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Abstract. Let N = pg be the product of two large unknown primes
of equal bit-size. Wiener’s famous attack on RSA shows that using a
public key (N, e) satisfying ed — k(N +1— (p+¢q)) =1 with d < %N1/4
makes RSA completely insecure. The number of such weak keys can be
estimated as N1 ~<. In this paper, we present a generalization of Wiener’s
attack. We study two new classes of exponents satisfying an equation

eX—(N—(upi%))Y:Z,

where X, Y are suitably small integers, u is an integer with |u| < %q and
Z is a small rational. Using a combination of the continued fraction algo-
rithm and Coppersmith’s lattice based technique for solving polynomial
equations, we show that every exponent e in these classes yields the fac-
torization of N. Moreover, we show that the number of such exponents
is at least N17¢ where ¢ > 0 is arbitrarily small for large N when p and

q satisfy |p —q| = 2 (W)

KeyworDs: RSA, Cryptanalysis, Factorization, Continued Fraction, Cop-
persmith’s method

1 Introduction

The RSA algorithm [I4] was invented by Rivest, Shamir and Adleman in 1977
and has withstood years of extensive cryptanalysis (see e.g. [3]). It is still the
most widely deployed and used public-key cryptosystem. Let N = pq be the
product of two large primes p, g of the same bit-size and let e and d be positive
integers satisfying ed = 1 (mod ¢(N)) where ¢(N) = (p — 1)(¢ — 1) is Euler’s
totient function. Thus, e and d satisfy the RSA key equation ed — k¢(N) = 1,
where k is some positive integer. The integer N is called the RSA modulus, e is
the public (encrypting) exponent and d is the private (decrypting) exponent.
The security of RSA is based on the hardness of factoring the modulus N and
computing roots modulo N. A survey on the attacks on RSA before the year 2000
is available in [3]. Many attacks tried to solve the key equation ed — k¢(N) = 1.
Indeed, trying to break RSA by finding d, the decryption key, or computing ¢(N)
amounts to factoring N in the end. In 1990, using information obtained from
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the continued fraction expansion of £, Wiener [15] showed how to efficiently
factor the modulus N = pq for any instance of RSA with private exponent d
satisfying d < %N 1. The number of such weak exponents can be estimated as
N7i~¢ where £ > 0 is arbitrarily small for large N. At Eurocrypt’99, Boneh and
Durfee [4] improved the bound, by showing that p and ¢ can be recovered in
polynomial time if d < N°292, The attack is based on the lattice-based work
by Coppersmith [5] on finding small roots to modular polynomial equations.
The number of the exponents for which this method works can be estimated as
N0-292—¢

Other cryptanalytic ideas have been based on some variants of the RSA
key equation. In 2004, Blémer and May [2] showed that p, ¢ can be found in
polynomial time for every (IV,e) satisfying ex + y = k¢(N) with © < %Ni and
lyl = O (N *%ex). This attack is based on the continued fraction algorithm
and on Coppersmith’s method [5] for finding small roots of modular polynomial
equations. The number of such weak exponents is estimated as N 1-¢ when
p and ¢ satisfy |p —¢| = 2 (\/ N ) Another attack was presented by Maitra
and Sarkar [I0] in 2008. The attack applies the continued fraction algorithm to

various 5y where @'(N) is an approximation of ¢(N). Recently, Nitaj [12]
proposed another attack on RSA using the equation eX + ¢(N)Y = NZ. He
showed that it is possible to find X and Z — Y using the continued fraction
algorithm if XY < %N%. Then Y and Z can be found using Coppersmith’s
technique [B] if p—g < N # and this leads to the factorization of N. The number of
the exponents for which this method works is estimated as N 3¢, Very recently,
Nitaj [13] studied the equation eX — (N — (ap + bq))Y = Z where ¢ is an
unknown convergent of the continued fraction expansion of %. Using similar
techniques and the Elliptic Curve Method of factorization (ECM) [8], he showed
that NV can be factored efficiently if 1 <Y < X < %N%*% where « is defined
by |ap + bg| = N 3+ He showed that the number of the exponents for which

this attack applies is at least NV i-e,
In this paper, we introduce two new attacks on RSA. The first attack works
for all exponents satisfying an equation

eX—(N—Qm+g»y@=z
u
with 1 < |u| < 1¢ and

1Z| pP—q

d(X,Y)=1, XY < < -9
ged(X,Y) 319

N
4lpu+ L|°
Observe that, when u = 1, the equation becomes

eX—(N-(p+q)Y =2,

or equivalently eX +Y — Z = Y¢(N), with suitably small integers X, ¥ and
|Z — Y| which is similar to the equation studied by Blomer and May [2]. Hence,
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our new attack is an extension of the attack of Blomer and May, and consequently
a generalization of Wiener’s attack [I5]. Our new attack is based on the continued
fraction algorithm and Coppersmith’s technique. We show that for integers X,
Y and Z within the given bounds, the attack yields the factorization of the RSA
modulus N = pq.

Let [z] denote the nearest integer to x. For every integer u with |u| < 3¢, we
show that the class of the exponents e with the structure

ezlw—wz»y

X tz

and
N —¢)N* 1

ged(X,Y) =1, X§Y<L, |Z|<M_,
2¢/|pu+ ¢

is vulnerable by our attack. When p and ¢ satisty |[p—¢q| = 2 (\/N) , we also show

that the number of such exponents is at least N1 where € > 0 is arbitrarily
small for large N which is large comparatively to the number of weak exponents
in Wiener’s attack.

In a similar direction, the second attack works for all exponents e satisfying
an equation

eX—(N—(pu—%))YzZ,

with N
ged(X,Y)=1, XY <-——— |Z|<N3iY.
4lpu— 3
We show that such exponents yield the factorization of N = pg. As an applica-
tion, we show that the exponents with the structure

S CRCRIES S

where [u| < 3¢ and

N
ged(X,Y)=1, X<Y < L, |z| < N1,

2y/|pu— 1

are weak and that the number of such exponents is at least N i,

The new attacks work as follows. We use the continued fraction algorithm to
recover X and Y among the convergents of £. Using X and Y, we show that
N — % is an approximation of pu + £ (respectively pu — £). Then we find an
approximation of pu — £ (respectively pu+£) and therefore an approximation of

pu. The approximations are up to additive terms at most IV I Afterwards, we find
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p and ¢ using Coppersmith’s lattice based method. This yields the factorization
of N.

The remainder of this paper is organized as follows. In Section 2, we begin
with some notations and a brief review of basic facts about the continued frac-
tion algorithm and Coppersmith’s method. In Section 3, we present some useful
lemmas needed for the attack. In Section 4 we present our first attack on RSA
and estimate the size of the exponents that are weak for this attack. Similarly,
in Section 5 we present our second attack and estimate the size of the weak
exponents. Finally, we conclude in Section 6.

2 Preliminaries

We first introduce some notation. We use the notation [z] to denote the integer
closest to the real number x and |z| to denote the largest integer less than or
equal to x.

2.1 The Continued Fraction Algorithm

Let  # 0 be a real number. Put
ro =z, ag= |xo].

Thus g = ag + (g — ag) with 0 < zg —ag < 1. For n > 1, if 2,1 # an—1,
define the double recurrence

1

Tp—1 — an—l7 fn = anJ

Ty =
This process, which associates to a real number x the sequence of integers
aop,ay, as, .. ., is called the continued fraction algorithm. Also, the continued frac-
tion expansion of z is

x = [ag, a1, a2, - -] :a0+—1
ai + 1
az‘i‘i

The quantities a,, are called partial quotients where aq is an integer and a1, as, - - -
are positive integers. If the number of terms is finite, we write x = [ag, a1, a2, , Gm].
Truncating at the k-th place (with & < m in the finite case), we get the rational

number
Pr

dk
This number is called the k-th convergent of z.
The convergents of a continued fraction have nice properties and applications
in number theory. As in Wiener’s attack, a key role in our attacks is played by
the following theorem on good rational approximations (see Theorem 184 of [6]).

= [CLo,CLh e 7ak]'
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Theorem 1. Let x be a real number. If X andY are coprime integers such that

yr_ 1
TTX| T ax

Y .
then % 1is a convergent of x.

2.2 Coppersmith’s Method

An important application of lattice basis reduction is finding small solutions to
modular univariate polynomial equations

f(z) = Zaixi =0 (mod N), a;€Z/NZ,

and small roots of bivariate polynomial equations
g(x,y) =D aix'y’ =0, a;i; €L
4]

In 1996, Coppersmith introduced a method for solving the two equations using
the LLL-algorithm [9]. He showed that for any modulus N, all the solutions
f(20) =0 (mod N) with |z9| < N'/? may be found in time polynomial in log N
and § where ¢ is the degree of f. Similarly, he showed that if g(z, y) has maximum
degree d in each variable separately, then one can find all integer pairs (zo, yo)
satisfying |zo| < X, |yo| <Y and g(zg,yo) = 0 in time polynomial in log W and
2¢ if X and Y satisfy
XY < V[/Z/(?)cl)—zs7

for some € > 0 where W = max; ; |ai7inYj|.

Since then, Coppersmith’s method has found many different applications
in the area of public key cryptography, specifically in cryptanalysis of some
instances of RSA (see [3]). As an important application of the bivariate case,
Coppersmith showed in 1996 that the knowledge of half of the most significant
bits of p is sufficient to find the factorization of an RSA modulus N = pq in
polynomial time. Later, Howgrave-Graham [7] and May [1I] showed that the
univariate modular approach suffices. Our attacks make use of the following
generalization of Coppersmith’s result (see [1I], Theorem 10).

Theorem 2. Let N = pq be an RSA modulus with ¢ < p < 2q. Suppose we
know an approximation P of pu with |]:j —pu| < ONT where u is an unknown
integer that is not a multiple of q. Then we can find the factorization of N in
time polynomial in log N.

3 Useful Lemmas

In this section, we state and prove some useful lemmas. The first is about the
size of the balanced prime factors p, ¢ of an RSA modulus N = pq.
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Lemma 1. Let N = pq be an RSA modulus with ¢ < p < 2q. Then
27IN? <g< N2 <p<2iNz.

Proof. Assume ¢ < p < 2¢. Then multiplying by p we get N < p?> < 2N.
This gives Nz < p < 23Nz, Similarly, multiplying ¢ < p < 2¢q by q we get
1 1 1

¢? < N < 2¢? which leads to 272Nz < ¢ < N2 and the lemma follows.

The following lemma shows how to find an approximation of ‘ pu — %‘ using an
approximation of ’ pu + %‘

Lemma 2. Let N = pq be an RSA modulus with ¢ < p < 2q and uw an integer.
If S is a positive integer such that

pP—4q

q 1
S—‘pu+fH< N+
’ ull = 3(p+q)

)

then
1
‘D— ‘pu— QH < N%,
u

where D = /|52 — 4N]|.

Proof. Let u be an integer. Suppose that S satisfies ‘S — ’pu + %H < P21 N1,

3(p+aq)
Define D = /|S% — 4N|. Then
2 2
‘DQ—(pu—q) _ |SQ—4N‘—(pu—g)
u u
2
< SQ—4N—(pu—g)
u
2
u
= (5¢ ot Zf) 5= |+ 3]
u u
q p—q 1
S(SJr‘pqufDxiNzl.
ul/ " 3(p+4q)
Dividing byD+|pu—%|,we get
S+ |pu+ 2 -
ull = D+ lpu—2| " 3(p+aq)

S+|pu+%|
D+‘pu—1

u

Let us find an upper bound for in terms of p and ¢q. We have

S+ |pu+ 4] <2|PU+%|+3&1qq)N% _B3lut il _3ta)
D+ |pu— £| lpu — £| pu—2t = p—q
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Plugging this in , we get

=

Ni=N

‘D_’pu qH_ 3p+ta)  p—a
p—q  3(p+aq)
This terminates the proof.

Similarly, the following lemma shows how to find an approximation of |pu + %|
using an approximation of |pu — %’

Lemma 3. Let N = pq be an RSA modulus with ¢ < p < 2q and uw an integer.
If D is a positive integer such that

‘D ‘pu——H < Ni,
then
q 1
‘S—‘pu—l—fH < N1,
U
where S =+/D? + 4N.

Proof. Let u be an integer. Suppose that D satisfies ‘D — ‘pu — %H < Nt.
Define S = v D? + 4N. We have

2 2
o HD2+4N(pu+q)
u u

2
o (m-2)

5% — (pu+

u

(o o2 -]
u
< (D+ ‘pu— QD Ni.
u
Dividing by S + ’pu + %‘, we get

D—l—‘pu—g’
S+|pu+q|

5 =3l <
u
Since D < S and |pu — 4| < |pu+ Z|, then
‘S— ‘pu—l— QH < N7,
U
This terminates the proof.

4 The Exponents Satisfying eX — (N — (pu + %)) Y =2
In this section, we consider the class of the exponents e satisfying an equation
eX — (N— <pu+g))Y=Z,

U

where X and Y are suitably small integers satisfying ged(X,Y) =1 and Z is a
suitable rational.
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4.1 The Attack

We begin with a useful lemma connecting the parameters X and Y to the con-
vergents of +.

Lemma 4. Let N = pq be an RSA modulus with ¢ < p < 2q. Let e be an
exponent satisfying an equation

eX — (N— (pu+%>)Y:Z,
for some u € N. If

N _
ged(X,Y)=1, XY <-——— |z1<-2=L Nty
4‘pu+%|

Y - e
then X 1S a convergent of -

Proof. Suppose that e satisfies an equation

eX—(N—(pu+%))Y:Z,

with |Z] < ﬁN%Y. Then, since p > v/N, we have |Z| < |pu+ | Y and we
get
e Y| |eX-NY|
N X| NX
2=t )Y
NX
q
o1zl et Y
- NX NX
2 a
- NX

4|y
In order to apply Theorem we need % <3 )1(2. Solving for XY, we get

4lpu+ L]
Under this condition, % is then a convergent of .

We now present the first attack.

Theorem 3. Let N = pq be an RSA modulus with ¢ < p < 2q. Let e be an
exponent satisfying an equation

eX—(N—(pu+%))Y:Z,
for some u € N. If
N P—q

Wd(X,V)=1, XYV <—" — |Z]<L—9
ged(X,Y) |Z] 30T 0

pur 1] A

Then N can be factored in polynomial time.
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Proof. Let u be an integer. Suppose that e is an exponent satisfying an equation
eX — (N— (pu+g))Y:Z,
U

with

N -
ged(X,Y) =1, XY <-—— [72]< 2L Niy
4‘pu+g| 3(p+q)

Then, by Lemma % appears among the convergents of the continued fraction
expansion of %. Using X and Y, define

X
S:‘N—BY , D=,/]S2—4N].

Then S is an approximation of |pu + %’ satisfying

q eX q Zl _ p—q 1
S—lpu+df| |V - = (put 1) = 2 < 2N, 2
’ put o= Y Pty Y " 3(p+9) ' @
By Lemma it follows that D is an approximation of |pu — %| satisfying
q 1
’D—‘pu—fH<N4.
U

Combining this with , we get

S+ D 1
plul — = - |2plu| = (S + D)
2 2
1
= <p|u+q—5>+(pIU|—q—D>‘
2 |ul |ul
1 q 1 q
<= Ll lplul - L - D
<Pt ’*2‘7’“' ] ‘
1 1
=3 [l gl =8+ 5 Jpe =3 - 1|
2 U 2 U
1 p—q 1 1 1
< -x+"9 N1y _ Nt
2 3p+q 2
< N1,

This implies that % is an approximation of p|u| with an additive error term
at most Ni. Hence, using Coppersmith’s technique (Theorem , this leads to

the factorization of N. Since the number of convergents of & is bounded by
O (log N) and the continued fraction algorithm and Coppersmith’s method are

polynomial time algorithms, then N can be factored in polynomial time.
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4.2 The Number of the Weak Exponents

Here, we present a class of exponents e with the structure

[ r ) 5] -

with suitably small parameters X, Y and z for every |u| < %q. We will show
that such exponents are vulnerable to our attack and will give a lower bound for
their number.

Lemma 5. Let N = pq be an RSA modulus with ¢ < p < 2q. Suppose that e is
an exponent with the structure

S CRCEES S

where |u| < q and

N (- Nty 1
Wd(X,Y)=1, XY < —" g0
god( ) 4|pu+ 1| 12 3p+q9X 2

Then N can be factored in polynomial time.

w=[(r- (et 3]

Then using the property of the round function [z], we get

o (- (ur D) 4] <

If e = ey + 2z then e satisfies

SR IEIEE

Multiplying by X, we get

ex = (V= (pur 2))v] < (+14) x.

In order to apply Theorem [3] we have to satisfy

Proof. Define

Y 1
ey — (N—(pu+3))X’+|z§2+|z.

dX,)Y)=1 XY <—"-.
BB S ]

We have also to satisfy

1 D—q 1
Z 4zl ) X <« =—2_N1Y,
(2 | l) 3(p+q)



New vulnerabilities in RSA 11

which is satisfied if .
|Z‘<(p7Q)NZY_1
p+tgX 2

This terminates the proof.

Let u be an integer satisfying 1 < |u| < %q. In the rest of this section, we define
a by the equality

’Pu+ g' = Nzte,
U

Since 1 < |u| < %q and p > v N, then « satisfies 0 < a < %
Now, we consider the set of the exponents with the structure

=[5 ) ] -

where the parameters X, Y and z satisfy

(p—qNi 1

]. 1 @
Wd(X,Y)=1, X<Y<-Ni"% |s]< -
ged(X,Y) : o< Bl 3

and propose to find a lower bound for the size of the number of such exponents.
1
Observe that, since XY < iNE’O‘ = N then, by Lemma the new set

s 2]’
of exponents is weak to our attack.
The following result shows that for a common u, different parameters X, Y
define different exponents.

Lemma 6. Let N = pq be an RSA modulus with ¢ < p < 2q. Let u be an integer
such that |u| < %q. Fori=1,2, let e; be two exponents satisfying

o [(N_ (pu+ 9)) )ﬂ Tz

where

11 o (p—gNt 1
d(X,Y) =1, X;<Y;<=-Ni72, |z|<"~—>— —_,
and o is defined by |pu+ 1| = N3 If (X1,Y1) # (X2, Ya) then eq # es.

Proof. For i = 1,2, suppose that the exponents e; satisfy

o = [(N_ (bu+ 1)) )ﬂ T

Then, as in the proof of Lemma [5| we have for ¢ = 1,2

N q Y; 1
e ( put i < A

2
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Now, suppose that e; = e5. Then

(- (D)3

\\ 11 q\) Y2
(e )R e (v () 3
“ ( pu+u X1 ez + pu+u X2
L q
1

X1 X

7\\ Y1 Y,
<ler= (V= (e D)) sy e = (V= G ) 55
=@ ( pu+u X +e2 pu+u X5
<1+ |Z1‘ + |ZQ|
Multiplying by X; X5, we get
(N— (pu—k%)) Y1 X5 — Yo X4] < (1+‘Z1|+|22|)X1X2. (3)
For i = 1, 2, suppose that
1. o1 a —¢Ni 1
X;<Yi<=Ni %, |z|< (p—g)N3 -
2 3p+q 2
Then using Lemma the right side of satisfies
2p—g)Ni 1.1, (p—gNi®
1+ 21|+ |z) X1 Xo< —————— X -N27< ———
(L [z + ) 3pt+a) 4 6(p +q)

On the other hand, for 1 < |u| < %q, the expression N — (pu + %q) is minimal
for v = Z. More precisely,

N N
N—<pu+q>ZN—<+2>:—2.
u

2 2
It follows that the term N — (pu + %) in the left side of satisfies
N —g)Ni-e
Nf(pwg) SNy g
uw/ "2 6(p+q)

Consequently, the inequality implies that Y7 Xs — Y5X; = 0, and since
ged(X1,Y1) = ged(Xo,Ys) = 1, then X; = Xo and Y7 = Y, which terminates
the proof.

Another result needed to count the number of weak exponents is the following
lemma. It shows that different parameters u define different exponents.

Lemma 7. Let N = pg be an RSA modulus with ¢ < p < 2q. For i = 1,2, let
e; be two exponents satisfying

(N N Y
= |(v- () 5] e

1
ged(Xi, ;) =1, X; <Y, |a| < —"——
p

If uy # ug then ey # es.

with
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Proof. Suppose for contradiction that u; # ws, and, without loss of generality
that u; < us. Then

q q q 1
pu1+—(pu2+):(u1—U2)<p— >§—<p—q>.
u U2 U U2 2

From this, we deduce

(e ) (5~ (e ot

Now, for i = 1,2, suppose that the exponents e; satisfy

e[l e )

and that e; = e; = e. Then

(v (o)) (9 (o)) 5

=|—e; + (N— <pu1+51)) %-‘r@z— (N— (puz—f—jz)) %22
(v 2)) H o (- (e ) 2

Yy

Since Y- and X2 are two convergents of <, then 3+ ~ ¥2. This leads to
X1 X, N> X; 7~ Xy

Y;
‘(N (pu1+q>) - (N (quJrq))‘l <1+ |z1| + |22)-
U1 U2 1

Rearranging, we get

N (pur+ L)) = (N (pus+ L)) < (14 |21) + |22, (5)
Uy U Y

—¢)NT 1
X, <Y, |Zi|<w—ﬂ
p+q) 2

for i = 1,2, then the right side of satisfies

IN

+

IN

If

=

X, 2(p —q)N
1 — <1 <=
( +\z1|+|z2|)y1 <1+ |2z1] + |22] 30+ )

This is a contradiction since, combining Lemma [1] and inequality (4)), the left
side of satisfies

-

1 3 2(p —q)N3
_Cg>VN-23YN> LD
P54 30+ q)

Hence u; = uy and applying Lemma [0} it follows that X; = X5 and ¥; = Y5.
This terminates the proof.
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We are now able to prove a lower bound for the number of the exponents with

the structure
q Y
=|(N — ( —)) — ,
e [( pu+ u +z

where the parameters X, Y and z satisfy the conditions of Lemma [6] We notice
that the X'9.31 standard [I] for public key cryptography requires that the primes
p and ¢ of an RSA modulus N = pq satisfy

vN
|p—(1|>21w-

The following result is valid for such modulus.

Theorem 4. Let N = pq be an RSA modulus with ¢ < p < 2q and |p—q| > 21@
The number of the exponents e satisfying

[ e ) 3] -

with |u| < $q and

I (p-oNt 1
cd(X,Y)=1, X<Y<=-Ni72 |]<—F———,
ged(X, V) Y o< B
where ’pu + %| = N%"’O‘, is at least N17¢ where ¢ > 0 is arbitrarily small for

suitably large N.

Proof. The number of the exponents satisfying

=[x e ) F] -

with the conditions of the theorem is

l34] B, Y1 Bs
N = 1. (6)
Ju|=1Y=1 X=1 |z|=1
ged(X,Y)=1
where
1 o —q)N
Bl_{<Ni2J and By — | P ON*
2 3(p+q)
‘We have
B2
—q)N
Z 1=9B, > (p—q)N1
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Plugging this in @, we get

—¢)N i
N > (1;# YL (7)
(p+q) lu|=1Y=1 X=1
ged(X,Y)=1
Now, we have for 1 <Y < N (see [6], Theorem 328)

Y-1

cY cY
1=9¢(Y) > >
)(2:1 oY) loglogY = loglog N’

ged(X,Y)=1

where ¢ > 0 is a constant. Plugging in turn in , we get

c(p — L5a) &
N Y. 8
3(p+q) loglogN |21Yz:1 )
Now, for |u| < %q, we have
iY:Bl(Bl+1)>1 be_ N N VN
y=1 2 8 8|pu+ L] 7 16plul T 16v/2|ul’

where we used |pu + £| < 2plu| and p < v/2v/N. Plugging in (8), we get

l
c(p—q)VNN* i 1
48v2(p + q) loglog N =1 [ul

Using the estimation (see [6], Theorem 422)

"1
E — > logn,
T
r=1
we get

Z | | > 2log ({ J) > log (2q) > log (ﬂm) ,
lul=1
where we used ¢ > ?W Plugging in @), we get
p — )N log (V2VN) cp—q)
>
48(p + q)v/2loglog N 96v2(p + ¢) loglog N
Suppose that the primes p and ¢ satisfy

NilogN. (10)

|p—Q|>21W-
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(This is required by the X9.31 standard [I] for public key cryptography). Com-
bining with Lemma [T} this implies that for a normal RSA modulus, we find

pP—q 21@ 1 1

pra (I+V2) VN 200 (1+3) 2102

Plugging in (10)), we get

c
>
96 x 2102\/2]oglog N

NilogN = Ni—¢,

clog N
96x2102\/2log log N
large N. This terminates the proof.

where we put = N7¢ and € > 0 is arbitrarily small for suitably

5 The Exponents Satisfying eX — (N — (pu — —)) Y =27

q
u
In this section, we consider the class of exponents e satisfying an equation

eX—(N—(pu—%))Y:Z,

with suitably small parameters X, Y, Z and u is an integer satisfying |u| < %q.
The following lemma shows how to find X and Y using the convergents of .

Lemma 8. Let N = pq be an RSA modulus with ¢ < p < 2q. Let e be an
exponent satisfying an equation

eXf(Nf(puf%>)Y:Z.

If

N
ged(X,Y)=1, XY <——— and |Z|<N3Y,
4|pu— |

then % is a convergent of & .
Proof. The proof is similar to the proof of Lemma [

The following result presents the second attack.

Theorem 5. Let N = pq be an RSA modulus with ¢ < p < 2q. Let e be an
exponent satisfying an equation

eX—(N—(pu—%))YzZ.

If

N
ged(X,Y)=1, XY<—— and |Z|<N3Y.
Apu - ¢

Then N can be factored in polynomial time.
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Proof. Suppose that e is an exponent satisfying an equation
q
eX—(N—-(pu—=))Y =2,
U
with

N
ged(X,Y) =1, XY <-—— and |Z|<N3Y.
4fpu—7|

u

Then Lemma [§ implies that % is a convergent of . Next, define
eX o

Then D is an approximation of |pu — %| satisfying

q eX ( q) |Z| 1
— — =< - — = — )| == .
‘D ‘pu uH ‘N pu " ‘ < N1 (11)

Applying Lemma |3 S is then an approximation of ‘ pu + %| which satisfies
‘Sf ’pqu QH < N7,
U
Combining this with , we get, as in the proof of Theorem
S+ D
ol - 22| <,
2
and we conclude using similar arguments.

Now, we consider the class of the exponents e with the structure

=[x e F] -

where |u| < 3¢ and

VN

ged(X,Y)=1, X<Y<——" and |z/ <Ni.
2y/lpu =3

Then using similar arguments as in Subsection [4.2] where one mainly substitutes

pu+ L by pu— L, it is easy to show that such exponents are weak to our second

attack and that their number is at least N %_E, where € > 0 is arbitrarily small
for suitably large N.
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Conclusion

In this paper, we studied the set of exponents e satisfying an equation

eXf(Nf(puj:%>)Y:Z.

where w is an integer with |u| < %q and X, Y are suitably small coprime integers.
We show that a combination of the continued fraction algorithm and Copper-
smith’s method can be efficiently applied to find the parameters X, Y and more
importantly, the prime factors p and ¢ of the modulus N = pq. In addition, when

p and ¢ satisty |p—q| = 2 (\/ N), we show that the set of such weak exponents

is relatively large, namely that their number is at least IV 17¢ where ¢ > 0 is
arbitrarily small for suitably large N. Our results illustrate once again the fact
that one should be cautious in the design of RSA exponents of special forms.
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