CRYPTANALYSIS OF RSA USING THE RATIO OF THE PRIMES

Abderrahmane NITAJ

LMNO, Université de Caen, France

Tunis, June 24, 2009

تونس، إفريقيا

Basics on RSA Former attacks on RSA

Colour conventions

Red

Secret parameters.

Blue or Black

Public parameters.

Abderrahmane NITAJ CRYPTANALYSIS OF RSA USING THE RATIO OF THE PRIMES

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Basics on RSA Former attacks on RSA

Colour conventions

Red

Secret parameters.

Blue or Black

Public parameters.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Basics on RSA Former attacks on RSA

RSA cryptosystem

- Invented by Rivest, Shamir and Adleman in 1977.
- The world's successful public key encryption algorithm.
- The security of RSA is based on the problem of factoring large integers: Given N = pq, find p and q.
- *p* and *q* are large primes (at least 512 bits).

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Basics on RSA Former attacks on RSA

The RSA modulus

- *p*, *q* large primes of equal bitsize.
- N = pq is the RSA modulus.

The public and private exponents

- $\phi(N) = (p-1)(q-1)$, the Euler totient function.
- *e* ∈ N, with 1 < *e* < φ(N), and gcd(*e*, φ(N)) = 1, the public exponent.
- $ed \equiv 1 \pmod{\phi(N)}$.
- $d \in \mathbb{N}$, $1 < d < \phi(N)$, the private exponent.

The RSA equation

$$ed - (p-1)(q-1)k = 1.$$

The attacks

Basics on RSA Former attacks on RSA

The RSA modulus

- *p*, *q* large primes of equal bitsize.
- N = pq is the RSA modulus.

The public and private exponents

- $\phi(N) = (p-1)(q-1)$, the Euler totient function.
- *e* ∈ N, with 1 < *e* < φ(N), and gcd(*e*, φ(N)) = 1, the public exponent.
- $ed \equiv 1 \pmod{\phi(N)}$.
- $d \in \mathbb{N}$, $1 < d < \phi(N)$, the private exponent.

The RSA equation

$$ed - (p-1)(q-1)k = 1.$$

The attacks

Basics on RSA Former attacks on RSA

The RSA modulus

- *p*, *q* large primes of equal bitsize.
- N = pq is the RSA modulus.

The public and private exponents

- $\phi(N) = (p-1)(q-1)$, the Euler totient function.
- *e* ∈ N, with 1 < *e* < φ(N), and gcd(*e*, φ(N)) = 1, the public exponent.
- $ed \equiv 1 \pmod{\phi(N)}$.
- $d \in \mathbb{N}$, $1 < d < \phi(N)$, the private exponent.

The RSA equation

$$ed - (p-1)(q-1)k = 1.$$

The attacks

Basics on RSA Former attacks on RSA

The RSA modulus

- *p*, *q* large primes of equal bitsize.
- N = pq is the RSA modulus.

The public and private exponents

- $\phi(N) = (p-1)(q-1)$, the Euler totient function.
- *e* ∈ N, with 1 < *e* < φ(N), and gcd(*e*, φ(N)) = 1, the public exponent.
- $ed \equiv 1 \pmod{\phi(N)}$.
- $d \in \mathbb{N}$, $1 < d < \phi(N)$, the private exponent.

The RSA equation

$$ed - (p-1)(q-1)k = 1.$$

The attacks

Basics on RSA Former attacks on RSA

Wiener

Using the RSA equation

$$ed - (p-1)(q-1)k = 1.$$

Wiener, 1990

If $d < \frac{1}{3}N^{\frac{1}{4}}$ then $\frac{k}{d}$ is among the convergents of the continued fraction expansion of $\frac{e}{N}$ and the factorization of N = pq can be found.

The method

• $\frac{k}{d} \approx \frac{e}{N}$. • The continued fraction algorithm

Abderrahmane NITAJ CRYPTANALYSIS OF RSA USING THE RATIO OF THE PRIMES

Basics on RSA Former attacks on RSA

Wiener

Using the RSA equation

$$ed - (p-1)(q-1)k = 1.$$

Wiener, 1990

If $d < \frac{1}{3}N^{\frac{1}{4}}$ then $\frac{k}{d}$ is among the convergents of the continued fraction expansion of $\frac{e}{N}$ and the factorization of N = pq can be found.

The method

• $\frac{k}{d} \approx \frac{e}{N}$. • The continued fraction algo

Abderrahmane NITAJ CRYPTANALYSIS OF RSA USING THE RATIO OF THE PRIMES

Basics on RSA Former attacks on RSA

Wiener

Using the RSA equation

$$ed - (p-1)(q-1)k = 1.$$

Wiener, 1990

If $d < \frac{1}{3}N^{\frac{1}{4}}$ then $\frac{k}{d}$ is among the convergents of the continued fraction expansion of $\frac{e}{N}$ and the factorization of N = pq can be found.

The method

•
$$\frac{k}{d} \approx \frac{e}{N}$$
.
• The continued fraction algorithm.

Abderrahmane NITAJ CRYPTANALYSIS OF RSA USING THE RATIO OF THE PRIMES

Basics on RSA Former attacks on RSA

Boneh-Durfee

Using the RSA equation

$$ed - (p-1)(q-1)k = 1.$$

Boneh-Durfee, 2000

If $d < N^{0.292}$, then the factorization of N = pq can be found.

The method

- $k(N+1-x) \equiv 1 \pmod{e}$, where x = p + q.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basics on RSA Former attacks on RSA

Boneh-Durfee

Using the RSA equation

$$ed - (p-1)(q-1)k = 1.$$

Boneh-Durfee, 2000

If $d < N^{0.292}$, then the factorization of N = pq can be found.

The method

- $k(N+1-x) \equiv 1 \pmod{e}$, where x = p + q.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basics on RSA Former attacks on RSA

Boneh-Durfee

Using the RSA equation

$$ed - (p-1)(q-1)k = 1.$$

Boneh-Durfee, 2000

If $d < N^{0.292}$, then the factorization of N = pq can be found.

The method

- $k(N+1-x) \equiv 1 \pmod{e}$, where x = p + q.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Basics on RSA Former attacks on RSA

Blömer-May

Using a variant of the RSA equation

$$ex - (p-1)(q-1)k = y.$$

Blömer-May, 2004

If
$$x < \frac{1}{3}N^{\frac{1}{4}}$$
 and $|y| = O\left(N^{-\frac{3}{4}}ex\right)$ then the factorization of $N = pq$ can be found.

The method

•
$$\frac{k}{x} \approx \frac{e}{N}$$
.

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

NUMBER

Basics on RSA Former attacks on RSA

Blömer-May

Using a variant of the RSA equation

$$ex - (p-1)(q-1)k = y.$$

Blömer-May, 2004

If
$$x < \frac{1}{3}N^{\frac{1}{4}}$$
 and $|y| = O\left(N^{-\frac{3}{4}}ex\right)$ then the factorization of $N = pq$ can be found.

The method

•
$$\frac{k}{x} \approx \frac{e}{N}$$
.

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

- キャー・モー

Basics on RSA Former attacks on RSA

Blömer-May

Using a variant of the RSA equation

$$ex - (p-1)(q-1)k = y.$$

Blömer-May, 2004

If
$$x < \frac{1}{3}N^{\frac{1}{4}}$$
 and $|y| = O\left(N^{-\frac{3}{4}}ex\right)$ then the factorization of $N = pq$ can be found.

•
$$\frac{k}{x} \approx \frac{e}{N}$$
.

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

Basics on RSA Former attacks on RSA

Nitaj

Using a variant of the RSA equation

$$eX - (p - u)(q - v)Y = 1.$$

u = v = 1 implies the RSA equation ed - (p-1)(q-1)k = 1.

Nitaj, 2008

If $1 \le Y < X < 2^{-\frac{1}{4}}N^{\frac{1}{4}}$, $|u| < N^{\frac{1}{4}}$, $v = \left[-\frac{qu}{p-u}\right]$, and all prime factors of p - u or q - v are less than 10^{50} , then the factorization of N = pq can be found.

- The continued fraction algorithm.
- H.W. Lenstra's elliptic curve method (ECM).
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

Basics on RSA Former attacks on RSA

Nitaj

Using a variant of the RSA equation

$$eX - (p - u)(q - v)Y = 1.$$

u = v = 1 implies the RSA equation ed - (p-1)(q-1)k = 1.

Nitaj, 2008

If
$$1 \le Y < X < 2^{-\frac{1}{4}}N^{\frac{1}{4}}$$
, $|u| < N^{\frac{1}{4}}$, $v = \left[-\frac{qu}{p-u}\right]$, and all prime factors of $p - u$ or $q - v$ are less than 10^{50} , then the factorization of $N = pq$ can be found.

- The continued fraction algorithm.
- H.W. Lenstra's elliptic curve method (ECM).
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

Basics on RSA Former attacks on RSA

Nitaj

Using a variant of the RSA equation

$$eX - (p - u)(q - v)Y = 1.$$

u = v = 1 implies the RSA equation ed - (p-1)(q-1)k = 1.

Nitaj, 2008

If
$$1 \le Y < X < 2^{-\frac{1}{4}N^{\frac{1}{4}}}$$
, $|u| < N^{\frac{1}{4}}$, $v = \left[-\frac{qu}{p-u}\right]$, and all prime factors of $p - u$ or $q - v$ are less than 10^{50} , then the factorization of $N = pq$ can be found.

- The continued fraction algorithm.
- H.W. Lenstra's elliptic curve method (ECM).
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.

Overview Tools The new attacks

The new attacks

The variant RSA equation

eX - (N - (ap + bq))Y = Z, where $\frac{a}{b}$ is a convergent of $\frac{q}{p}$

If a = b = 1, then eX - (p - 1)(q - 1)Y = Z - Y (Blömer-May).

The attacks

- Small Difference $|ap bq| < (abN)^{\frac{1}{4}}$
- 2 Medium Difference $(abN)^{rac{1}{4}} < |ap-bq| < aN^{rac{1}{4}}$
- 3 Large Difference $aN^{rac{1}{4}} < |ap-bq|$

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.
- H.W. Lenstra's elliptic curve method (ECM)

Overview Tools The new attacks

The new attacks

The variant RSA equation

eX - (N - (ap + bq))Y = Z, where $\frac{a}{b}$ is a convergent of $\frac{q}{p}$

If a = b = 1, then eX - (p-1)(q-1)Y = Z - Y (Blömer-May).

The attacks

- **1** Small Difference $|ap bq| < (abN)^{\frac{1}{4}}$
- 2 Medium Difference $(abN)^{rac{1}{4}} < |ap-bq| < aN^{rac{1}{4}}$
- 3 Large Difference $aN^{rac{1}{4}} < |ap-bq|$

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.
- H.W. Lenstra's elliptic curve method (ECM)

Overview Tools The new attacks

The new attacks

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z$$
, where $\frac{a}{b}$ is a convergent of $\frac{q}{p}$

If a = b = 1, then eX - (p - 1)(q - 1)Y = Z - Y (Blömer-May).

The attacks

- Small Difference $|ap bq| < (abN)^{\frac{1}{4}}$
- 2 Medium Difference $(abN)^{\frac{1}{4}} < |ap bq| < aN^{\frac{1}{4}}$
- Solution Large Difference $aN^{\frac{1}{4}} < |ap bq|$

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.
- H.W. Lenstra's elliptic curve method (ECM)

Overview Tools The new attacks

The new attacks

The variant RSA equation

eX - (N - (ap + bq))Y = Z, where $\frac{a}{b}$ is a convergent of $\frac{q}{p}$

If a = b = 1, then eX - (p - 1)(q - 1)Y = Z - Y (Blömer-May).

The attacks

- Small Difference $|ap bq| < (abN)^{\frac{1}{4}}$
- 2 Medium Difference $(abN)^{\frac{1}{4}} < |ap bq| < aN^{\frac{1}{4}}$
- So Large Difference $aN^{\frac{1}{4}} < |ap bq|$

- The continued fraction algorithm.
- Lattice reduction techniques and Coppersmith's method for finding small roots of modular polynomial equations.
- H.W. Lenstra's elliptic curve method (ECM).

Overview Tools The new attacks

Continued fractions

The Continued fraction alorithm

• *e* and *N* are coprime positive integers.

•
$$\frac{e}{N} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$
.

- $\frac{c}{N} = [a_0, a_1, a_2, \cdots]$ where a_i are positive integers.
- $\frac{r_i}{s_i} = [a_0, a_1, a_2, \cdots, a_i]$ are called the convergents.

・ロト ・ 四ト ・ ヨト ・ ヨ

Overview Tools The new attacks

Continued fractions

Theorem

```
If \frac{a}{b} is a convergent of x, then
```

$$\left|x-\frac{a}{b}\right|<\frac{1}{b^2}.$$

Theorem

lf

$$\left|x-\frac{a}{b}\right| < \frac{1}{2b^2},$$

then $\frac{a}{b}$ is one of the convergents of the continued fraction expansion of x.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Overview Tools The new attacks

Continued fractions

Theorem

```
If \frac{a}{b} is a convergent of x, then
```

$$\left|x-\frac{a}{b}\right|<\frac{1}{b^2}.$$

Theorem

lf

$$\left|x-\frac{a}{b}\right| < \frac{1}{2b^2},$$

then $\frac{a}{b}$ is one of the convergents of the continued fraction expansion of *x*.

Overview Tools The new attacks

Coppersmith's method

Coppermith's Theorem

Let N = pq be an RSA modulus with $q . Given an approximation <math>\tilde{p}$ of p with $|p - \tilde{p}| < N^{\frac{1}{4}}$, then N = pq can be factored in time polynomial in $\log N$.

Coppermith's Theorem

Lattices

Lenstra-Lenstra-Lovasz (LLL) algorithm

・ロト ・四ト ・ヨト ・ヨト

3

Overview Tools The new attacks

Coppersmith's method

Coppermith's Theorem

Let N = pq be an RSA modulus with $q . Given an approximation <math>\tilde{p}$ of p with $|p - \tilde{p}| < N^{\frac{1}{4}}$, then N = pq can be factored in time polynomial in $\log N$.

Coppermith's Theorem

- Lattices
- Lenstra-Lenstra-Lovasz (LLL) algorithm

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Overview Tools The new attacks

ECM

Smooth numbers

Let *y* be a positive constant. A positive number *n* is *y*-smooth if all prime factors of *n* are less than *y*.

The Elliptic Curve Method (ECM)

- H.W. Lenstra, 1985, phase 1.
- Brent, Montgomery, 1986-87, phase 2.
- ECM is very efficient to factor Becm-smooth integers where

 $B_{\rm ecm} = 10^{52}$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Overview Tools The new attacks

Smooth numbers

Let *y* be a positive constant. A positive number *n* is *y*-smooth if all prime factors of *n* are less than *y*.

The Elliptic Curve Method (ECM)

- H.W. Lenstra, 1985, phase 1.
- Brent, Montgomery, 1986-87, phase 2.
- ECM is very efficient to factor Becm-smooth integers where

 $B_{\rm ecm} = 10^{52}$

(日)

RSA and Wiener Over The new attacks Conclusion The

Overview Tools The new attacks

The first attack

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z.$$

The first attack: Small Difference |ap - bq|

• Let $\frac{a}{b}$ be an unknown convergent of the continued fraction expansion of $\frac{q}{p}$ with $a \ge 1$ and $|ap - bq| < (abN)^{\frac{1}{4}}$.

• Set
$$ap + bq = N^{\frac{1}{2} + \alpha}$$
 with $0 < \alpha < \frac{1}{2}$.

• If

•
$$1 \le Y \le X < \frac{1}{2}N^{\frac{1}{4} - \frac{\alpha}{2}}$$

• $|Z| < \inf\left((abN)^{\frac{1}{4}}, \frac{1}{2}N^{\frac{1}{2}-\alpha}\right)Y,$

then N can be factored in polynomial time.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Tools The new attacks

The first attack

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z.$$

The first attack: Small Difference |ap - bq|

• Let $\frac{a}{b}$ be an unknown convergent of the continued fraction expansion of $\frac{q}{p}$ with $a \ge 1$ and $|ap - bq| < (abN)^{\frac{1}{4}}$.

• Set
$$ap + bq = N^{\frac{1}{2} + \alpha}$$
 with $0 < \alpha < \frac{1}{2}$.

If

•
$$1 \leq Y \leq X < \frac{1}{2}N^{\frac{1}{4}-\frac{\alpha}{2}}$$

•
$$|\mathbf{Z}| < \inf\left((abN)^{\frac{1}{4}}, \frac{1}{2}N^{\frac{1}{2}-\alpha}\right)\mathbf{Y},$$

then N can be factored in polynomial time.

(日)

Overview Tools The new attacks

The second attack

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z.$$

The second attack: Medium Difference |ap - bq|

- Let ^a/_b be an unknown convergent of the continued fraction expansion of ^q/_p such that
 - $a \ge 1, b \le 10^{52}$
 - $(abN)^{\frac{1}{4}} < |ap bq| < aN^{\frac{1}{4}}$
- Set $M = N \frac{eX}{Y}$ and $ap + bq = N^{\frac{1}{2} + \alpha}$ with $0 < \alpha < \frac{1}{2}$. • If
 - $1 \le Y \le X < \frac{1}{2}N^{\frac{1}{4} \frac{\alpha}{2}}$
 - and $|Z| < \min\left(aN^{\frac{1}{4}}, \frac{1}{2}N^{\frac{1}{2}-\alpha}\right)Y$,

then, under ECM, N can be factored efficiently.

-

RSA and Wiener Over The new attacks Conclusion The

Overview Tools The new attacks

The second attack

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z.$$

The second attack: Medium Difference |ap - bq|

 Let ^a/_b be an unknown convergent of the continued fraction expansion of ^q/_p such that

•
$$a \ge 1, b \le 10^{52}$$

• $(abN)^{\frac{1}{4}} < |ap - bq| < aN^{\frac{1}{4}}$

• Set $M = N - \frac{eX}{Y}$ and $ap + bq = N^{\frac{1}{2} + \alpha}$ with $0 < \alpha < \frac{1}{2}$.

o If

•
$$1 \leq Y \leq X < \frac{1}{2}N^{\frac{1}{4}-\frac{\alpha}{2}}$$

• and
$$|\mathbf{Z}| < \min\left(aN^{\frac{1}{4}}, \frac{1}{2}N^{\frac{1}{2}-\alpha}\right)Y$$
,

then, under ECM, N can be factored efficiently.

RSA and Wiener Ove The new attacks Too Conclusion The

Overview Tools The new attacks

The third attack

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z.$$

The third attack: Large Difference |ap - bq|

• Let $\frac{a}{b}$ be an unknown convergent of the continued fraction expansion of $\frac{q}{b}$ such that $a \ge 1$ and $b \le 10^{52}$.

• Set
$$M = N - \frac{eX}{Y}$$
, $D = \sqrt{|M^2 - 4abN|}$

•
$$ap + bq = N^{\frac{1}{2} + \alpha}$$
 with $0 < \alpha < \frac{1}{2}$.

• If

•
$$1 \leq Y \leq X < \frac{1}{2}N^{\frac{1}{4} - \frac{\alpha}{2}}$$

• and
$$|Z| < \frac{1}{3}a|ap - bq|N^{-\frac{1}{4}-\alpha}Y$$

then, under ECM, N can be factored efficiently.

(日)

Overview Tools The new attacks

The third attack

The variant RSA equation

$$eX - (N - (ap + bq))Y = Z.$$

The third attack: Large Difference |ap - bq|

• Let $\frac{a}{b}$ be an unknown convergent of the continued fraction expansion of $\frac{q}{b}$ such that $a \ge 1$ and $b \le 10^{52}$.

• Set
$$M = N - \frac{eX}{Y}$$
, $D = \sqrt{|M^2 - 4abN|}$

•
$$ap + bq = N^{\frac{1}{2} + \alpha}$$
 with $0 < \alpha < \frac{1}{2}$.

If

•
$$1 \leq Y \leq X < \frac{1}{2}N^{\frac{1}{4}-\frac{\alpha}{2}}$$

• and
$$|Z| < \frac{1}{3}a|ap - bq|N^{-\frac{1}{4}-\alpha}Y$$

then, under ECM, N can be factored efficiently.

(日)

RSA and Wiener Overview The new attacks Tools Conclusion The new attacks

The proofs in brief

Using the equation eX - (N - (ap + bq))Y = Z.

- Write eX NY = Z (ap + bq)Y. Then, if X, Y and Z are "small", we get $\frac{Y}{Y} \approx \frac{e}{N}.$
- Compute X, Y from the continued fraction expansion of $\frac{e}{N}$.
- Hence $ap + bq = N \frac{eX}{Y} + \frac{Z}{Y}$ and if $\frac{|Z|}{Y}$ is "small", then $ap + bq \approx N - \frac{eX}{Y}$ and $ab = \left[\frac{\left(N - \frac{eX}{Y}\right)^2}{4N}\right].$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

RSA and Wiener Overview The new attacks Tools Conclusion The new attacks

The proofs in brief

Using the equation eX - (N - (ap + bq))Y = Z.

- Write eX NY = Z (ap + bq)Y. Then, if X, Y and Z are "small", we get
- Compute *X*, *Y* from the continued fraction expansion of $\frac{e}{N}$.

 $\frac{\mathbf{r}}{\mathbf{v}} \approx \frac{\mathbf{e}}{\mathbf{N}}.$

• Hence $ap + bq = N - \frac{eX}{Y} + \frac{Z}{Y}$ and if $\frac{|Z|}{Y}$ is "small", then $ap + bq \approx N - \frac{eX}{Y}$ and $ab = \left[\frac{\left(N - \frac{eX}{Y}\right)^2}{4N}\right].$ RSA and Wiener Overview The new attacks Tools Conclusion The new attacks

The proofs in brief

Using the equation eX - (N - (ap + bq))Y = Z.

- Write eX NY = Z (ap + bq)Y. Then, if X, Y and Z are "small", we get $\frac{Y}{Y} \approx \frac{e}{N}$.
- Compute *X*, *Y* from the continued fraction expansion of $\frac{e}{N}$.
- Hence $ap + bq = N \frac{eX}{Y} + \frac{Z}{Y}$ and if $\frac{|Z|}{Y}$ is "small", then $ap + bq \approx N - \frac{eX}{Y}$ and $ab = \left[\frac{\left(N - \frac{eX}{Y}\right)^2}{4N}\right].$

RSA and Wiener	Overview
The new attacks	Tools
Conclusion	The new attacks

The first attack

If |ap - bq| is "small", then

$$\left.\frac{ap}{2}-\frac{N-\frac{eX}{Y}}{2}\right|\leq (abN)^{\frac{1}{4}}.$$

Hence $ap \approx \frac{N - \frac{eX}{Y}}{2}$ and applying Copersmith's theorem, we find ap and finally p = gcd(ap, N).

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

RSA and Wiener	Overview
The new attacks	Tools
Conclusion	The new attacks

The second attack

If |ap - bq| is "medium" and $b < 10^{52}$, then

• Apply ECM to find *a*, *b* with a < b < 2a using $ab = \left[\frac{\left(N - \frac{eX}{Y}\right)^2}{4N}\right].$

Hence

$$\left| p - \frac{N - \frac{eX}{Y}}{2a} \right| \le N^{\frac{1}{4}}.$$

Hence $p \approx \frac{N - \frac{eX}{Y}}{2a}$ and applying Copersmith's theorem, we find p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

RSA and Wiener	Overview
The new attacks	Tools
Conclusion	The new attacks

The third attack

If |ap - bq| is "large" and $b < 10^{52}$, then

- Apply ECM to find *a*, *b* with a < b < 2a using $ab = \left[\frac{\left(N \frac{eX}{Y}\right)^2}{4N}\right].$
- Compute $D = \sqrt{|M^2 4abN|}$.

Hence

$$\left| \frac{p - \frac{D + N - \frac{eX}{Y}}{2a}}{2a} \right| \le N^{\frac{1}{4}}.$$

Hence $p \approx \frac{D+N-\frac{eX}{Y}}{2a}$ and applying Copersmith's theorem, we find p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Cardinality Thanks

Cardinality

- eX (N (ap + bq))Y = Z.
- The parameters *X*, *Y*, *Z* are "small".
- $\frac{a}{b}$ is a convergente of $\frac{q}{p}$.
- Then using the continued fraction algoritm, ECM and Cppersmit's method, we can find the factorization of N = pq.
- The number of such week keys is at least $N^{\frac{3}{4}-\varepsilon}$.

Cardinality Thanks

Thank you for your attention

Merci

æ