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Abstract. Let N = pq be an RSA modulus and e be a public exponent. Numerous attacks on
RSA exploit the arithmetical properties of the key equation ed − k(p − 1)(q − 1) = 1. In this
paper, we study the more general equation eu − (p − s)(q − r)v = w. We show that when
the unknown integers u, v, w, r and s are suitably small and p − s or q − r is factorable using
the Elliptic Curve Method for factorization ECM, then one can break the RSA system. As an
application, we propose an attack on Demytko’s elliptic curve cryptosystem. Our method is based
on Coppersmith’s technique for solving multivariate polynomial modular equations.
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1. Introduction
In 1976, Diffie and Hellman [6] invented the concept of the public-key cryptosystem. Since then,
various schemes have been proposed as public-key cryptosystems.

In 1978, Rivest, Shamir, and Adleman [22] proposed RSA, the most widely used public-key
cryptosystem. The public parameters in RSA are the modulus N = pq and the public exponent e
satisfying gcd(e, (p− 1)(q − 1)) = 1 where p, q are large prime numbers of the same bit-size. The
decryption exponent is the integer d such that ed ≡ 1 (mod (p− 1)(q − 1)).

In 1985, Koblitz [13] and Miller [20] independently suggested the use of elliptic curves in
cryptography, mainly for the Diffie-Hellman [6] key exchange protocol and the El Gamal cryptosys-
tem [7]. Let p > 3 be a prime number and a, b be two integers such that gcd(4a3+27b2, p) = 1. The
elliptic curve Ep(a, b) over the field Fp is the set of points P = (x, y) such that y2 ≡ x3 + ax + b
(mod p) together with the point at infinity. The number of points in Ep(a, b) is #Ep(a, b) =
p + 1 − tp where tp is an integer satisfying the Hasse bound |tp| ≤ 2

√
p. Elliptic curves can be

extended over the ring Z/nZ where n is a composite integer. Such elliptic curves can serve to find
small prime factors of n as in the Elliptic Curve Method (ECM) for factorization [15].

In 1994, Demytko [5] developed a cryptosystem using an elliptic curve EN (a, b) over the
ring Z/NZ where N = pq is an RSA modulus. In the Demytko system, the public parameters
are N , a, b together with a public exponent e satisfying gcd

(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1. The

decryption exponent is an integer d satisfying ed ≡ 1 (mod lcm(p + 1 ± tp, q + 1 ± tq)) where
tp = p+ 1−#Ep(a, b) and tq = q + 1−#Eq(a, b).

This paper was written while Emmanuel Fouotsa was spending a year in Caen financed by the French SIMPATIC (SIM and
PAiring Theory for Information and Communications security), ANR-12-INSE-0014.
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The RSA cryptosystem is deployed in many commercial systems for providing privacy and
authenticity. If RSA is deployed in a device with small computing power, it is desirable to use a small
public exponent e or a small private exponent d. Unfortunately, in 1990, Wiener [25] showed that
RSA is insecure if d < 1

3N
1
4 . In 1999, Boneh and Durfee [3] improved this bound up to d < N0.292.

Their method is based on Coppersmith’s method [4] for solving modular polynomial equations and
uses the RSA key equation ed− k(p− 1)(q− 1) = 1. Afterwards, many attacks on RSA or variants
of RSA have been presented using Coppersmith’s method or other techniques (see [11], [19], [2]).

In this paper, using a variant RSA equation, we present a new attack on RSA by combining
Coppersmith’s method and the Elliptic Curve Method for factorization ECM. Let B be a positive
integer. An integer n is said to be B-smooth if all prime factors are less than B. We say that B is an
efficiency bound for ECM if every prime factor less than B of an integer n can be found by ECM.

Suppose that the public exponent e = Nβ satisfies a variant equation of the form eu − (p −
s)(q − r)v = w with suitably small unknown integers 0 < u < N δ , 0 < v, |w| < Nγ , |r| < Nα

and |s| < Nα with α < 1
4 . We show that the RSA modulus N = pq can be factored under two

conditions. The first condition is that p − s is B-smooth for some efficiency bound B of ECM and
the second condition is that δ satisfies the following inequality

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

where ε is a small positive constant. Our method is based on combining Coppersmith’s method and
ECM. We use Coppersmith’s method to find the small solutions (u, v, w, (p − s)(q − r)) of the
equation eu − (p − s)(q − r)v = w and ECM to factor (p − s)(q − r) and to extract the value of
p− s from the B-smooth part of (p− s)(q− r). Finally reusing Coppersmith’s method, we can find
p from the value of p− s.

We apply the new method to present a new attack on Demytko’s scheme. In this scheme, the
public exponent e and the private exponent d satisfy one of the four modular equations ed ≡ 1
(mod lcm(p+1± tp, q+1± tq)). This gives rise to an equation of the form eu− (p+1± tp)(q+
1 ± tq)v = w. Let e = Nβ . Suppose that |u| < N δ , 0 < v, |w| < Nγ , |tp| < Nα and |tq| < Nα

with α < 1
4 and that p + 1 ± tp or q + 1 ± tq is B-smooth. Then applying the new method as for

RSA, one can factor the RSA modulus N = pq.
The rest of this paper is organized as follows. In Section 2, we review Coppersmith’s method,

the theory of elliptic curves, Demytko’s elliptic curve cryptosystem and the Elliptic Curve Method
ECM for factorization. In Section 3, we present the new attack on RSA, and in Section 4, we present
the new attack on Demytko’s scheme. We conclude in Section 5.

2. Preliminaries
The following classical result is useful for the proof of our new attack (see [21]).

Lemma 2.1. Let N = pq be an RSA modulus with q < p < 2q. Then
√
2

2

√
N < q <

√
N < p <

√
2
√
N.

2.1. Coppersmith’s method
In 1996, Coppersmith [4] describes a technique to find small modular roots of univariate polynomials
and small integer roots of bivariate polynomials. This method has been extended to more variables
and has many surprising results in cryptanalysis. A typical example is the following result [18].
Theorem 2.2 (Coppersmith). Let N = pq be an RSA modulus with q < p < 2q. Let S̃ be an
approximation of an unknown multiple pr of p with r 6= q and |pr − S̃| < N

1
4 . Then one can factor

N in polynomial time.
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Let h(x, y, z) ∈ Z[x, y, z] be a polynomial with ω monomials of the form

h(x, y, z) =
∑
i,j,k

ai,j,kx
iyjzk.

The Euclidean norm of h(x, y, z) is defined as

‖h(x, y, z)‖ =
√∑
i,j,k

a2i,j,k.

Under some conditions, a modular polynomial equation can be solved over the integers as presented
in the following result [12].
Theorem 2.3 (Howgrave-Graham). Let e be a positive integer and h(x, y, z) ∈ Z[x, y, z] be a
polynomial with at most ω monomials. Suppose that

h (x0, y0, z0) ≡ 0 (mod em) and ‖h(xX, yY, zZ)‖ < em√
ω
,

where |x0| < X , |y0| < Y , |z0| < Z. Then h (x0, y0, z0) = 0 holds over the integers.

To find polynomials with small coefficients that can be used in Howgrave-Graham’s Theo-
rem 2.3, Coppersmith’s method uses a lattice and a lattice reduction algorithm such as the LLL
algorithm [16]. This reduction algorithm can be applied to find a basis of lattice vectors with rela-
tively small norms (see [18]).

Theorem 2.4 (LLL). Let L be a lattice spanned by a basis (u1, . . . , uω), then the LLL algorithm
produces a new basis (b1, . . . , bω) satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω − 1.

Under the condition of Howgrave-Graham’s Theorem, some modular polynomial equations
derived from the reduced basis can be transformed to polynomial equations over the integers. For
multivariate modular equations, solving the system of these polynomials is heuristic and depends on
some extra assumptions such as the following one.
Assumption 1. Let h1, h2, h3 ∈ Z[x, y, z] be the polynomials that are found by Coppersmith’s
method. Then the ideal generated by the polynomial equations h1(x, y, z) = 0, h2(x, y, z) = 0,
h3(x, y, z) = 0 has dimension zero.

Under this assumption, a system of polynomials sharing the root can be solved by using
Gröbner basis computation or resultant techniques (see [1] for more details).

2.2. Elliptic curves
Let N = pq be an RSA modulus and let a and b be two integers such that gcd(4a3 + 27b2, N) = 1.
An elliptic curve EN (a, b) is the set of points (x, y) such that

y2 ≡ x3 + ax+ b (mod N),

together with the point at infinity O. It is well known that chord-and-tangent method in the case of
elliptic curves Ep(a, b) defined over the finite filed Fp still hold for En(a, b) unless the inversion
of a non-zero number Q does not exist modulo N . This case would lead to find a factor of N by
computing gcd(Q,N). When the prime factors p, q in N = pq are large, then with overwhelming
probability the inversion of a non-zero number will exist modulo N .

Let p be a prime number. Under modulo p, the cardinality of Ep(a, b) is denoted #Ep(a, b)
and satisfies the following result (see [24], p. 131).
Theorem 2.5 (Hasse). The order of an elliptic curve Ep(a, b) over Fp is given by

#Ep(a, b) = p+ 1− tp, where |tp| ≤ 2
√
p.
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When the prime number p and the elliptic curveEp(a, b) are given, one can find the value of tp
using computational methods such the Schoof-Elkies-Atkin algorithm (SEA) (see [23]). Conversely,
let p be a prime number and t an integer with |t| < 2

√
p. Let H(d) denote the Kronecker class

number (see Section 1.6 of [15]). Deuring’s theory of CM-elliptic curves implies that there are
H(t2 − 4p) elliptic curves on Z/pZ having p+ 1− t points. Note that when |t| < √p, H(t2 − 4p)
satisfies the following inequalities (see Proposition 1.9 of [15])

c1

√
p

log p
< H(t2 − 4p) < c2

√
p(log p)(log log p)2,

where c1 and c2 are effectively computable positive constants. This shows that the number of elliptic
curves with known cardinality is non negligible.

Let p be a prime number and Ep(a, b) be an elliptic curve with equation y2 ≡ x3 + ax + b
(mod p) and cardinality #Ep(a, b) = p+1− tp. The twist of Ep(a, b) is the elliptic curve E′p(a, b)
defined by the equation cy2 ≡ x3+ax+b (mod p) where c is a fixed quadratic non-residue modulo
p. Then the cardinality of E′p(a, b) is #E′p(a, b) = p+ 1 + tp.

2.3. Demytko’s elliptic curve cryptosystem
In 1994, Demytko [5] proposed a new cryptosystem defined over the field Z/NZ where N = pq is
an RSA modulus such that p ≡ q ≡ 2 (mod 3). Demytko’s scheme uses fixed integers a and b and
a fixed modulusN . Demytko’s scheme uses only the x-coordinate of a point P = (x, y) ∈ EN (a, b)
to compute a multiple eP ∈ EN (a, b) (see Lemma 2 in [14]). Demytko’s scheme can be summarized
as follows.

1. Key Generation:
• Choose two distinct prime numbers p and q of similar bit-length.
• Compute N = pq.
• Select two integers a, b < p such that gcd

(
n, 4a3 + 27b2

)
= 1.

• Choose e such that gcd
(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1.

• Keep p, q secret and publish N, e, a, b.
2. Encryption:

• Transform the message m as the x-coordinate of a point P = (mx,my) on the elliptic
curve EN (a, b).
• Compute the ciphertext point C = eP = (cx, cy) = e(mx,my) on the elliptic curve
y2 = x3 + ax+ b (mod N).

3. Decryption:
• Compute u = c3x + acx + b (mod N).
• Compute the Legendre symbols up =

(
u
p

)
and uq =

(
u
q

)
.

• If (up, uq) = (1, 1), then compute d ≡ e−1 (mod lcm(p+ 1− tp, q + 1− tq)).
• If (up, uq) = (1,−1), then compute d ≡ e−1 (mod lcm(p+ 1− tp, q + 1 + tq)).
• If (up, uq) = (−1, 1), then compute d ≡ e−1 (mod lcm(p+ 1 + tp, q + 1− tq)).
• If (up, uq) = (−1,−1), then compute d ≡ e−1 (mod lcm(p+ 1 + tp, q + 1 + tq)).
• Compute m as the x-coordinate of dC = deP = P = (mx,my) on the elliptic curve
y2 = x3 + ax+ b (mod N).

A variant of Demytko’s scheme is to consider d ≡ e−1 (mod (p + 1 ± tp, q + 1 ± tq)) instead of
modulo lcm(p+ 1± tp, q + 1± tq). Then e and d satisfy an equation of the form

ed− k (p− s) (q − r) = 1, s = ∓tp − 1, r = ∓tq − 1.

This equation matches the RSA variant key equation that will be studied in this paper.
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2.4. The Elliptic Curve Method
An integerm is said to beB-smooth if all the prime factors ofm are less than or equal to B. Smooth
numbers are used in cryptography by many factoring and discrete logarithm algorithms (see [15]
and[17]). The counting function of B-smooth numbers in an interval [1, x] is defined as

ψ(x,B) = # {m : 1 ≤ m ≤ x,m is B-smooth} .
In the particular case x = Bu, Hildebrand [10] gave the asymptotic formula ψ(x,B) = xρ(u)
where ρ(u) is the Dikman rho-function defined as the solution of the differential equation uρ′(u) =
−ρ(u− 1) for u ≥ 1 with the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. For 1 ≤ u ≤ 2, the Dikman
function satisfies ρ(u) = 1 − log u so that ψ(x,B) = x(1 − log u). The Elliptic Curve method
(ECM) is a probabilistic method for integer factorization and was discovered by H.W. Lenstra [15]
in 1987. It is a fast partially factoring algorithm, especially for finding small prime factors p, in a
heuristic running time O

(
exp

(
c(log p)1/2

) (
log log p)1/2

))
, for some constant c > 0. The ECM

algorithm is based on the property of the Chinese Remainder Theorem, that is, for any elliptic curve
E(a, b), if n = pe11 p

e2
2 · · · p

ek
k , then

E (Z/nZ) = E (Z/pe11 Z)× E (Z/pe22 Z)× · · · × E (Z/pekk Z) .

Suppose that the order ofE (Z/pe11 Z) isB-smooth and letm be a multiple of |E (Z/pe11 Z)|, typically
m = lcm(2, . . . , B). Then, for every P ∈ E (Z/nZ), we have mP = (0 : 1 : 0) (mod p1).
Consequently, computing mP where P ∈ E (Z/nZ), using the addition formulas on E (Z/nZ), we
must get mP = (x : y : z) = (0 : 1 : 0) (mod p1). This implies that z ≡ 0 (mod p1) and that
gcd(z, n) = pr1 for some positive integer r which will reveal p1.

3. The Attack on RSA
In this section, we present an attack on RSA when the public key (N, e) satisfies an equation eu −
(p− s)(q− r)v = w with suitably small parameters u, v, w, r, s under the condition that one of the
factors (p− s) or (q − r) is B-smooth for some ECM-efficiency bound B.

3.1. The attack
Theorem 3.1. Let N = pq be an RSA modulus and e = Nβ be a public exponent. Suppose that e
satisfies the equation eu− (p− s)(q− r)v = w with |r|, |s| < Nα < N

1
4 , 0 < u < N δ , 0 < v and

|w| < Nγ . If

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

where ε is a small positive constant, then, under assumption (1), one can find (p − s)(q − r) in
polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent satisfying eu − (p −
s)(q − r)v = w. Since (p− s)(q − r) = N − pr − qs+ rs, then −v(N − pr − qs+ rs)− w ≡ 0
(mod e),which can be rewritten as v(pr+qs−rs)−Nv−w ≡ 0 (mod e). Consider the polynomial
f(x, y, z) = xy − Nx + z, Then (x, y, z) = (v, pr + qs − rs,−w) is a solution of the modular
polynomial equation f(x, y, z) ≡ 0 (mod e). The small solutions of this modular equation can be
found by applying Coppersmith’s method [4]. Let m and t be two positive integers. Consider the
polynomials

Gk,i1,i2,i3(x, y, z) = xi1−kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, . . . ,m, i2 = k, i3 = m− i1,

Hk,i1,i2,i3(x, y, z) = yi2−kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, i2 = k + 1, . . . , i1 + t, i3 = m− i1.
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LetL denote the lattice spanned by the coefficient vectors of the polynomialsGk,i1,i2,i3(Xx, Y y, Zz)
and Hk,i1,i2,i3(Xx, Y y, Zz). We can get a left triangular matrix if the ordering of the rows follows
the ordering of the k’s and the ordering of the the monomials of a polynomial follows the natural
ordering following the i1’s, then the i2’s, then the i3’s. Hence, using the triangular form of the ma-
trix, the determinant of L is in the form det(L) = eneXnXY nY ZnZ . For m = 2 and t = 1, the
coefficient matrix for L is presented in Table 1. The non-zero elements are marked with an ‘~’.
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To find the values of the exponents, define S(x) to be

S(x) =

m∑
k=0

m∑
i1=k

k∑
i2=k

m−i1∑
i3=m−i1

x+

m∑
k=0

k∑
i1=k

i1+t∑
i2=k+1

m−i1∑
i3=m−i1

x.

Using the construction of the polynomials G and H , we get

ne = S(m− k) = 1

6
m(m+ 1)(2m+ 3t+ 4),

nX = S(i1) =
1

6
m(m+ 1)(2m+ 3t+ 4),

nY = S(i2) =
1

6
(m+ 1)

(
m2 + 3mt+ 3t2 + 2m+ 3t

)
,

nZ = S(i3) =
1

6
m(m+ 1)(m+ 3t+ 2),

ω = S(1) =
1

2
(m+ 1)(m+ 2t+ 2).

(1)

Let t = τm for some positive τ to be optimized later. The dominant terms of the exponents in (1)
are

ne ≈
1

6
(3τ + 2)m3 + o(m3),

nX ≈
1

6
(3τ + 2)m3 + o(m3),

nY ≈
1

6

(
3τ2 + 3τ + 1

)
m3 + o(m3),

nZ ≈
1

6
(3τ + 1)m3 + o(m3),

w ≈ 1

6
(6τ + 3)m2 + o(m2).

(2)

Applying the LLL algorithm 2.4 to the lattice L, we get a reduced basis where the three first vectors
hi, i = 1, 2, 3 satisfy

‖h1‖ ≤ ‖h2‖ ≤ ‖h3‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

To apply Howgrave-Graham’s Theorem 2.3 to h1, h2 and h3, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em√
ω
.

This can be transformed to

det(L) < 2−
ω(ω−1)

4
1

(
√
ω)
ω−2 e

m(ω−2),

or equivalently

eneXnXY nY ZnZ < 2−
ω(ω−1)

4
1

(
√
ω)
ω−2 e

m(ω−2). (3)

Suppose that e = Nβ , 0 < u < Nδ , |w| < Nγ and max(|r|, |s|) < Nα < N
1
4 . Since q < p <√

2
√
N by Lemma 2.1, then

p|r + q|s+ |rs| < 3max(p|r|, q|s|, |rs|) < 3max
(√

2
√
N ·Nα, N2α

)
= 3
√
2N

1
2+α.

This gives

(p− r)(q − s) = N − pr − qs+ rs > N − (p|r + q|s+ |rs|) > N − 3
√
2N

1
2+α >

1

2
N.
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Using 0 < v and |w| < eu < Nβ+δ , we get

0 < v =
eu− w

(p− s)(q − r)
<

eu+ |w|
(p− s)(q − r)

<
2eu
1
2N

< 4Nβ+δ−1, (4)

Let X = 4Nβ+δ−1, Y = 3
√
2N

1
2+α and Z = Nγ . Then the target solution (x, y, z) satisfies

|x| < X , |y| < Y and |z| < Z. Using the approximations of ne, nX , nY , nZ and ω given in (2), the
inequality (3) can be transformed into

(3τ + 2)β + (3τ + 2)(β + δ − 1) +
(
3τ2 + 3τ + 1

)(1

2
+ α

)
+ (3τ + 1)γ < (6τ + 3)β − ε1,

where ε1 collects all constant terms in e, X , Y and Z. It is a small positive constant that depends
only on N . The optimal value for τ is

τ0 =
1− 2δ − 2α− 2γ

2(1 + 2α)
,

and, plugging this value in the former inequality, we obtain

4α2 + 16αβ + 8αδ − 8αγ − 12δ2 − 24δγ − 12γ2 − 4α+ 8β + 28δ + 20γ − 15 < −ε2,
where ε2 is another small positive constant. The former equation is valid for

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

where ε is a small positive constant. Under this condition, the LLL algorithm applied to the lattice
L outputs three vectors vi, i = 1, 2, 3. These vectors represent the coefficients of three polynomials
hi(Xx, Y y, Zz), i = 1, 2, 3 sharing the root (x, y, z) = (v, pr + qs + rs,−w). Then, applying
Gröbner basis computations, we get the expected solution, from which we deduce (p− s)(q − r) =
N − (pr + qs+ rs). Since all the former steps can be done in polynomial time, then the method is
a polynomial time algorithm. This terminates the proof. �

Remark. If r = s = w = 1, then the equation eu − (p − s)(q − r)v = w is the classical RSA key
equation ed − (p − 1)(q − 1)k = 1 with d < N δ . Using α = 0, β = 1 and γ = 0, the bound of
Theorem 3.1 gives δ < 7

6−
√
7
3 . This retrieves the classical bound on the private exponent d (see [3]).

Theorem 3.2. Let N = pq be an RSA modulus and e = Nβ be a public exponent. Suppose that e
satisfies the equation eu− (p− s)(q− r)v = w with |r|, |s| < Nα < N

1
4 , 0 < u < N δ , 0 < v and

|w| < Nγ . Let B be an ECM-efficiency bound for the Elliptic Curve Method. If (p − s) or (q − r)
is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

then, under assumption (1), one can find p and q in polynomial time.

Proof. Suppose that, in the equation eu − (p − s)(q − r)v = w, the parameters satisfy |r|, |s| <
Nα < N

1
4 , e = Nβ , 0 < u < Nδ , < v, |w| < Nγ and that the exponent parameters satisfy

δ < 7
6 + 1

3α− γ −
1
3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε. Then, by applying Theorem 3.1, we can

find the exact value of (p−s)(q−r). Next, suppose that (p−s) isB-smooth whereB is a bound for
the efficiency of the Elliptic Curve Method (ECM). Hence, ECM will reveal a partial factorization
of (p− s)(q − r) as

(p− s)(q − r) =M ·
ω((p−s)(q−r))∏

i=1

peii ,

were ω((p− s)(q − r) is the number of distinct prime factors of (p− s)(q − r) less than B and M
is such that M = 1 or all prime factors of M are greater than B. The average order of the number
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of prime factors of an integer n is ω(n) ≈ logn
log logn (see [9], pp. 355). Since |r|, |s| < Nα and√

N < p <
√
2N , then(√

N −Nα
)2

< (p− s)(q − r) <
(√

2N +Nα
)2
. (5)

Hence, the average number of the prime factors of (p− s)(q − r) satisfies

ω((p− s)(q − r) ≈ log((p− s)(q − r))
log log((p− s)(q − r))

≈ logN

log logN
.

On the other hand, according to the factorization

(p− s) =
ω((p−s))∏
i=1

peii ,

the number of distinct divisors of p− s is exactly
∏ω(p−s)
i=1 (ei+1). However, the average number of

divisors of an integer n is log n (see Theorem 319 of [9]). Hence, the average number of divisors of
p−s is approximately log(p−s) ≈ 1

2 logN . Let d be a divisor of (p−s)(q−r) such that d = p−s.
Then

d =

ω(p−s)∏
i=1

pxi
i , 0 ≤ xi ≤ ei.

Using (5), we get

log
(√

N −Nα
)
<

ω(p−s)∑
i=1

xi log pi < log
(√

2N +Nα
)
.

The former inequalities can be solved by applying linear programming algorithms such as PSLQ [8]
and LLL [16], and using a solution (x1, . . . , xω(p−s)), we compute d =

∏ω(p−s)
i=1 pxi

i which is then
a candidate for p − s. Since |s| < Nα < N

1
4 , then d is an approximation of the prime factor p of

N with an error term less than N
1
4 . Hence, using Theorem 2.2, this leads to the exact value of p if

d is the good candidate. Repeating this process sequentially for the factors d of (p − s)(q − r) in
the range

√
N − Nα < d <

√
2N + Nα, we will find p and then get q = N

p . This achieves the
factorization of the RSA modulus. �

3.2. A numerical example for RSA
We experimented our method with various sizes. In all cases, the assumption (1) was true and the
method was successful to find the factorization of the RSA modulus.

As a numerical example, consider the following RSA 265 bit-size modulus N with the public
exponent e,

N =431152655066872264361967287569597072664021583942612947594581

39340520129183826747,

e =442910968337832163537316435435954401939549665933793683113289

7706681971178351139.

Suppose that N = pq with unknown factorization and e satisfies an equation eu − (p − s)(q −
r)v = w with the suitably small unknown parameters u, v, w, r and s. Then applying the method of
Theorem 3.1 to solve the equation eu− (p− s)(q − r)v = w, with the bounds

u < Nδ = N0.15, |w| < Nγ = N0.15, |r|, |s| < Nα = N0.15, e = Nβ = N0.987,
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we get

v =8330878683394

w =2516643,

ps+ qr − rs =45624103499453346715225639044829688941453657147,

Since (p− s)(q − r) = N − (pr + qs− rs), we get

(p− s)(q − r) =4311526550668722643619672875695966164229865894091457953

3819094510831187730169600.

Then, using the Elliptic Curve Method with the bound B = N
1
10 ≈ 91931238, we get the factoriza-

tion

(p− s)(q − r) = 28 · 3 · 52 · 13 · 23 · 53 · 89 · 181 · 1663 · 2833 · 2969 · 5197 · 5233·
6481 · 12007 · 18439 · 36973 · 435876180528100336114933071348569.

Using the factorization of (p− s)(q− r), we can find the set of the factors d such that
√
N −Nα <

d <
√
2N + Nα. Such divisors are candidate for p − s, that is p − s = d for one of these fac-

tors. Then by applying Coppersmith’s Theorem 2.2, we can find p using the correct candidate.
For the divisor d = 6672224014662340178579721474326728185600, we apply Coppersmith’s
Theorem 2.2 and find p = 6672224014662340178579721474326734152749. Then q = N

p =
6461903169309154483833797011785886506503.

4. Application to Demytko’s Scheme
In this section, we show how to apply the technique of Theorem 3.1 and Theorem 3.2 to break the
Demytko scheme in some situations and provide a numerical example.

4.1. The attack on Demytko’s Scheme
In Demytko’s scheme, the RSA modulus is N = pq and the elliptic curve EN (a, b) is such that
#Ep(a, b) = p+1−tp and #Eq(a, b) = q+1−tq where, according to Hasse Theorem, |tp| < 2

√
p

and |tq| < 2
√
q. Also, the public exponent e and the private exponent d satisfy one of the four

equations
eu− (p+ 1± tp)(q + 1± tq)v = w.

These equations can be transformed into one of the form eu−(p−s)(q−r)v = w where s = ∓tp−1
and t = ∓tq − 1, which can be studied using the technique of Theorem 3.1 and Theorem 3.2.

Corollary 4.1. Let (N, e, a, b) the public parameters of a Demytko’s instance where N = pq.
Suppose that e = Nβ satisfies an equation of the form eu − (p + 1 ± tp)(q + 1 ± tq)v = w with
| ± tp − 1|, | ± tq − 1| < Nα < N

1
4 , 0 < u < N δ , < v and |w| < Nγ . Let B be an ECM-efficiency

bound for the Elliptic Curve Method. If p+ 1± tp or q + 1± tq is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α+ 1)(2α+ 6β − 6γ + 1)− ε,

then, under assumption (1), one can find p and q in polynomial time.

Proof. Since the equation eu− (p+ 1± tp)(q + 1± tq)v = w can be transformed into eu− (p−
s)(q − r)v = w with s = ∓tp − 1 and t = ∓tq − 1, then this equation can be solved under the
conditions of Theorem 3.1 and Theorem 3.2 when |tp − 1| < Nα and |tq − 1| < Nα. �
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4.2. A numerical example for Demytko
Let us consider the Demytko public parameters (N, e, a, b) where N is an 510-bit RSA modulus

N =24456415204971883728939103295386758243314549215201639004265623

93634418526897575682249916293416221269674459540700624274860236

238684609738360751815410091617,

e =207753540686843587408555602893982678168821441852165899252123932

416370824148707563812033872059010473801740084336709522813588017

197501164099322578137710783,

a =0,

b =9,

with the elliptic curve EN (a, b) with equation y2 ≡ x3 + 9 (mod N). We suppose that e satisfies
the equation eu − (p + 1 ± tp)(q + 1 ± tq)v = w with tp, tq < Nα = N0.1. Then applying the
method of Theorem 3.1 to solve the equation eu − (p − s)(q − r)v = w where s = ∓tp − 1 and
r = ∓tp − 1, we get for e = Nβ ≈ N , u < N δ = N0.1, |w| < Nγ = N0.1

v =6889077569105,

w =2916646,

pr + qs− rs =7843579993396182200943116363500139031658267071337633,

244222164466922717093026565590439040792,

Then

N − (pr + qs− rs) = (p− s)(q − r)
= 244564152049718837289391032953867582433145492152016

3900426562385790838533501393481306799929916082238016

192469362991030638071771761892645334186224971050825.

Applying the Elliptic Curve Method for factorization with the bound B = 280 ≈ N0.16, we get the
factorization

(p− s)(q − r) =36 · 52 · 72 · 133 · 432 · 1032 · 277 · 6742 · 1021 · 4177 · 15061
· 217372 · 271092 · 522912 · 84991 · 90841 · 132661 · 3473292

· 3834631 · 29327821 · 69689551 · 30404961633073956301
· 305196537135675591605491.

Any divisor d of (p− s)(q − r) is a candidate for p− s or q − r. Using the divisor

d =33 · 132 · 277 · 1021 · 15061 · 217372 · 271092 · 522912 · 90841
· 305196537135675591605491,

as a candidate for p− s in Coppersmith’s Theorem 2.2, we get p and then q = N
p as follows

p =6859204255983061432517785834149052664712382794585028575

9827931818992553395171,

q =3565488691146548938655947873912559573169857298248409258

0287175860557076482027,

which completes the factorization of N .
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5. Conclusion
In this paper, we consider an instance of RSA where the public exponent satisfies a generalized key
equation with many unknown parameters. Under suitable conditions, we combine Coppersmith’s
method and the Elliptic Curve Method for factorization ECM, we solve the equation and find the
prime factors of the RSA modulus. We apply the same technique to launch an attack on Demytko’s
Elliptic Curve Cryptosystem when the secret parameters are suitably small.
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deaux, 7(1):219254, (1995)

[24] Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer-Verlag, 106
(1986)

[25] Wiener, M.: Cryptanalysis of short RSA secret exponents, IEEE Transactions on Information Theory, Vol.
36, pp. 553–558 (1990)

Abderrahmane Nitaj
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