (BBT ).

If n = m, we have
det(L) =

√
det (BBT ) = | det(B)|.

In the following we show that the determinant of a lattice is an invariant, that
is does not depend on the particular choice of the basis.

Proposition 4.1. Any two bases for a lattice L are related by a matrix U having
integer coefficients and determinant det(U) = ±1.

Proof. Suppose that the lattice L is generated by the bases B = 〈b1 . . . , bn〉 and
B′ = 〈b′1 . . . , b′n〉. Since every bi can be expressed in the basis B′ using integer
coefficients, there exists a n × n matrix U ′ with integer coefficients such that B =
U ′B′. Similarly, there exists a n × n matrix U with integer coefficients such that
B′ = UB. Hence B′ = UB = UU ′B′ which leads to UU ′ = I and det(U) det(U ′) =
1. Since det(U), det(U ′) ∈ Z, then det(U) = det(U ′) = ±1.

Corollary 4.2. The determinant of a lattice does not depend on the selection of the
basis.

Proof. Suppose that the lattice L is generated by the bases B = 〈b1 . . . , bn〉 and
B′ = 〈b′1 . . . , b′n〉. Then there exists a matrix U ′ with integer coefficients such that
B = U ′B′. We have

det(L) =
√

det (BBT )

=
√

det (U ′B′(U ′B′)T )

=
√

det ((U ′B′)B′TU ′T )

=
√

det (U ′U ′TB′B′T )

=
√

det (U ′U ′T )
√

det (B′B′T )

=
√

det (B′B′T ),
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which terminates the proof.

Definition 4.3 (Inner Product). Let v =
∑n

i=1 vibi and v′ =
∑n

i=1 v
′
ibi be two

vectors. The inner product of v and v′ is defined as

〈u, v〉 =
n∑
i=1

viv
′
i.

A short lattice vector is a vector v in L such that its Euclidean norm ‖v‖ is
relatively small.

Definition 4.4 (Euclidean Norm). The Euclidean norm of a vector v =
∑n

i=1 vibi
is defined as

‖v‖ =

(
n∑
i=1

v2
i

) 1
2

.

For a given lattice L with dimension n ≥ 2 some bases are better than others.
It is often useful to represent a lattice in a basis of short vectors. The LLL algorithm,
designed by Lenstra, Lenstra and Lovász [8] in 1982, can be used to find a basis of
lattice vectors which are relatively small in norm. The LLL algorithm makes use
of the the Gram-Schmidt procedure of computing an orthogonal basis of the same
determinant. Given a set of independent vectors {b1 . . . , bn}, the Gram-Schmidt
procedure constructs a set of vectors {b∗1 . . . , b∗n} such that

b∗1 = b1,

for i ≥ 2, b∗i = bi −
i−1∑
j=1

µi,jb
∗
j , where µi,j =

〈bi, b∗j〉
〈b∗j , b∗j〉

for 1 ≤ j < i.

The above conditions can be rewritten as B = MB∗, where basis vectors are rows
of B and B∗, and

M =



1 0 0 0 · · · 0
µ2,1 1 0 0 · · · 0
µ3,1 µ3,2 1 0 · · · 0

...
...

...
. . .

...
...

µn1,1 µn−1,2 µn−1,3 · · · 1 0
µn,1 µn,2 µn,3 · · · µn,n−1 1


,

is the Gram-Schmidt matrix. Obviously det(M) = 1.

Theorem 4.3 (Gram-Schmidt). Let {b1, . . . , bn} be a set of independant vectors and
let {b∗1, . . . , b∗n} be the associated Gram-Schmidt set of vectors. Then {b∗1 . . . , b∗n} is
orthogonal.
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Proof. We use induction. Since b∗1 = b1 and b∗2 = b2 − µ2,1b
∗
1 = b2 − µ2,1b1, then

〈b∗1, b∗2〉 = 〈b1, b2 − µ2,1b1〉 = 〈b1, b2〉 − µ2,1 〈b1, b1〉 = 〈b1, b2〉 −
〈b2, b1〉
〈b1, b1〉

〈b1, b1〉 = 0.

Hence {b∗1, b∗2} is orthogonal. Next, suppose that {b∗1 · · · , b∗i−1} is orthogonal for
i ≥ 3. Then, for 1 ≤ k ≤ i− 1, we have

〈b∗k, b∗i 〉 =

〈
b∗k, bi −

i−1∑
j=1

µi,jb
∗
j

〉

= 〈b∗k, bi〉 −
i−1∑
j=1

µi,j
〈
b∗k, b

∗
j

〉
= 〈b∗k, bi〉 − µi,k 〈b∗k, b∗k〉

= 〈b∗k, bi〉 −
〈bi, b∗k〉
〈b∗k, b∗k〉

〈b∗k, b∗k〉

= 0.

It follows that b∗i is orthogonal to each vector b∗k with 1 ≤ k ≤ i−1. Hence (b∗1 · · · , b∗i )
is orthogonal, which terminates the proof.

Corollary 4.4 (Hadamard). Let B = {b1, . . . , bn} be a basis of a lattice L and let
B∗ = {b∗1, . . . , b∗n} be the associated Gram-Schmidt basis. Then

det(L) =
n∏
i=1

‖b∗i ‖ ≤
n∏
i=1

‖bi‖.

Proof. Since B = MB∗ where M is the Gram-Schmidt matrix with coefficients µi,j
and determinant 1, we have

det(L)2 = det
(
BBT

)2
= det

(
B∗(B∗)T

)2
.

Using the orthogonal basis B∗ = {b∗1, . . . , b∗n}, we get

det(L)2 = det
(
B∗(B∗)T

)
= det

[
〈b∗i , b∗j〉

]
1≤i,j≤n =

n∏
i=1

‖b∗i ‖2.

On the other hand, we have ‖b1‖ = ‖b∗1‖ and for 2 ≤ i ≤ n,

bi = b∗i +
i−1∑
j=1

µi,jb
∗
j .
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Observe that 〈b∗r, b∗s〉 = 0 whenever r 6= s. Hence

‖bi‖2 = ‖b∗i ‖2 +
i−1∑
j=1

µ2
i,j‖b∗j‖2,

and we deduce

det(L)2 =
n∏
i=1

‖b∗i ‖2 ≤
n∏
i=1

‖bi‖2.

This terminates the proof.

In 1982, Lenstra, Lenstra and Lovász [8] proposed an algorithm for lattice re-
duction that runs in polynomial time and produces a basis B with many remarkable
properties. When the LLL reduction algorithm is performed on a lattice L gener-
ated by a basis V = {v1, . . . , vn}, it outputs a basis B = {b1, . . . , bn} which is LLL
reduced.

Definition 4.5 (LLL Reduction). Let B = {b1, . . . , bn} be a basis for a lattice L
and let B∗ = {b∗1, . . . , b∗n} be the associated Gram-Schmidt orthogonal basis. The
basis B is said to be LLL reduced if it satisfies the following two conditions:

|µi,j| ≤
1

2
, for 1 ≤ j < i ≤ n, (1)

3

4
‖b∗i−1‖2 ≤ ‖b∗i + µi,i−1b

∗
i−1‖2 for 1 < i ≤ n. (2)

The fundamental result of Lenstra, Lenstra, and Lovász says that an LLL
reduced basis is a good basis for shortness of the vectors and that it is possible to
compute an LLL reduced basis in polynomial time. Some useful properties of a LLL
reduced basis are stated in the following theorem.

Theorem 4.5. Let B = {b1, . . . , bn} be a LLL reduced basis and let B∗ = {b∗1, . . . , b∗n}
be the associated Gram-Schmidt orthogonal basis. Then

(a) ‖b∗j‖2 ≤ 2i−j‖b∗i ‖2 for 1 ≤ j ≤ i ≤ n.

(b)
∏n

i=1 ‖bi‖ ≤ 2
n(n−1)

4 det(L).

(c) ‖bj‖ ≤ 2
i−1
2 ‖b∗i ‖ for 1 ≤ j ≤ i ≤ n.

(d) ‖b1‖ ≤ 2
n−1

4 (det(L))
1
n .

Proof.
(a) Suppose that the basis B = {b1, . . . , bn} is LLL reduced. Expanding (2) and
using (1), we get

3

4
‖b∗i−1‖2 ≤ ‖b∗i ‖2 + µ2

i,i−1‖b∗i−1‖2 ≤ ‖b∗i ‖2 +
1

4
‖b∗i−1‖2,
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which leads to

‖b∗i−1‖2 ≤ 2‖b∗i ‖2. (3)

Hence, for j ≤ i, we get
‖b∗j‖2 ≤ 2i−j‖b∗i ‖2.

(b) Recall that bi = b∗i +
∑i−1

j=1 µi,jb
∗
j . Using (1), we get

‖bi‖2 = ‖b∗i ‖2 +
i−1∑
j=1

µ2
i,j‖b∗j‖2 ≤ ‖b∗i ‖2 +

1

4

i−1∑
j=1

‖b∗j‖2.

Since ‖b∗j‖2 ≤ 2i−j‖b∗i ‖2, we get

‖bi‖2 ≤ ‖b∗i ‖2 +
1

4

i−1∑
j=1

2i−j‖b∗i ‖2 =
(
1 + 2i−2 − 2−1

)
‖b∗i ‖2 ≤ 2i−1‖b∗i ‖2. (4)

Using Corollary 4.4, we have

n∏
i=1

‖bi‖2 ≤
n∏
i=1

2i−1‖b∗i ‖2 = 2
n(n−1)

2

n∏
i=1

‖b∗i ‖2 = 2
n(n−1)

2 det(L)2,

which leads to
n∏
i=1

‖bi‖ ≤ 2
n(n−1)

4 det(L).

(c) Considering (4) with i = j, we get ‖bj‖2 ≤ 2j−1‖b∗j‖2. Combining with (3), we
get

‖bj‖2 ≤ 2j−12i−j‖b∗i ‖2 = 2i−1‖b∗i ‖2,

which leads to

‖bj‖ ≤ 2
i−1
2 ‖b∗i ‖. (5)

(d) Taking j = 1 in (5) and squaring, we get ‖b1‖2 ≤ 2i−1‖b∗i ‖2 for 1 ≤ i ≤ n. Hence

‖b1‖2n ≤
n∏
i=1

2i−1‖b∗i ‖2 = 2
n(n−1)

2

n∏
i=1

‖b∗i ‖2 = 2
n(n−1)

2 (det(L))2.

From this, we deduce ‖b1‖ ≤ 2
n−1

4 (det(L))
1
n .
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4.2 Attacks on RSA using lattice reduction

An important application of lattice reduction found by Coppersmith [4] in 1996
is finding small roots of low-degree polynomial equations. This includes modular
univariate polynomial equations, and bivariate integer equations.

Let M be some large integer of unknown factorization and

f(x) =
d∑
i=1

aix
i.

be a polynomial of degree d with integer coefficients. Consider the equation f(x) ≡ 0
(mod M). In general there is no known efficient algorithm that find integer roots
of the above equation. However, Coppersmith [4] introduced an efficient method
for finding small integer solutions using the LLL algorithm. Suppose we know that
there exists an integer x0 such that f(x0) ≡ 0 (mod M) and that |x0| < N

1
d .

The problem is to find x0. The main idea is that if the coefficients of f are small
enough so that |f(x0)| =

∑d
i=1 |aixi| < M , then one might have f(x0) over the

integers. Coppersmith’s idea is to build from f(x) a polynomial h(x) which has
small coefficients and the same solution x0. Soon after Coppersmith proposed his
method in 1996, Howgrave-Graham [7] proposed in 1997 a a new method for finding
all small integer roots. Suppose we know an upper bound X such that |x0| < X.
The following theorem by Howgrave-Graham reformulates Coppersmith’s idea of
finding modular roots. We define the Euclidean norm of a polynomial f(x) as

‖f(x)‖ =

(
d∑
i=0

a2
i

) 1
2

.

Theorem 4.6 (Howgrave-Graham). Let h(x) ∈ Z[x] be a polynomial of at most ω
monomials satisfying

(1) |x0| < X, for some positive integer X.

(2) h(x0) ≡ 0 (mod M), for some positive integer M .

(3) ‖h(xX)‖ < M√
ω

.

Then h(x0) = 0 over Z.

Proof. Let h(x) =
∑d

i aix
i with ω monomials. Suppose |x0| < X. Then

|h(x0)| =

∣∣∣∣∣∑
i

aix
i
0

∣∣∣∣∣ ≤∑
i

∣∣aixi0∣∣ <∑
i

∣∣aiX i
∣∣ . (6)

24



Recall that Cauchy-Schwarz inequality asserts that for α, β ∈ R, we have(∑
i

αiβi

)2

≤

(∑
i

α2
i

)(∑
i

β2
i

)
.

Using this, we get(∑
i

∣∣aiX i
∣∣)2

≤

(∑
i

12

)(∑
i

(
aiX

i
)2)

= ω
∑
i

(
aiX

i
)2
.

If ‖h(xX)‖ < M√
ω

, then, using (6), we get

|h(x0)| <
∑
i

∣∣aiX i
∣∣ < √ω√∑

i

(aiX i)2 =
√
ω‖h(xX)‖ < M.

Hence |h(x0)| < M . Finally, if h(x0) ≡ 0 (mod M), then h(x0) = 0 over Z which
terminates the proof.

To solve f(x0) ≡ 0 (mod M), Theorem 4.6 suggests we should look for a
polynomial h(x) of small norm satisfying h(x0) ∈ Z. To do this we will build a
lattice of polynomials related to f and use LLL to find short vectors in the lattice.
The following result, as given below, is from May [9].

Theorem 4.7. For every ε > 0 there exists an N0 such that the following holds:
Let N > N0 be an integer with unknown factorization which has a divisor b > Nβ.
Let fb(x) be a monic univariate polynomial of degree δ. All solutions x0 of the
congruence fb(x) ≡ 0 (mod b), such that

|x0| < 2−
1
2N

β2

δ
−ε,

can be found in time polynomial in log(N).

Proof. Fix two positive integers m and t and consider the polynomials

gi,j(x) = xjN i(fb(x))m−i, j = 0, · · · , δ − 1, i = m, · · · , 1,
hi(x) = xi(fb(x))m, i = 0, · · · , t− 1,

where δ = deg(fb). Observe that all the polynomials share the root x0 modulo Nm.
Rewriting the polynomials explicitly, we get

j = 0 j = 1 j = 2 · · · j = δ − 1
i = m Nm, Nmx, Nmx2, · · · Nmxδ−1,

i = m− 1 Nm−1fb(x) Nm−1xfb(x) Nm−1x2fb(x) · · · Nm−1xδ−1fb(x)
i = m− 2 Nm−2fb(x)2 Nm−2xfb(x)2 Nm−2x2fb(x)2 · · · Nm−2xδ−1fb(x)2

...
...

...
...

...
...

i = 2 N2fb(x)m−2 N2xfb(x)m−2 N2x2fb(x)m−2 · · · N2xδ−1fb(x)m−2

i = 1 Nfb(x)m−1 Nxfb(x)m−1 Nx2fb(x)m−1 · · · Nxδ−1fb(x)m−1

(7)
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Observe that the maximal degree is δ − 1 + (m− 1)δ = mδ − 1. The details of the
polynomials hi(x) are as follows

i = 0, · · · , t− 1⇒ fmb (x), xfmb (x), x2fmb (x), · · · , xt−1fmb (x). (8)

Observe here that the maximal degree is t−1+mδ > mδ−1. Replacing x by Xx in
the rows i = m,m− 1, . . . , 1 of the table (7) and in the sequence (8) and expressing
in the basis

(
1, x, x2, · · · , xmδ+t−1

)
, we get a sequence of matrices of the shape

Mm =


Nm

NmX
. . .

NmXδ−1

 ,

Mm−1 =


− − − − Nm−1Xδ

− − − − − Nm−1Xδ+1

− − − − − − . . .

− − − − − − − Nm−1X2δ−1

 ,
... =

...

M1 =


− − · · · − NX(m−1)δ

− − · · · − − NX(m−1)δ+1

− − · · · − − − . . .

− − · · · − − − − NX(m−1)δ+δ−1

 ,

M0 =


− − · · · − Xmδ

− − · · · − − Xmδ+1

− − · · · − − − . . .

− − · · · − − − − Xmδ+t−1

 .
Gathering the matrices, we get a triangular matrix of the form

M =


Mm

Mm−1
...
M1

M0

 , (9)

which generates a lattice L. Obviously, we have

det(L) = Nmδ ·N (m−1)δ · · · ·N δX1+2+···+n−1 = N
1
2
m(m+1)δX

1
2
n(n−1),

where n = mδ + t. Using the LLL-algorithm, we can find a small element in L that
corresponds to a polynomial h(x) satisfying (d) of Theorem 4.5, namely

‖h(xX)‖ ≤ 2
n−1

4 det(L)
1
n = 2

n−1
4 N

m(m+1)δ
2n X

1
2
(n−1).
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In order to apply Theorem 4.6 on h(x), it is sufficient that ‖h(xX)‖ ≤ bm√
n
, holds.

This is satisfied if

2
n−1

4 N
m(m+1)δ

2n X
1
2
(n−1) <

bm√
n
.

Plugging b > Nβ, we find

2
n−1

4 N
m(m+1)δ

2n X
1
2
(n−1) <

Nmβ

√
n
.

Solving for X, we get

X < 2−
1
2n

−1
n−1N

2mnβ−m(m+1)δ
n(n−1) .

Consider the exponent of N as a polynomial in m. The exponent is maximal for

m =
2nβ − δ

2δ
,

which leads to the bound

X < 2−
1
2n

−1
n−1N

β2

δ
+ β2

(n−1)δ
+ δ

4n(n−1)
− β
n−1 .

This can be rewritten as

X < 2−
1
2N

β2

δ
−ε,

where

ε =
log n

(n− 1) logN
+

β

n− 1
− β2

(n− 1)δ
− δ

4n(n− 1)
.

Observe that ε depends on n and satisfies lim
n→+∞

ε = 0.

Theorem 4.7 has various applications in cryptography. We will now present an
attack on RSA - also due to Coppersmith - that finds the factorization of N = pq,
provided that one knows half of the bits of one of the factors.

Theorem 4.8. Let N = pq be an RSA modulus with p > q. If p̃ is an approximation
of p with

|p̃− p| < N
1
4 ,

then N can be factored in polynomial time in logN .

Proof. Suppose we know an approximation p̃ of p with |p̃− p| < N
1
4 . Consider the

polynomial fp(x) = x + p̃. Then fp(p − p̃) = p ≡ 0 mod p. Hence, x0 = p − p̃
satisfies

fp(x0) ≡ 0 mod p, |x0| < N
1
4 .

Since p > N
1
2 , one can then apply Theorem 4.7 with b = p, fp(x) = x + p̃, δ = 1

and β = 1
2
. This gives explicitly x0 which leads to p = x0 + p̃.
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In 2004, Blömer and May [1] improved upon Wiener’s result by showing that
every public exponent e satisfying an equation ex−kφ(N) = y with suitable bounds
for x and y yields the factorization of N . The Blömer-May attack makes use of
Coppersmith’s method, namely Theorem 4.8.

Theorem 4.9. Let c ≤ 1 and let (N, e) be an RSA public key tuple with N = pq

and p− q ≥ cN
1
2 . Suppose that e satisfies an equation ex− kφ(N) = y with

0 < x ≤ 1

3
N

1
4 , and |y| ≤ cN−

3
4 ex.

Then N can be factored in polynomial time.

Proof. Rewrite the equation ex−kφ(N) = y as ex−kN = y−k(p+q−1). Dividing
by Nx, we get ∣∣∣∣ eN − k

x

∣∣∣∣ =
|y − k(p+ q − 1)|

Nx
. (10)

Next, suppose |y| ≤ cN−
3
4 ex and e < φ(N). Then

k =
ex− y
φ(N)

<
ex+ |y|
φ(N)

<
ex+ 1

4
ex

φ(N)
<

5

4
x.

Combining with Proposition 2.9 and using e < N , this implies an upper bound for
|y − k(p+ q − 1)| as follows

|y − k(p+ q − 1)| ≤ |y|+ k(p+ q − 1)

≤ |y|+ k(p+ q)

≤ cN−
3
4 ex+

5

4
x× 3N

1
2

= cN−
3
4 ex+

15

4
N

1
2x

< cN
1
4x+

15

4
N

1
2x

< 4N
1
2x,

for sufficiently large N . Plugging in (10), we get∣∣∣∣ eN − k

x

∣∣∣∣ < 4N
1
2x

Nx
=

4

N
1
2

.

If x satisfies 0 < x ≤ 1
3
N

1
4 , then 4

N
1
2
< 1

2x2 . Hence, by Theorem 3.6, k
x

is a convergent

of the continued fraction expansion of e
N

. Using k and x we deduce

p+ q = N − ex

k
+ 1 +

y

k
. (11)
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On the other hand, we have

k =
ex− y
φ(N)

>
ex− |y|
φ(N)

>
ex− 1

4
ex

φ(N)
=

3ex

4φ(N)
.

This implies the following upper bound for |y|
k

|y|
k
<
cN−

3
4 ex

3
4
ex

φ(N) =
4

3
cN−

3
4φ(N) <

4

3
cN

1
4 ,

where we used φ(N) < N . Hence, using (11), we see that N − ex
k

+ 1 is is an

approximation of p + q up to an error term |y|
k
< 4

3
cN

1
4 which can be transformed

into an approximation of p− q. Indeed, setting s = N − ex
k

+ 1 and t =
√
|s2 − 4N |,

we have

|p− q − t| =
|(p− q)2 − t2|
p− q + t

=
|(p− q)2 − |s2 − 4n||

p− q + t

≤ |(p− q)2 − (s2 − 4n)|
p− q + t

=
|(p− q)2 + 4n− s2|

p− q + t

=
|(p+ q)2 − s2|
p− q + t

=
|p+ q − s| (p+ q + s)

p− q + t
.

Observe that |p+ q − s| < 4
3
cN

1
4 , p+ q + s < 3(p+ q) and p− q + t > p− q. Then

|p− q − t| < 4cN
1
4 (p+ q)

p− q

Assuming p− q ≥ cN
1
2 and using Proposition 2.9, we get

|p− q − t| < 12cN
1
4N

1
2

cN
1
2

= 12N
1
4 .
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We get finally ∣∣∣∣p− s+ t

2

∣∣∣∣ =
1

2
|p+ q − s+ p− q − t|

<
1

2
|p+ q − s|+ 1

2
|p− q − t|

<
2

3
cN

1
4 + 6N

1
4

< 7N
1
4 .

This implies that one of the values s+t
2

+ jN
1
4 , −6 ≤ j ≤ 6, is an approximation of

p up to an error of at most N
1
4 . Hence, using Coppersmith’s Theorem 4.8, N can

be factored in polynomial time.

5 Conclusion

In this chapter, we review the mathematical foundations of the RSA cryptosystem.
We described the elementary arithmetic of the RSA encryption, decryption and
signature. We introduced the tools to launch some cryptanalytic attacks on the
RSA cryptosystem, namely the diophantine approximation based attacks and the
lattice reduction based attacks. This includes the theory of the continued fractions,
the Lenstra, Lenstra, and Lovász famous LLL algorithm as well as the work of
Coppersmith for finding small roots of univariate modular polynomial equations.
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