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Abstract

Let N = pq be an RSA modulus, i.e. the product of two large
unknown primes of equal bit-size. We consider the class of the public
exponents satisfying an equation eX−NY = (ap+bq)Z with 0 < a <

q, b =
[
ap
q

]
(here [x] denotes the nearest integer to x) and

|XZ| < N

2(ap + bq)
,

and all prime factors of |Z| are less than 1050. Using the continued
fraction algorithm and the Elliptic Curve Method of factorization, we
show that such exponents yield the factorization of the RSA modu-
lus. Further, we show that the number of such weak keys is at least
N

1
2
−ε log N . Thus, our attack applies to a relatively large class of

weak keys in RSA.

Keywords: RSA, Cryptanalysis, Factorization, Continued Fraction

1 Introduction

Invented by Rivest, Shamir and Adleman in 1977 [15], the RSA cryptosystem
is most commonly used for providing privacy and ensuring authenticity of
digital data. It is one of the most popular systems in use today. Let N = pq
be the product of two large primes of the same bit-size. Let e and d be two
positive integers satisfying ed ≡ 1 (mod φ(N)) where φ(N) = (p− 1)(q − 1)
is Euler’s totient function. Commonly, N is called the RSA modulus, e the
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encryption exponent and d the decryption exponent. The modular equation
ed ≡ 1 (mod φ(N)) is sometimes used as an equation ed−kφ(N) = 1, where
k is some positive integer and is called the RSA key equation.

Since its publication, RSA has been analyzed for vulnerability by various
methods (see [3] and [9]). The security of RSA is based on the well known
problem of factoring large integers, which is widely believed to be intractable.
If one can factor N = pq, then one can calculate φ(N) = (p − 1)(q − 1)
and the private exponent d by solving the congruence ed ≡ 1 (mod φ(N)).
Conversely, the recovery of the private exponent d is equivalent to factoring
N (see [2]). Many attacks are based on trying to solve the key equation
ed − kφ(N) = 1 for particular exponents. In 1990, Wiener [16] showed
that using continued fractions, one can efficiently recover the secret-exponent
d from the public key (N, e) as long as d < 1

3
N

1
4 . The number of such

exponents can be estimated as N
1
4
−ε where ε > 0 is arbitrarily small for

large N . The N−ε term corresponds to the number of exponents d such that
gcd(d, φ(N)) 6= 1. The lattice-based Boneh-Durfee attack [4] and its variant
given by Blömer and May [1] exploit the non-linear equation satisfied by the
secret key

k

(
N + 1

2
+ s

)
− 1 ≡ 0 (mod e),

where k and s = −p+q
2

are unknown integers. This gives an attack that
heuristically succeeds in polynomial-time when d < N0.292 and the number
of the exponents for which this attack works can be estimated as N0.292−ε.
Based on the continued fraction algorithm and a theorem due to Copper-
smith [7], Blömer and May [2] proposed in 2004 an attack on RSA using

the variant equation ex + y = kφ(N) with x < 1
3
N

1
4 and |y| = O

(
N−

3
4 ex
)

.

They showed that such exponents are vulnerable and that their number is
at least N

3
4
−ε. At Africacrypt 2008, Nitaj presented an attack on the class

of the exponents satisfying an equation eX − (p− u)(q − v)Y = 1 with

1 ≤ Y ≤ X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,

where [x] denotes the nearest integer to the real number x. Combining
the continued fraction algorithm, Coppersmith’s method [7] and the Elliptic
Curve Method of factorization [10], he showed that p, q can be found if all
the prime factors of p−u or q−v are less than 1050. The number of such ex-
ponents are estimated as N

1
2
−ε. In a similar direction, Maitra and Sarkar [11]
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presented in 2008 an attack using the equation eX− (N −pu−v)Y = 1 with
suitably small parameters X, Y , u and v. In contrast of the previous attacks,
this attack uses only the technique of Coppersmith [7]. The number of such

exponents are estimated as N
3
4
−ε. In 2009, Nitaj [14] studied the class of the

exponents e satisfying eX − (N − (ap + bq))Y = Z where a
b

is an unknown
convergent of q

p
and X, Y , Z are suitably small integers. He showed that

such exponents form a weak class of size N
3
4
−ε.

In this paper, we introduce a new attack on RSA. The attack works for
all public keys (N, e) satisfying an equation

eX −NY = (ap+ bq)Z,

with

b =

[
ap

q

]
, |XZ| < N

2(ap+ bq)
,

where a is an unknown positive integer satisfying a < q ([x] means the nearest
integer of the real number x) and all prime factors of Z are less than the
Elliptic Curve Method of factorization [10] bound BECM = 1050. The new
attack is based on the continued fraction algorithm and the Elliptic Curve
Method (ECM). In contrast to the previous attacks, it does not make use of
Coppersmith’s technique. We show that for integers X, a, b and Z within
the given bounds, this attack yields the factorization of the RSA modulus
N = pq for the class of the public exponents e with the structure

e ≡ (ap+ bq)ZX−1 (mod N),

where gcd(X, (ap+bq)Z) = 1. Observe that this condition implies gcd(X, Y ) =
1 where Y satisfies eX − NY = (ap + bq)Z. We show that the number of
the exponents e with e < N for which this method works can be estimated
as N

1
2
−ε.

The new attack works as follows. We use the continued fraction algorithm
to recover X and Y among the convergents of e

N
. Then we use the Elliptic

Curve Method to recover Z among the divisors of eX − NY . Afterwards,
we find p and q using the equation ap + bq = |eX−NY |

|Z| and the inequality

|ap− bq| < 2
√
N . This yields the factorization of N .

The remainder of this paper is organized as follows. In Section 2, we begin
with some notations and a brief review of basic facts about the continued
fraction algorithm and the Elliptic Curve Method of factorization. In Section
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3, we present some useful lemmas needed for the attack. In Section 4 we
present our attack on RSA. In section 5, we estimate the size of the exponents
that are weak with this attack. We conclude in Section 6.

2 Preliminaries

Let x be a real number. In this paper, [x] denotes the nearest integer to x
and bxc the largest integer less than or equal to x.

2.1 The Continued Fraction Algorithm

Here we recall some facts from the theory of continued fractions. Let x 6= 0
be a real number. Put x0 = x and a0 = bx0c. Recursively, for n ≥ 1, if
xn−1 6= an−1, define

xn =
1

xn−1 − an−1

, an = bxnc.

For n ≥ 1, since 0 < xn−1−an−1 < 1, then xn > 1 and an ≥ 1. This process is
called the continued fraction algorithm and yields an expression of the form

x = a0 +
1

a1 +
1

a2 +
1

· · ·

,

which is called the continued fraction expansion of x. This expression is
often used in the form x = [a0, a1, a2, · · · ]. Any rational number a

b
can be

expressed as a finite continued fraction x = [a0, a1, a2, · · · , am]. For i ≥ 0
(0 ≤ i ≤ m in the finite case), we define the ith convergent of the continued
fraction [a0, a1, a2, · · · ] to be [a0, a1, a2, · · · , ai]. Each convergent is a rational
number. The main results from the theory of continued fractions that we
use in this paper are the following two theorems (see, e.g. Theorem 164 and
Theorem 184 of [8]).

Theorem 2.1. Let x be a real number. If Y
X

is a convergent of x, then∣∣∣∣x− Y

X

∣∣∣∣ < 1

X2
.
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Theorem 2.2. Let x be a real number. If X and Y are coprime integers
such that ∣∣∣∣x− Y

X

∣∣∣∣ < 1

2X2
,

then Y
X

is a convergent of x.

2.2 The Elliptic Curve Factorization Method (ECM)

The Elliptic Curve Method of factoring (ECM) was originally proposed by
H.W. Lenstra [10] and subsequently extended by Brent [5], [6] and Mont-
gomery [12]. The first part of the method proposed by Lenstra is called
Phase 1, and the extension by Brent and Montgomery is called Phase 2.
ECM is suited to find small prime factors of large numbers. Let n be an
integer with a prime factor p. Let E be a random elliptic curve defined over
Z/nZ by a projective equation

y2z ≡ x3 + axz2 + bz3 (mod n),

where (x : y : z) ∈ P2(Z/nZ), the projective plane over Z/nZ and a, b ∈
Z/nZ. The point at infinity is O = (0 : 1 : 0). Let P ∈ E(Z/nZ). Let B1

and B2 be two bounds for prime numbers with B1 < B2. Phase 1 and phase
2 of ECM work as follows:
Phase 1: Calculate Q = (xQ : yQ : zQ) = kP where

k =

B1∏
q=2

q prime

qeq , eq =

⌊
logB1

log q

⌋
.

If the order of E over Z/pZ divides k, then Q could be the point at infinity
of E(Z/pZ), which means that zQ is a multiple of p. Thus p = gcd(zQ, n).
Phase 2: For each prime number k such that B1 < k < B2, calculate Q =
(xQ : yQ : zQ) = kP and test if 1 < gcd(zQ, n) < n. For similar reasons as in
Phase 1, this can reveals a prime factor of n.

Let M(n) be the cost of one multiplication (mod n). Then ECM finds a
factor p of n with the sub-exponentiel run time

O
(

exp
{
c
√

log p log log p
}
M(n)

)
,
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where c ≈ 2 is a constant. According to Brent (see [6]), the evolution of the
ECM record satisfies the equation

√
D =

Y − 1932.3

9.3
,

where D is the decimal digits in the largest factor found by ECM up to the
date Y . Extrapolating, a 69-digit factor could be found in 2010. In( [17]),
it is announced that a 73-digit prime factor of the special number 21181 − 1
was found by J. Bos, T. Kleinjung, A. Lenstra and P. Montgomery in 2010.
Consequently, in this paper, we consider that ECM is efficient to find prime
factors up to the the bound BECM = 1050.

3 Useful Lemmas

In this section, we prove three useful lemmas. We begin by a very simple
lemma on the size of the primes of the RSA modulus N = pq.

Lemma 3.1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2N

1
2 < q < N

1
2 < p < 2

1
2N

1
2 .

Proof. Multiplying q < p < 2q by p we get N < p2 < 2N , which gives
N

1
2 < p < 2

1
2N

1
2 . Similarly, multiplying by q we get q2 < N < 2q2 which

gives in turn 2−
1
2N

1
2 < q < N

1
2 . This terminates the proof.

A key role in all our arguments is played by the following lemma.

Lemma 3.2. Let N = pq be an RSA modulus with q < p < 2q. Let a be an

integer and b =
[
ap
q

]
. Set S = ap+ bq. Then

ab =

⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4

⌊
S2

4N

⌋
N.

Proof. Let a be an integer and let b =
[
ap
q

]
. Set S = ap+ bq. Since∣∣∣∣apq − b

∣∣∣∣ ≤ 1

2
,

6



then using Lemma 3.1, we get

|ap− bq| ≤ q

2
<

1

2
N

1
2 .

On the other hand, S2− 4abN = (ap+ bq)2− 4abN = (ap− bq)2 > 0. Hence

0 <
S2

4N
− ab =

S2 − 4abN

4N
=

(ap− bq)2

4N
<

(
1
2
N

1
2

)2

4N
=

1

16
< 1,

from which we deduce ab =
⌊
S2

4N

⌋
according to the definition of the floor

function. On the other hand, using again S2 − 4abN = (ap − bq)2 > 0, we
get

|ap− bq| =
√
S2 − 4abN =

√
S2 − 4

⌊
S2

4N

⌋
N.

This terminates the proof.

We terminate with the following lemma which will be used for counting
the number of exponents that are vulnerable to our attack.

Lemma 3.3. Let m and n be positive integers. Then

m
φ(n)

n
− 2ω(n) <

m∑
k=1

gcd(k,n)=1

1 < m
φ(n)

n
+ 2ω(n),

where ω(n) is the number of distinct prime factors of n.

Proof. Let µ(d) be the Möbius function which is defined by µ(1) = 1, µ(d) =
0 if d is not square-free and µ(d) = (−1)ω(d) if d is square-free where ω(d) is
the number of distinct prime factors of d. Then the Lengedre Formula gives

m∑
k=1

gcd(k,n)=1

1 =
∑
d|n

µ(d)
⌊m
d

⌋
.

7



Since
⌊
m
d

⌋
≤ m

d
<
⌊
m
d

⌋
+ 1, then∑

d|n

µ(d)
⌊m
d

⌋
=

∑
d|n

µ(d)=1

µ(d)
⌊m
d

⌋
+

∑
d|n

µ(d)=−1

µ(d)
⌊m
d

⌋

>
∑
d|n

µ(d)=1

µ(d)
(m
d
− 1
)

+
∑
d|n

µ(d)=−1

µ(d)
m

d

=
∑
d|n

µ(d)
m

d
−
∑
d|n

µ(d)=1

1

> m
∑
d|n

µ(d)

d
−
∑
d|n

|µ(d)|

= m
φ(n)

n
− 2ω(n).

The Möbius function satisfies (see 16.3.1 of [8])∑
d|n

µ(d)

d
=
φ(n)

n
.

It also satisfies
∑

d|n |µ(d)| = 2ω(n) (Theorem 264 of [8]). It follows that

m∑
k=1

gcd(k,n)=1

1 > m
φ(n)

n
− 2ω(n).
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On the other hand, using
⌊
m
d

⌋
≤ m

d
<
⌊
m
d

⌋
+ 1, we get∑

d|n

µ(d)
⌊m
d

⌋
=

∑
d|n

µ(d)=1

µ(d)
⌊m
d

⌋
+

∑
d|n

µ(d)=−1

µ(d)
⌊m
d

⌋

<
∑
d|n

µ(d)=1

µ(d)
m

d
+

∑
d|n

µ(d)=−1

µ(d)
(m
d
− 1
)

=
∑
d|n

µ(d)
m

d
+

∑
d|n

µ(d)=−1

1

< m
∑
d|n

µ(d)

d
+
∑
d|n

|µ(d)|

= m
φ(n)

n
+ 2ω(n).

where we used similar results. This concludes the proof.

4 The New Class of Weak Keys in RSA

In this section, we present a strategy to find the prime factors p and q of the
modulus N = pq of an RSA instance with a public exponent e satisfying an
equation eX −NY = (ap+ bq)Z for some a, b and Z satisfying

0 < a < q, b =

[
ap

q

]
, |XZ| < N

2(ap+ bq)
.

Notice that if X < 0 then e(−X)−N(−Y ) = (ap+ bq)(−Z) where −X > 0.
Thus, for symmetrical reason, we will consider only on the scenario when
X > 0.

4.1 The New Attack

We begin by linking the solutions of the equation eX − NY = (ap + bq)Z
with the convergents of e

N
.

Theorem 4.1. Let N = pq be an RSA modulus with q < p < 2q. Let a, b be

integers such that 0 < a < q and b =
[
ap
q

]
. Let e be an exponent satisfying
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the equation eX −NY = (ap+ bq)Z. If gcd(X, Y ) = 1 and X|Z| < N
2(ap+bq)

,

then Y
X

is a convergent of e
N

.

Proof. Assume 0 < a < q and b =
[
ap
q

]
. Suppose eX − NY = (ap + bq)Z

with X > 0. Then ∣∣∣∣ eN − Y

X

∣∣∣∣ =
|(ap+ bq)Z|

NX
.

Assume X|Z| < N
2(ap+bq)

. Then |(ap+bq)Z|
NX

< 1
2X2 . From this we deduce∣∣∣∣ eN − Y

X

∣∣∣∣ < 1

2X2
,

and by Theorem 2.2, we conclude that Y
X

is one of the convergents of the
continued fraction expansion of e

N
.

Notice that the continued fraction algorithm is a polynomial time algo-
rithm and the number of convergents of e

N
is bounded by O(logN). This

results in a very efficient method for finding the solution (X, Y ) in the equa-
tion eX − NY = (ap + bq)Z. The following lemma shows how to find the
parameter Z assuming the efficiency of the Elliptic Curve method.

Lemma 4.2. Let N = pq be an RSA modulus with q < p < 2q. Let e be an
exponent satisfying the equation eX−NY = (ap+bq)Z with positive integers
a, b where Y

X
is a convergent of e

N
. If all prime factors of Z are less than the

ECM-bound BECM , then Z can be found efficiently.

Proof. Suppose e satisfies eX − NY = (ap + bq)Z where Y
X

is a convergent
of e

N
and all prime factors of Z are less than BECM . Set M = |eX − NY |.

Let p1, p2, · · · , pk denote the distinct prime factors of M that are less than
BECM . Such primes can be efficiently determined by applying ECM to M ,
namely, let

M = M ′
k∏
i=1

pαi
i ,

be the factorization of M where M ′ = 1 or M ′ has no prime factor less than
BECM . By results of Hardy and Ramanujan (see, e.g., Theorem 430 and
Theorem 431 of [8]), we know that, in average, the number of prime divisors

10



of M is O(log logM) if M is uniformly distributed. Since Y
X

is a convergent
of e

N
, then by Theorem 2.1, we have

M = (ap+ bq)|Z| = |eX −NY | < N

X
≤ N.

It follows that the average number of prime divisors of M is bounded by
log logN . On the other hand, we know that M = (ap + bq)|Z| where |Z| is
BECM -smooth. Hence |Z| is a divisor of

∏k
i=1 p

αi
i . Thus

|Z| =
k∏
i=1

pxi
i , with 0 ≤ xi ≤ αi.

The number of divisors of
∏k

i=1 p
αi
i is

∏k
i=1(1 + αi). Nevertheless, by results

of Dirichlet on the distribution of divisors of a random integer (see, e.g.,
Theorem 432 of [8]), the number of divisors of M is O(logM) where M < N .
This shows that the average number of candidates for Z is polynomially
bounded by O(logN). This results in an efficient way to find Z depending
the efficiency of ECM.

Given X, Y and Z satisfying eX − NY = (ap + bq)Z. The following
theorem shows how to find the remainder parameters, namely a, b, p and q.

Theorem 4.3. Let N = pq be an RSA modulus with q < p < 2q. Let e be a
public exponent satisfying the equation eX−NY = (ap+bq)Z with 0 < a < q

and b =
[
ap
q

]
. If Y

X
is a convergent of e

N
and Z is a BECM -smooth integer,

then p and q can be found in polynomial time.

Proof. Suppose that e satisfies the equation eX − NY = (ap + bq)Z with
known parameters X, Y and Z where p, q, a and b are the unknown param-

eters. Assume in addition that 0 < a < q and b =
[
ap
q

]
. Define

S = ap+ bq =
eX −NY

Z

By Lemma 3.2 we get

ab =

⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4

⌊
S2

4N

⌋
N.
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Combining with ap+ bq = S, we find

ap =
S ±

√
S2 − 4

⌊
S2

4N

⌋
N

2
.

Since 0 < a < q, we recover p using p = gcd(ap,N). Hence q = N
p

. Since
every calculation can be done in polynomial time, this concludes the proof.

Now, we give the factorization algorithm.

Algorithm 1 The new attack

Input: a public key (N, e) satisfying N = pq, q < p < 2q and eX − NY =
(ap+bq)Z for small parameters X, Y , Z where gcd(X, Y ) = 1, 0 < a < q

and b =
[
ap
q

]
.

Output: the prime factors p and q.
1: Compute the continued fraction expansion of e

N
.

2: For every convergent Y
X

of e
N

with X < 1
2
N

1
2 do

3: Compute M = |eX −NY | and apply ECM to find the BECM -smooth
part M0 of M .

4: Compute the divisors of M0.

5: For every divisor Z of M0 with Z <
√
N

2X
do

6: Compute S = M
Z

, N0 =
⌊
S2

4N

⌋
and D =

√
|S2 − 4N0N |.

7: If D ∈ N then
8: Compute p = gcd

(
N, S+D

2

)
.

9: If 1 < p < N then
10: Output p, q = N

p
, Stop

11: End if
12: End if
13: End for
14: End for

5 Estimation of Weak Keys

In this section, we give a very conservative estimation of the number of
exponents for which our attack works. To be more precise, let a be an

12



integer with 0 < a < q and let b =
⌊
ap
q

⌋
. Define α such that ap+ bq = N

1
2
+α.

Let us consider the number of exponents e satisfying an equation

eX −NY = ap+ bq,

with gcd(X, ap + bq) = 1, e < N and X < N
2(ap+bq)

. Observe that since

gcd(X,N) = 1, then reducing the equation eX − NY = ap + bq modulo N
yields

e ≡ (ap+ bq)X−1 (mod N).

We begin by the following result. It shows that for fixed a and b, different
parameters X1, X2 with X1, X2 < X < N

2(ap+bq)
define different exponents e1,

e2 of the desired form.

Lemma 5.1. Let N = pq be an RSA modulus with q < p < 2q. Let a and b
be positive integers such that a < q and b < p. For i = 1, 2, let ei be exponents
satisfying ei < N and eiXi − NYi = ap + bq with gcd(Xi, ap + bq) = 1 and
Xi <

N
2(ap+bq)

. If X1 6= X2 then e1 6= e2.

Proof. Suppose that for i = 1, 2, we have eiXi −NYi = ap+ bq. Assume for
contradiction that e1 = e2. Then

(ap+ bq)X−1
1 ≡ (ap+ bq)X−1

2 (mod N),

which can be rewritten as

(ap+ bq)
(
X−1

1 −X−1
2

)
≡ 0 (mod N).

Notice that, since gcd(ap + bq,N) = 1, then X−1
2 −X−1

1 ≡ 0 (mod N) and
X2 −X1 ≡ 0 (mod N). On the other hand, we have

|X2 −X1| ≤ X2 +X1 < 2

(
N

2(ap+ bq)

)
< N.

Hence X2 −X1 = 0 and X1 = X2. This terminates the proof.

Now we present a result which will be required for counting the weak ex-
ponents e with the structure e ≡ (ap+ bq)X−1 (mod N) where gcd(X, (ap+
bq)) = 1 and X < N

2(ap+bq)
.
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Lemma 5.2. Let N = pq be an RSA modulus with q < p < 2q. Let a and

b be fixed positive integers such that a < q and
∣∣∣b− [apq ]∣∣∣ ≤ 1. Define α by

ap+bq = N
1
2
+α. The number of the exponents e of the form e ≡ (ap+bq)X−1

(mod N) with gcd(X, ap + bq) = 1 and X < 1
2
N

1
2
−α is O

(
N

1
2
−α−ε

)
where

ε > 0 is arbitrary small for suitably large N .

Proof. Let a be a positive integer. Define α by ap+ bq = N
1
2
+α and let

X0 =

⌊
1

2
N

1
2
−α
⌋
.

Let N (a) denote the number of the exponents e satisfying e ≡ (ap+ bq)X−1

(mod N) with gcd(X, ap+ bq) = 1 and X < 1
2
N

1
2
−α. We have

N (a) =

X0∑
X=1

gcd(X,ap+bq)=1

1.(1)

Using Lemma 3.3 with n = ap+ bq and m = X0, we get

X0
φ(ap+ bq)

ap+ bq
− 2ω(ap+bq) < N (a) < X0

φ(ap+ bq)

ap+ bq
+ 2ω(ap+bq),(2)

Here, 2ω(ap+bq) is the number of square free divisors of ap+ bq which is upper
bounded by the total number τ(ap+ bq) of divisors of ap+ bq. We recall that
τ(n) satisfies τ(n) = O(log log n) (Theorems 430-431 of [8]). It follows that

the dominant term in (2) is X0
φ(ap+bq)
ap+bq

. Using this with n = ap+ bq = N
1
2
+α

and X0 =
⌊

1
2
N

1
2
−α
⌋
, this leads to

N (a) = O
(
N−2αφ (ap+ bq)

)
.

On the other hand, for n ≥ 2, we have (see Theorem 328 of [8])

φ(n) >
cn

log log n
,

where c is a positive constant. Taking n = ap+ bq = N
1
2
+α, this implies

N (a) = O

(
N

1
2
−α

log logN
1
2
+α

)
= O

(
N

1
2
−α−ε

)
,

where ε satisfies N ε = log logN and depends only on N . This terminates
the proof.
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Now we are able to prove an estimation for the number of exponents for
which our attack works. Actually, we give a very conservative estimation

with a = 1. Observe that since q < p < 2q, then b =
[
p
q

]
satisfies

1 ≤
[
p

q

]
≤ 2,

so that b = 1 or b = 2.

Theorem 5.3. Let N = pq be an RSA modulus with q < p < 2q. An
estimation of the number of exponents e < N such that e ≡ (p + q)X−1

(mod N) is O
(
N

1
2
−ε
)

where ε > 0 is arbitrarily small for suitably large N .

Proof. Let N denote the number of exponents e < N with the structure
e ≡ (p+ q)X−1 (mod N) for some X < N

2(p+q)
. Using Lemma 5.2, we get

N = O
(
N

1
2
−α−ε1

)
,

where α satisfies p+ q = N
1
2
+α. Using Lemma 3.1, we get(

2−
1
2 + 1

)
N

1
2 < p+ q <

(
2

1
2 + 1

)
N

1
2 .

It follows that α satisfies

log
(

2−
1
2 + 1

)
logN

< α <
log
(

2
1
2 + 1

)
logN

.

This implies that α is arbitrarily small for large N . Consequently, we get

N = O
(
N

1
2
−ε
)
,

where ε = ε1 + α is arbitrarily small for large N . This terminates the
proof.

6 Conclusion

In this paper, we studied the class of exponents e satisfying an equation

eX −NY = (ap+ bq)Z,

15



where X, Y , Z, a and b are integers satisfying

0 < a < q, b =

[
ap

q

]
, X|Z| < N

2(ap+ bq)
,

and all prime factors of Z are less than the Elliptic Curve Method of fac-
torization bound BECM = 1050. Using the continued fraction algorithm and
the Elliptic Curve Method of factorization (ECM), we showed that such ex-
ponents are vulnerable and lead to the factorization of the RSA modulus
N = pq. We also showed that the new class of weak exponents is sufficiently
large since the size of this class can be estimated as N

1
2
−ε where ε > 0 is

arbitrary small for suitably large N .
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