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Abstract

Let N = pq be an RSA modulus with q < p < 2q. In this paper, we
analyze the security of RSA with the class of the exponents e satisfying
an equation eX −NY = ap + bq + Z with

|a| < q, b =
⌊

ap

q

⌋
, X <

N

3|ap + bq|
and |Z| < |ap− bq|

3|ap + bq|
N

1
4 ,

where bxc is the greatest integer less than or equal to x. Using the con-
tinued fraction algorithm and Coppersmith’s lattice reduction method
for solving polynomial equations, we show that such exponents lead to
the factorization of N in polynomial time. Additionally, we show that
the class of such weak exponents is large, namely that their number is
at least N

3
4
−ε where ε > 0 is a small constant depending only on N .

1 Introduction

1.1 Background

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman [12] in
1978. It is currently the most widely known and widely used public key cryp-
tosystem. RSA can be described by the modulus N which is the product of
two large unknown primes p and q, and by the public exponent e and the pri-
vate exponent d. The exponents e and d are related by ed ≡ 1 (mod φ(N))
where φ(N) = (p − 1)(q − 1) is Euler’s totient function. In a normal RSA
system, p and q have approximately the same number of bits. Thus, through-
out this paper, we assume that q < p < 2q. In some applications of RSA,
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to reduce the decryption execution time (or signature-generation time), it
is desirable to have a short secret exponent d. Unfortunately, based on the
convergents of the continued fraction expansion of e

N
, Wiener [15] showed

in 1990 that the RSA system can be totally broken if d < 1
3
N

1
4 . Wiener’s

attack is very efficient and the number of exponents for which this attack
applies can be estimated as N

1
4
−ε where ε > 0 is arbitrary small for suitably

large N . Since then, many generalizations of Wiener’s attack have been pro-
posed. In 1999, based on Coppersmith’s lattice basis reduction method [4],
Boneh and Durfee [3] improved Wiener’s bound up to d < N0.292. Similarly,
the number of exponents for which this attack applies can be estimated as
N0.292−ε. Wiener’s attack as well as its generalization by Boneh and Durfee
are based on the RSA key equation

ed− kφ(N) = 1,

where k is a positive integer. In 2004, Blömer and May [2] proposed another
generalization of Wiener’s attack using the RSA variant equation

ex− kφ(N) = y.

Applying the continued fraction algorithm and Coppersmith’s method [4],
they showed that the RSA modulus can be factored in polynomial time if
the parameters x and y satisfy

x <
1

3
N

1
4 and |y| = O

(
N−

3
4 ex
)
.

Additionaly, Blömer and May proved that the number of such weak expo-
nents is at least N

3
4
−ε. At Africacrypt’2008, Nitaj [10] proposed another

generalization of Wiener’s attack by solving the RSA variant equation

eX − (p− u)(q − v)Y = 1,

with 1 ≤ Y ≤ X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu
p−u

]
([x] means the nearest

integer to to the real number x) and such that the prime factors of p−u or q−v
are less than 1050. Applying successively the continued fraction algorithm,
the Elliptic Curve Method of factorization (ECM [7]) and Coppersmith’s
method, he showed that such exponents are weak and that their number can
be estimated as N

1
2
−ε. In a similar direction, Maitra and Sarkar [8], studied

the equation
eX − (N − pu− v)Y = 1,
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using only the idea of Boneh and Durfee [3]. They showed that such expo-

nents form a weak class of size N
3
4
−ε. Recently, Nitaj [11] proposed an attack

on RSA when the public exponent e satisfies an RSA variant equation

eX − (N − (ap+ bq))Y = Z,

where a
b

is an unknown convergent of the continued fraction expansion of q
p

and

Y ≤ X <

√
N

2
√
ap+ bq

, gcd(X, Y ) = 1,

and Z depends on the size of |ap − bq|. Using techniques from continued
fractions, the Elliptic Curve Method and Coppersmith’s method, he showed
that such exponents lead to the factorization of N and that their number is
at least N

3
4
−ε.

1.2 Our contribution

Let e be an exponent and a an integer satisfying |a| < q. Define

b =

⌊
ap

q

⌋
,

where bxc is the integer satisfying bxc ≤ x < bxc+1. It is obvious that there
exist infinitely many integers X, Y and Z satisfying the equation

eX −NY = ap+ bq + Z.(1)

In this paper, we study the weaknesses of RSA given a public exponent e
satisfying (1) with unknown a, b,

X <
N

3|ap+ bq|
and |Z| < |ap− bq|

3|ap+ bq|
N

1
4 .

As in Wiener’s method, we use the continued fraction algorithm to find
X and Y among the convergents of e

N
. This gives us an approximation

S = |eX−NY | of |ap+bq| with an additive error term at most
|ap− bq|
3|ap+ bq|

N
1
4 .

Using the relation

(ap+ bq)2 = (ap− bq)2 + 4abN,
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we show that the product of a and b can be found as

ab =

[
S2

4N

]
,

where [x] is the integer satisfying −1
2
≤ x− [x] < 1

2
. Therefore, we transform

S into an approximation D =
√
|S2 − 4abN | of |ap − bq| with an additive

error term at most N
1
4 . Combining the two approximations, we find an

approximation 1
2
(S + D) of |a|p with an error term at most N

1
4 . By the

seminal work of Coppersmith [4], we can then find p in polynomial time and
the factorization of the RSA modulus follows.

Notice that, in Section 4.1.2 of the ANSI X9.31:1998 standard for public
key cryptography, it is required in particular that the primes p and q of the
RSA modulus shall be different in one at least of their most significant 100
bits. For such RSA modulus, we show that the number of the exponents
e satisfying (1) with parameters within the desired bounds is at least N

3
4
−ε

where ε > 0 is suitably small for largeN . This proves once again the existence
of a large class of weak exponents in RSA.

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section 2 presents definitions
and known results from continued fractions and Coppersmith’s method that
we use. In section 3, we state and prove some lemmas required for the attack.
In section 4, we present and prove our new attack on RSA. In section 5 we
give an estimation of the size of the class of the exponents for which our
attack applies. Section 6 concludes the paper.
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2 Preliminaries on Continued Fractions and

Coppersmith’s Method

2.1 Continued Fractions

Every real number x has a unique continued fraction expansion

x = [a0, a1, a2, · · · ] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

am + · · ·

,

whose terms are given recursively by

x0 = x, ak = bxkc and xk+1 =
1

xk − ak
for k ≥ 0.

If the continued fraction is finite, we write x = [a0, a1, a2, · · · , am]. It happens
that x has one other continued fraction representation, namely

x = [a0, a1, a2, · · · , am−1, am − 1, 1],

but we will not use this. The rational number rn = [a0, a1, a2, · · · , an] is a
fraction pn

qn
in lowest term, called the n-th convergent of x. It is well known

that pn and qn satisfy various properties and can be computed using the
recurrences

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, n ≥ 0.

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, n ≥ 0.

As in Wiener’s attack, we will use the following result (see [5], Theorem 184).

Theorem 2.1. Let x = [a0, a1, a2, · · · ] be the continued fraction expansion
of x. If X and Y are coprime integers such that∣∣∣∣x− Y

X

∣∣∣∣ < 1

2X2
,

then Y = pn and X = qn for some convergent pn

qn
of x with n ≥ 0.
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2.2 Coppersmith’s Method

In 1996, Coppersmith [4] introduced methods of finding small modular solu-
tions of univariate polynomial equations f(x) ≡ 0 (mod N) for some com-
posite integer N with unknown factorization, and finding small integer solu-
tions of bivariate integer polynomial equations f(x, y) = 0. Since then, the
methods have found many applications in cryptanalysis. As an important
application of the bivariate case, Coppersmith presented a solution to the
following problem: The knowledge of half of the most significant bits of p is
sufficient to find the factorization of an RSA modulus N = pq in polynomial
time. Here, we present a generalization of this problem. Let N = pq and
suppose we are given an approximation p̃ to kp such that kp = p̃+ x0 where
|x0| < N

1
4 and k is an unknown integer satisfying gcd(k, q) = 1. Copper-

smith used his ideas to get an algorithm for finding p given k = 1 and p̃.
Coppersmith originally used the bivariate polynomial method, but simpler
versions were later presented by Howgrave-Graham [6] and May (Theorem
10 of [9]).

Theorem 2.2. Let N = pq with p > q. Furthermore, let k be an (unknown)
integer that is not a multiple of q. Suppose we know an approximation p̃ of
kp with

|kp− p̃| < 2N
1
4 .

Then we can find the factorization of N in time polynomial in logN .

3 Useful Lemmas

In this section, we state and prove some lemmas that we will use in the new
approach.

Lemma 3.1. Let N = pq be an RSA modulus with q < p < 2q. Then
√

2

2

√
N < q <

√
N < p <

√
2
√
N.

Proof. Assume q < p < 2q. Then multiplying by p we get N < p2 < 2N .
This gives

√
N < p <

√
2
√
N . Hence, since q = N

p
, then

√
2

2

√
N < q <

√
N,

which terminates the proof.
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A key role in our arguments is played by the following lemma. Recall that
the integer closest to x is denoted [x] and the integer floor of x is denoted
bxc.

Lemma 3.2. Let N = pq be an RSA modulus with q < p < 2q and a a

positive integer. Define b =
⌊
ap
q

⌋
. Let S be an approximation of ap+ bq such

that

|ap+ bq − S| < |ap− bq|
3(ap+ bq)

N
1
4 .

Then

ab =

[
S2

4N

]
,

and
√
|S2 − 4abN | is an approximation of |ap− bq| satisfying∣∣∣|ap− bq| −√|S2 − 4abN |

∣∣∣ < N
1
4 .

Proof. Set S = ap+ bq + x with |x| < |ap−bq|
3(ap+bq)

N
1
4 . Then

S2 − 4abN = (ap+ bq + x)2 − 4abN = (ap− bq)2 + 2(ap+ bq)x+ x2(2)

Next, suppose b =
⌊
ap
q

⌋
. Then bq ≤ ap < bq + q and, using Lemma 3.1, this

gives 0 ≤ ap−bq < q <
√
N . Thus, using the bounds |x| < |ap−bq|

3(ap+bq)
N

1
4 < N

1
4 ,

the right side of (2) satisfies∣∣(ap− bq)2 + 2(ap+ bq)x+ x2
∣∣ ≤ (ap− bq)2 + 2(ap+ bq)|x|+ x2

≤ N + 2(ap+ bq)
|ap− bq|

3(ap+ bq)
N

1
4 +N

1
2

< N +
2

3
N

3
4 +N

1
2

< 2N.

It follows that the left side of (2) satisfies |S2 − 4abN | < 2N . Thus∣∣∣∣ S2

4N
− ab

∣∣∣∣ =
|S2 − 4abN |

4N
<

2N

4N
=

1

2
,

which implies that ab =
[
S2

4N

]
. To prove the second statement of the lemma,

observe that∣∣(ap− bq)2 −
∣∣S2 − 4abN

∣∣∣∣ ≤ ∣∣(ap− bq)2 −
(
S2 − 4abN

)∣∣ =
∣∣(ap+ bq)2 − S2

∣∣ .
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This implies that∣∣∣|ap− bq| −√|S2 − 4abN |
∣∣∣ =

|(ap+ bq)2 − S2|
|ap− bq|+

√
|S2 − 4abN |

≤ |ap+ bq − S| (ap+ bq + S)

|ap− bq|
.

By assumption, we have |ap+ bq − S| < |ap−bq|
3(ap+bq)

N
1
4 . This implies

ap+ bq + S < 2(ap+ bq) +
|ap− bq|

3(ap+ bq)
N

1
4 < 3(ap+ bq),

and leads to

|ap+ bq − S| (ap+ bq + S)

|ap− bq|
<

3(ap+ bq)|ap− bq|N 1
4

3(ap+ bq)|ap− bq|
= N

1
4 .

Hence, we deduce ∣∣∣|ap− bq| −√|S2 − 4abN |
∣∣∣ < N

1
4 ,

which terminates the proof.

For counting the exponents for which our attack applies, we need the
following result.

Lemma 3.3. Let m and n be positive integers. Then

m∑
k=1

gcd(k,n)=1

1 >
cm

(log log n)2
,

where c is a positive constant.

Proof. For a positive integer d, we denote by µ(d) be the Möbius function.
This function is defined by

µ(d) =


1, if d = 1,

(−1)ω(d), if d is square free,

0, otherwise,
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where, for an integer d ≥ 2, ω(d) is the number of distinct prime factors of
d. Using the Legendre formula, we get

m∑
k=1

gcd(k,n)=1

1 =
∑
d|n

µ(d)
⌊m
d

⌋
=

∑
d|n

µ(d)=1

⌊m
d

⌋
−

∑
d|n

µ(d)=−1

⌊m
d

⌋

≥
∑
d|n

µ(d)=1

(m
d
− 1
)
−

∑
d|n

µ(d)=−1

m

d

=
∑
d|n

µ(d)
m

d
−
∑
d|n

µ(d)=1

1.

This leads to

ω(n)
m∑
k=1

gcd(k,n)=1

1 ≥
m∑
k=1

gcd(k,n)=1

1 +
∑
d|n

µ(d)=1

1

≥
∑
d|n

µ(d)
m

d

= m
∑
d|n

µ(d)

d
.

For n > 1, we recall that
∑
d|n

µ(d)

d
=
φ(n)

n
(see 16.3.1 of [5]). Hence

m∑
k=1

gcd(k,n)=1

1 >
mφ(n)

nω(n)
.

On the other hand, it is well known that
φ(n)

n
>

c1
log log n

(see Theorem 328

of [5] or [14]) and ω(n) = c2 log log n (Theorems 430-431 of [5]) where c1, c2
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are positive constants. It follows that

m∑
k=1

gcd(k,n)=1

1 >
c1m

c2(log log n)2
=

cm

(log log n)2
,

where c = c1
c2

and the lemma follows.

4 The New Attack on RSA

Let e be an exponent satisfying an equation eX−NY = ap+ bq+Z. In this
section, under certain constraints on a, b, X and Z, we show that, using e
and N , one can find the factorization of N in polynomial time. The following
lemma enables us to find X and Y among the convergents of the continued
fraction expansion of e

N
.

Lemma 4.1. Let N = pq be an RSA modulus with q < p < 2q. Suppose that
e is an exponent satisfying an equation

eX −NY = ap+ bq + Z,

with gcd(X, Y ) = 1 and

X <
N

3|ap+ bq|
and |Z| < |ap− bq|

3|ap+ bq|
N

1
4 .

Then Y
X

is a convergent of e
N

.

Proof. Assume that |Z| < |ap−bq|
3(ap+bq)

N
1
4 . Then |Z| < N

1
4 . Assume additionally

that X < N
3|ap+bq| . Starting with the equation eX − NY = ap + bq + Z, we

get ∣∣∣∣ eN − Y

X

∣∣∣∣ =
|ap+ bq + Z|

NX
≤ |ap+ bq|+ |Z|

NX
≤ |ap+ bq|+N

1
4

NX
.

So if the condition |ap+bq|+N
1
4

NX
< 1

2X2 holds, then by Theorem 2.1, we conclude
that Y

X
is one of the convergents of the continued fraction expansion of e

N
.

This is equivalent to

X <
N

2
(
|ap+ bq|+N

1
4

) ,
which is satisfied if X < N

3|ap+bq| .
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Notice that the continued fraction algorithm is polynomial time and that
the number of convergents of e

N
is at most O(logN). Thus, the method of

Lemma 4.1 is very efficient to find the parameters X and Y in the equation
eX−NY = ap+ bq+Z. The following result shows how to solve completely
the equation and proves the new attack on RSA.

Theorem 4.2. Let N = pq be an RSA modulus with q < p < 2q. Suppose
that e is an exponent satisfying an equation

eX −NY = ap+ bq + Z,

with |a| < q, gcd(X, Y ) = 1 and

X <
N

3|ap+ bq|
and |Z| < |ap− bq|

3|ap+ bq|
N

1
4 ,

where b =
⌊
ap
q

⌋
. Then N can be factored in polynomial time.

Proof. Suppose e satisfies an equation eX−NY = ap+ bq+Z and X and Z
satisfy the conditions of Lemma 4.1, then Y

X
is a convergent of the continued

fraction expansion of e
N

. Using X and Y , define S = eX − NY . Then S is
an approximation of ap+ bq satisfying

|ap+ bq − S| = |Z| < |ap− bq|
3|ap+ bq|

N
1
4 .

Then Lemma 3.2 implies that ab =
[
S2

4N

]
, and D =

√
|S2 − 4abN | is an

approximation of |ap − bq| with ||ap− bq| −D| < N
1
4 . Using S and D we

get ∣∣∣∣ap− S ±D
2

∣∣∣∣ < N
1
4 .

Then Coppersmith’s Theorem 2.2 with one of the values S+D
2

and S−D
2

will
find p in polynomial time and the factorization of N follows.

Now we summarize the factorization algorithm.
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Algorithm 1 : The factorization algorithm

Input: An RSA modulus N = pq with q < p < 2q and a public exponent e

satisfying eX − NY = ap + bq + Z with |a| < q, b =
⌊
ap
q

⌋
, X < N

3|ap+bq|

and |Z| < |ap−bq|
3|ap+bq|N

1
4 .

Output: The prime factors p and q.
1: Compute the continued fraction expansion of e

N
.

2: For every convergent Y
X

of e
N

do

3: If X < 1
3
N

1
2 then

4: Compute S = eX −NY , k =
[
S2

4N

]
and D =

√
|S2 − 4kN |.

5: Apply Coppersmith’s algorithm (Theorem 2.2) with S+D
2

and S−D
2

.
6: If Coppersmith’s algorithm succeeds then
7: Outputs the factors p and q.
8: Stop.
9: End if

10: End if
11: End for

5 Estimation of the Weak Exponents

In this section, we give an estimation of the number of the exponents e < N
for which our approach applies. We begin by showing, that for a fixed a
with |a| < q, an exponent e < N satisfies at most one equation eX −NY =
ap + bq + Z where the parameters X, Y and Z satisfy the conditions of
Theorem 4.2.

Lemma 5.1. Let N = pq be an RSA modulus with q < p < 2q. Suppose that
e is an exponent satisfying two equations

eX −NY = ap+ bq + Z and eX ′ −NY ′ = ap+ bq + Z ′,

with |a| < q,

X,X ′ <
N

3|ap+ bq|
, and |Z|, |Z ′| < |ap− bq|

3|ap+ bq|
N

1
4 ,

where b =
⌊
ap
q

⌋
. Then X = X ′, Y = Y ′ and Z = Z ′.
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Proof. Assume that eX −NY = ap+ bq+Z and eX ′−NY ′ = ap+ bq+Z ′.
Then eliminating e, we get

NY + ap+ bq + Z

X
=
NY ′ + ap+ bq + Z ′

X ′
,

which is equivalent to

(ap+ bq)(X ′ −X) + ZX ′ − Z ′X = N(XY ′ −X ′Y ).(3)

Next, assume X,X ′ < N
3|ap+bq| and |Z|, |Z ′| < |ap−bq|

3|ap+bq|N
1
4 . Then

|(ap+ bq)(X ′ −X) + ZX ′ − Z ′X| ≤ |ap+ bq|(|X|+ |X ′|) + |ZX ′|+ |Z ′X|

<
2N

3
+

2|ap− bq|N 5
4

9|ap+ bq|2

<
2N

3
+

2N
3
4

3
< N,

where we used |ap + bq| > p > N
1
2 and |ap − bq| < |ap + bq|. Plugging this

in (3), we get XY ′ = X ′Y and (ap + bq)(X ′ −X) + ZX ′ − Z ′X = 0. Since
gcd(X, Y ) = 1 and gcd(X ′, Y ′) = 1, this leads to X = X ′, Y = Y ′ and finally
Z = Z ′.

Now we give an estimation of the size of the class of the exponents for
which our approach applies.

Theorem 5.2. Let N = pq be a normal RSA modulus with q < p < 2q and
p−q > 2−100

√
N . The number of the exponents e < N satisfying an equation

eX −NY = ap+ bq + Z with gcd(X, Y ) = 1, |a| < q and

b =

⌊
ap

q

⌋
, X <

N

3|ap+ bq|
and |Z| < |ap− bq|

3|ap+ bq|
N

1
4 ,

is at least N
3
4
−ε where ε > 0 is arbitrary small for suitably large N .

Proof. Suppose that the exponent e satisfies an equation eX − NY = ap +
bq+Z with gcd(X, Y ) = 1 and X < N

3|ap+bq| . Then, since X < 1
3
N

1
2 , we have

X < q and gcd(X,N) = 1. Hence we can express e as

e ≡ ap+ bq + Z

X
(mod N).
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Additionally, if e < N , then this representation is unique. This implies that
the number of such exponents is

N (a) =

B1∑
|Z|=1

B2∑
X=1

gcd(X,ap+bq+Z)=1

1,(4)

where

B1 =

⌊
|ap− bq|
3|ap+ bq|

N
1
4

⌋
and B2 =

⌊
N

3|ap+ bq|

⌋
.

Using Lemma 3.3 with m = B2 and n = ap+ bq + Z, we get

B2∑
X=1

gcd(X,ap+bq+Z)=1

1 >
cB2

(log log |ap+ bq + Z|)2
>

cB2

(log logN)2
= B2N

−ε1 ,

where c > 0 is a constant and ε1 > 0 is arbitrary small for suitably large N .
Plugging this in (4), we deduce

N (a) >

B1∑
|Z|=1

B2N
−ε1 = 2B2B1N

−ε1 = 2

⌊
|ap− bq|
3|ap+ bq|

N
1
4

⌋⌊
N

3|ap+ bq|

⌋
N−ε1 .

Let us consider the case with a = 1. Since q < p < 2q, then b =
⌊
ap
q

⌋
= 1.

We also consider the case where the primes p and q satisfy p− q > 2−100
√
N ,

as required by the the ANSI X9.31 standard [1] (see also [13]). This results
in the following lower bound for N (1)

N (1) > 2

⌊
|p− q|
3|p+ q|

N
1
4

⌋⌊
N

3(p+ q)

⌋
N−ε1

> 2

⌊
2−100

√
NN

1
4

6
√

2
√
N

⌋⌊
N

6
√

2
√
N

⌋
N−ε1

>
2−100N

1
4

6
√

2
×
√
N

6
√

2
×N−ε1

= N
3
4
−ε,

where we used p+q < 2p < 2
√

2
√
N and ε > 0 is arbitrary small for suitably

large N . This terminates the proof.
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6 Conclusion

Based on the equation ed−kφ(N) = 1, Wiener’s famous attack on RSA with

d < 1
3
N

1
4 shows that using a small private exponent d for an efficient decryp-

tion (or signature-generation) process makes RSA completely insecure. In
this paper, we studied the class of the exponents e satisfying an equation
eX−NY = ap+ bq+Z where a is an unknown integer satisfying |a| < q and
b =

⌊
ap
b

⌋
and where X and Z are suitably small parameters. Using the con-

tinued fraction algorithm and Coppersmith’s method, we showed that such
exponents are weak as they enable us to break the RSA system. Addition-
ally, we showed that they form a class of size N

3
4
−ε which is approximately√

N times more larger than Wiener’s class of weak exponents. This shows
that instances of RSA, even with large private exponents, can be insecure as
they can efficiently be recovered.
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