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Abstract. In this paper, we analyze the security of the KMOV public
key cryptosystem. KMOV is based on elliptic curves over the ring Zn

where n = pq is the product of two large unknown primes of equal bit-
size. We consider KMOV with a public key (n, e) where the exponent e
satisfies an equation ex−(p+1)(q+1)y = z, with unknown parameters x,
y, z. Using Diophantine approximations and lattice reduction techniques,
we show that KMOV is insecure when x, y, z are suitably small.
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1 Introduction

In 1991, Koyama, Maurer, Okamoto and Vanstone [7] introduced a new public
key cryptosystem based on elliptic curves, called KMOV. The KMOV cryptosys-
tem is based on elliptic curves over the ring Zn where n = pq is an RSA modulus,
that is, the product of two large unknown primes of equal bit-size. Introduced in
1978 by Rivest, Shamir and Adleman, RSA [9] is one of the most popular cryp-
tosystems in research as well as in commercial domain (see [2], [5]). The RSA
public key is denoted by (n, e) where n = pq is an RSA modulus and e is an
integer satisfying gcd(e, (p− 1)(q− 1)) = 1. The corresponding private exponent
d is an integer satisfying ed ≡ 1 (mod (p − 1)(q − 1)). Then, there exists some
integer k such that

ed− k(p− 1)(q − 1) = 1. (1)

Similarly, the KMOV public key is denoted by (n, e) where n = pq and e is an
integer satisfying gcd(e, (p+ 1)(q+ 1)) = 1. The corresponding private exponent
d is an integer satisfying ed ≡ 1 (mod (p+ 1)(q+ 1)) which can be reformulated
as an equation

ed− k(p+ 1)(q + 1) = 1. (2)

http://www.math.unicaen.fr/~nitaj


2 Abderrahmane Nitaj

The security of RSA and KMOV is mainly based on the difficulty of factoring
the RSA modulus n. To speed up the encryption or decryption one may try to
use small public or secret decryption exponent. Many important papers studied
RSA and KMOV to explore the weaknesses in using small exponents. In 1990,
Wiener [11] showed that using equation (1) and the continued fraction algorithm,
it is possible to break RSA if the private key d satisfies d < 1

3n
0.25. In 2004,

Blömer and May [1] described an attack on RSA starting with the equation

ex− k(p− 1)(q − 1) = y.

Using the continued fraction algorithm and lattice reduction techniques, they
showed that RSA is insecure if 0 < x < 1

3n
0.25 and |y| = O

(
n−0.75ex

)
. In this

paper, we consider KMOV with a public exponent e satisfying the more general
equation

ex− (p+ 1)(q + 1)y = z. (3)

where x and y are co-prime positive integers. Observe that this equation has
infinitely many solutions but we will focus on small solutions. In 1995, Pinch [8]
extended the Wiener attack to KMOV using similar techniques applied with
equation (2), that is when z = 1. Similarly, Ibrahimpašić [6], studied the security
of KMOV with short secret exponents.

We mainly focus on the equation (3) which is a generalization of the equa-
tion (2). We use Diophantine approximations to find x, y among the convergents
of the continued fraction expansion of e

n when x, y and z satisfy

|z| < (p− q)n 1
4 y

3(p+ q)
, xy <

√
2
√
n

12
.

After finding x and y, one can get an approximation p̃ of p satisfying |p− p̃| < n
1
4

where

p̃ =
1

2

(
ex

y
− n− 1

)
+

1

2

√√√√∣∣∣∣∣
(
ex

y
− n− 1

)2

− 4n

∣∣∣∣∣.
Finally, this approximation leads to the factorization of n by using Coppersmith’s
Theorem [3].

The rest of this paper is organized as follows. In the next section, we review
some necessary definitions and notations on elliptic curves and recall the KMOV
cryptosystem. In section 3, we present our new attack on KMOV. In Section 4,
we propose a numerical example. We conclude in Section 5.

2 Preliminaries

In this section, we give a brief description of the KMOV cryptosystem and elliptic
curves (see [10] for more details on elliptic curves).
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2.1 Elliptic Curves over Fp

An elliptic curve over a field K is an algebraic curve with no singular points,
given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K,

together with a single element denoted O, called the point at infinity. The elliptic
curve E over K is denoted E/K and the set of solutions (x, y) ∈ K2 together
with O is denoted E(K). Given two points P,Q ∈ E(K) we define a third point
P +Q so that E(K) forms an abelian group with this addition operation.

• The point O serves as the identity element.
• The opposite of P = (x1, y1), is −P = (x1,−y1 − a1x1 − a3).
• If P = (x1, y1) and Q = (x2, y2) with Q 6= −P , then P +Q = (x3, y3) where{

x3 = λ2 − x1 − x2 − a2 + a1λ,
y3 = −y1 − (x3 − x1)λ− a1x3 − a3,

where

λ =


y2−y1

x2−x1
if x1 6= x2,

3x2
1+2a2x1+a4−a1y1

2y2
1+a1x1+a3

if x1 = x2,

If K is of characteristic different from 2 or 3, the equation of the elliptic curve
E can be transformed into the reduced Weierstrass form

y2 = x3 + ax+ b, a, b ∈ K,

where 4a3 + 27b2 6= 0. When K = Fp for some prime p > 3, such a curve will be
denoted Ep(a, b).

Theorem 1 (Hasse). The order of the group Ep(a, b)(Fp) is given by

#Ep(a, b) = p+ 1− ap,

where |ap| ≤ 2
√
p.

For the special case a = 0, the order #Ep(0, b) can easily be determined.

Lemma 1. Let p > 3 be a prime satisfying p ≡ 2 (mod 3) and 0 < b < p. Then

#Ep(0, b) = p+ 1.

2.2 Elliptic Curves over Zn

We now consider elliptic curves over the ring Zn = Z/nZ where n = pq is the
product of two large distinct primes p and q. An elliptic curve En(a, b) over Zn

is the set of points (x, y) ∈ Z2
n satisfying

y2 = x3 + ax+ b (mod n)
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together with the point at infinity O. The addition law can be extended for
points in a curve En(a, b) over Zn. Note that the addition law is not always well-
defined when using analytical expressions since there are elements in Zn which
are not invertible. It follows that En(a, b)(Zn) is not a group. By the Chinese
Remainder Theorem, the mapping

En(a, b)→ Ep(a, b)× Eq(a, b)

defined by the the natural projections is a bijection. Thus, a point (x, y) of the
elliptic curve En(a, b) is associated to the point

((x (mod p), y (mod p)), (x (mod q), y (mod q)) ∈ Ep(a, b)× Eq(a, b).

The points (O, P ) and (P,O) can not be represented like this. Finding such a
point is, however, very unlikely and would lead to the factorization of n. The
Chinese Remainder Theorem leads to the following lemma.

Lemma 2. Let n = pq be an RSA modulus and En(a, b) an elliptic curve over
Zn with gcd

(
4a3 + 27b2, n

)
= 1. Then for any P ∈ En(a, b) and any integer k,

we have
(1 + k#Ep(a, b)#Eq(a, b))P = P.

2.3 KMOV Scheme

In 1991, Koyama, Maurer, Okamoto and Vanstone [7] proposed the so called
KMOV cryptosystem using elliptic curves defined over the elliptic curve En(a, b)
where n = pq is an RSA modulus. The authors propose using the elliptic curve
En(0, b) with equation y2 = x3 + b modulo n = pq where p and q are both
congruent to 2 mod 3. In this case, the order #Ep(0, b) is p + 1 and the order
#Eq(0, b) is q + 1.

• Key Generation
INPUT: The bit-length k of the RSA modulus.
OUTPUT: The public key (n, e) and the private key (n, d).

1. Find two primes, p and q, of length k/2 bits satisfying p ≡ q ≡ 2 (mod 3).
2. Compute the RSA modulus n = pq.
3. Choose a public key e co-prime to (p+ 1)(q + 1).
4. Compute the inverse d of e mod ((p+ 1)(q + 1)).
5. Return the public key (n, e) and the private key (n, d).

• KMOV Encryption
INPUT: The public key (n, e) and the plaintext message m.
OUTPUT: The cyphertext (c1, c2).

1. Represent the message m as a couple (m1,m2) ∈ Z2
n.

2. Compute b = m2
2 −m3

1 (mod n).
3. Compute the point (c1, c2) = e(m1,m2) on the elliptic curve y2 = x3 + b

(mod n).
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4. Return (c1, c2).

• KMOV Decryption
INPUT: The private key (n, d) and the cyphertext (c1, c2).
OUTPUT: The plaintext message (m1,m2).

1. Compute b = c22− c31 (mod n). Note that the receiver of a message never
need to compute b, but he can compute it.

2. Compute the point (m1,m2) = d(c1, c2) on the elliptic curve y2 = x3 + b
(mod n).

3. Return (m1,m2).

The decryption scheme is valid since, using Lemma 1 and Lemma 2, we have

d(c1, c2) = de(m1,m2)

= (1 + k(p+ 1)(q + 1))(m1,m2)

= (1 + k#Ep(0, b)#Eq(0, b))(m1,m2)

= (m1,m2),

where k is the integer satisfying ed = 1 + k(p+ 1)(q + 1).

3 The New attack on the KMOV Cryptosystem

Let n = pq be an RSA modulus as required by the KMOV Cryptosystem.
Suppose that e is an integer satisfying gcd(e, (p + 1)(q + 1)) = 1. Let x, y be
co-prime positive integers. Define z by

ex− (p+ 1)(q + 1)y = z.

In this section, we show that, under some conditions, it is possible find x, y, p,
q which leads to the factorization of the RSA modulus and breaks the system.
We shall need the following useful result.

Lemma 3. Let n = pq be an RSA modulus with q < p < 2q. Then

2
√
n < p+ q <

3
√

2

2

√
n.

Proof. We have
(p+ q)2 = (p− q)2 + 4n > 4n.

Then p+ q > 2
√
n. On the other hand, since q < p < 2q, then n < p2 < 2n and√

n < p <
√

2n. Notice that p+ q = p+ n
p is optimal for p =

√
2n. Hence

p+ q = p+
n

p
≤
√

2n+
n√
2n

=
3
√

2

2

√
n.

This terminates the proof.
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We shall also need the following result (see [4], Theorem 184).

Theorem 2. Let α be a real number. If x and y are positive integers such that
gcd(x, y) = 1 and ∣∣∣α− y

x

∣∣∣ < 1

2x2
,

then y
x is one of the convergents of the continued fraction expansion of α.

Now, we can prove the following theorem which permits to find x and y using
the convergents of the continued fraction expansion of e

n .

Theorem 3. Let n = pq be an RSA modulus with q < p < 2q. Suppose that the
public exponent e satisfies an equation ex − (p + 1)(q + 1)y = z where x and y
are positive integers with gcd(x, y) = 1 and

|z| < n
1
4 y, xy <

√
2
√
n

12
.

Then y
x is one of the convergents of the continued fraction expansion of e

n .

Proof. Transforming the equation ex− (p+ 1)(q + 1)y = z, we get

ex− ny = (p+ q + 1)y + z.

Dividing by nx, we get

e

n
− y

x
=

(p+ q + 1)y + z

nx
. (4)

Assume that |z| < n
1
4 y. Then using Lemma 3, we get

|(p+ q + 1)y + z| ≤ (p+ q + 1)y + |z|
< (p+ q + 1)y + n

1
4 y

= (p+ q + 1 + n
1
4 )y

< 2(p+ q)y

≤ 3
√

2
√
ny.

Now, assume that xy <
√
2
√
n

12 . Then (4) implies

∣∣∣ e
n
− y

x

∣∣∣ =
|(p+ q + 1)y + z|

nx
<

3
√

2
√
ny

nx
<

1

2x2
.

Then, applying Theorem 2, y
x is a convergent of the continued fraction expansion

of e
n . This terminates the proof.

Next assume that x and y are known in the equation ex− (p+ 1)(q + 1)y = z.
We show how to find p and q. Let us first refer to the following existing result
(see [3]).
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Theorem 4 (Coppersmith). Let n = pq be an RSA modulus with q < p < 2q.

Suppose we know an approximation p̃ of p with |p − p̃| < n
1
4 . Then n can be

factored in time polynomial in log n.

Next we present the main result.

Theorem 5. Let n = pq be an RSA modulus with q < p < 2q. Suppose that e
is an exponent satisfying an equation ex− (p+ 1)(q+ 1)y = z with gcd(x, y) = 1
and

|z| < (p− q)n 1
4 y

3(p+ q)
, xy <

√
2
√
n

12
.

Then n can be factored in polynomial time.

Proof. Suppose e satisfies an equation ex− (p+ 1)(q+ 1)y = z. If |z| < (p−q)n
1
4 y

3(p+q)

then |z| < n
1
4 y. In addition if gcd(x, y) = 1 and xy <

√
2
√
n

12 , then, by Theorem 3,
we find x and y among the convergents of e

n . Next, put

U =
ex

y
− n− 1, V =

√
|U2 − 4n|.

Starting with the equation ex− (p+ 1)(q + 1)y = z, we get

|U − p− q| =
∣∣∣∣exy − n− 1− p− q

∣∣∣∣ =
|z|
y
<

(p− q)n 1
4

3(p+ q)
.

Hence

|U − p− q| < n
1
4 . (5)

Now, we have ∣∣(p− q)2 − V 2
∣∣ =

∣∣(p− q)2 − ∣∣U2 − 4n
∣∣∣∣

≤
∣∣(p− q)2 − U2 + 4n

∣∣
=
∣∣(p+ q)2 − U2

∣∣
= |p+ q − U | (p+ q + U) .

Dividing by p− q + V , we get

|p− q − V | ≤ |p+ q − U | (p+ q + U)

p− q + V
. (6)

Observe that (5) implies

p+ q + U < 2(p+ q) + n
1
4 < 3(p+ q).

On the other hand, we have p− q + V > p− q. Plugging in (6), we get

|p− q − V | < 3(p+ q)(p− q)n 1
4

3(p+ q)(p− q)
= n

1
4 .
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Combining this with (5), we deduce∣∣∣∣p− U + V

2

∣∣∣∣ =

∣∣∣∣p+ q

2
− U

2
+
p− q

2
− V

2

∣∣∣∣
≤
∣∣∣∣p+ q

2
− U

2

∣∣∣∣+

∣∣∣∣p− q2
− V

2

∣∣∣∣
< n

1
4 .

This implies that U+V
2 is an approximation of p up to an error term of at most

n
1
4 . Then Coppersmith’s Theorem 4 will find p in polynomial time and the

factorization of n follows.

Let us summarize the factorization algorithm.

Algorithm 1 The factorization algorithm

Require: a public key (N, e) satisfying N = pq, q < p < 2q and ex−(p+1)(q+1)y = z
for some parameters x, y, z.

Ensure: the prime factors p and q.
1: Compute the continued fraction expansion of e

n
.

2: For every convergent y
x

of e
n

with x <
√
n:

3: Compute U = ex
y
− n− 1 and V =

√
|U2 − 4n|.

4: Apply Coppersmith’s algorithm with U+V
2

as an approximation of p.
5: If Coppersmiths algorithm outputs the factorization of n, then stop.

4 A Numerical Example

As an example to illustrate our attack, let us take for n and e the numbers

n = 173428286141894798156748251,

e = 723753947009734907342239.

Suppose that n and e satisfy an equation of the form ex − (p + 1)(q + 1)y = z
with gcd(x, y) = 1 and

|z| < (p− q)n 1
4 y

3(p+ q)
, xy <

√
2
√
n

12
.

Following Theorem 3, x
y is among the convergents of e

n . The first convergents of
the continued fraction expansion of e

n are

[0,
1

239
,

1

240
,

2

479
,

3

719
,

5

1198
,

8

1917
,

69

16534
,

146

34985
,

215

51519
,

361

86504
,

5269

1262575
,

16168

3874229
,

21437

5136804
,

80479

19284641
,

262874

62990727
, . . .].
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Applying the factorization algorithm with the convergent x
y = 80479

19284641 , we get

U =
ex

y
− n− 1 ≈ 27457254767091,

V =
√
|U2 − 4n| ≈ 7758072877807.

Applying Coppersmith’s Theorem with U+V
2 = 17607663822449 as an approxi-

mation for p, we get

p = 17607663822197, q = 9849590944783,

which leads to the factorization of n. Using p and q, we can compute the secret
exponent d satisfying ed ≡ 1 (mod (p+ 1)(q + 1)), namely

d ≡ e−1 ≡ 70154311084917810813949567 (mod (p+ 1)(q + 1)),

Observe that d ≈ n0.985. This explains why the attacks on KMOV with small
secret exponents do not work in this example.

5 Conclusion

We have presented a new attack on the KMOV cryptosystem with a public
key (n, e) where n = pq is an RSA modulus and e a public exponent satisfying
gcd(e, (p+1)(q+1)) = 1 as required by KMOV. We prove that KMOV is insecure
if there exist integers x, y and z with

|z| < (p− q)n 1
4 y

3(p+ q)
, xy <

√
2
√
n

12
.

and satisfying an equation ex−(p+1)(q+1)y = z. The attack combines the con-
tinued fraction algorithm and Coppersmith’s lattice reduction based method and
can be seen as an extension of Pinch’s attack on small KMOV secret decryption
exponents.
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