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Abstract. Let N = pq be the product of two large unknown primes
of equal bit-size. Wiener’s famous attack on RSA shows that using a
public key (N, e) satisfying ed− k(N + 1− (p+ q)) = 1 with d < 1

3
N1/4

makes RSA completely insecure. The number of such weak keys can be

estimated as N
1
4−ε. In this paper, we present a generalization of Wiener’s

attack. We study two new classes of exponents satisfying an equation

eX −
(
N −

(
up± q

u

))
Y = Z,

where X, Y are suitably small integers, u is an integer with |u| < 1
2
q and

Z is a small rational. Using a combination of the continued fraction algo-
rithm and Coppersmith’s lattice based technique for solving polynomial
equations, we show that every exponent e in these classes yields the fac-
torization of N . Moreover, we show that the number of such exponents

is at least N
3
4−ε where ε > 0 is arbitrarily small for large N when p and

q satisfy |p− q| = Ω
(√

N
)

.

Keywords: RSA, Cryptanalysis, Factorization, Continued Fraction, Cop-
persmith’s method

1 Introduction

The RSA algorithm [14] was invented by Rivest, Shamir and Adleman in 1977
and has withstood years of extensive cryptanalysis (see e.g. [3]). It is still the
most widely deployed and used public-key cryptosystem. Let N = pq be the
product of two large primes p, q of the same bit-size and let e and d be positive
integers satisfying ed ≡ 1 (mod φ(N)) where φ(N) = (p − 1)(q − 1) is Euler’s
totient function. Thus, e and d satisfy the RSA key equation ed − kφ(N) = 1,
where k is some positive integer. The integer N is called the RSA modulus, e is
the public (encrypting) exponent and d is the private (decrypting) exponent.

The security of RSA is based on the hardness of factoring the modulus N and
computing roots modulo N . A survey on the attacks on RSA before the year 2000
is available in [3]. Many attacks tried to solve the key equation ed− kφ(N) = 1.
Indeed, trying to break RSA by finding d, the decryption key, or computing φ(N)
amounts to factoring N in the end. In 1990, using information obtained from
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the continued fraction expansion of e
N , Wiener [15] showed how to efficiently

factor the modulus N = pq for any instance of RSA with private exponent d
satisfying d < 1

3N
1
4 . The number of such weak exponents can be estimated as

N
1
4−ε where ε > 0 is arbitrarily small for large N . At Eurocrypt’99, Boneh and

Durfee [4] improved the bound, by showing that p and q can be recovered in
polynomial time if d < N0.292. The attack is based on the lattice-based work
by Coppersmith [5] on finding small roots to modular polynomial equations.
The number of the exponents for which this method works can be estimated as
N0.292−ε.

Other cryptanalytic ideas have been based on some variants of the RSA
key equation. In 2004, Blömer and May [2] showed that p, q can be found in
polynomial time for every (N, e) satisfying ex+ y = kφ(N) with x < 1

3N
1
4 and

|y| = O
(
N−

3
4 ex
)

. This attack is based on the continued fraction algorithm
and on Coppersmith’s method [5] for finding small roots of modular polynomial
equations. The number of such weak exponents is estimated as N

3
4−ε when

p and q satisfy |p − q| = Ω
(√

N
)

. Another attack was presented by Maitra
and Sarkar [10] in 2008. The attack applies the continued fraction algorithm to
various e

φ′(N) where φ′(N) is an approximation of φ(N). Recently, Nitaj [12]
proposed another attack on RSA using the equation eX + φ(N)Y = NZ. He
showed that it is possible to find X and Z − Y using the continued fraction
algorithm if XY <

√
2

6 N
1
2 . Then Y and Z can be found using Coppersmith’s

technique [5] if p−q < N
3
8 and this leads to the factorization ofN . The number of

the exponents for which this method works is estimated as N
1
2−ε. Very recently,

Nitaj [13] studied the equation eX − (N − (ap + bq))Y = Z where a
b is an

unknown convergent of the continued fraction expansion of q
p . Using similar

techniques and the Elliptic Curve Method of factorization (ECM) [8], he showed
that N can be factored efficiently if 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 where α is defined

by |ap + bq| = N
1
2+α. He showed that the number of the exponents for which

this attack applies is at least N
3
4−ε.

In this paper, we introduce two new attacks on RSA. The first attack works
for all exponents satisfying an equation

eX −
(
N −

(
pu+

q

u

))
Y = Z,

with 1 ≤ |u| < 1
2q and

gcd(X,Y ) = 1, XY <
N

4
∣∣pu+ q

u

∣∣ , |Z| < p− q
3(p+ q)

Y.

Observe that, when u = 1, the equation becomes

eX − (N − (p+ q))Y = Z,

or equivalently eX + Y − Z = Y φ(N), with suitably small integers X, Y and
|Z − Y | which is similar to the equation studied by Blömer and May [2]. Hence,
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our new attack is an extension of the attack of Blömer and May, and consequently
a generalization of Wiener’s attack [15]. Our new attack is based on the continued
fraction algorithm and Coppersmith’s technique. We show that for integers X,
Y and Z within the given bounds, the attack yields the factorization of the RSA
modulus N = pq.

Let [x] denote the nearest integer to x. For every integer u with |u| < 1
2q, we

show that the class of the exponents e with the structure

e =

[(
N −

(
pu+ q

u

))
Y

X

]
+ z,

and

gcd(X,Y ) = 1, X ≤ Y <

√
N

2
√∣∣pu+ q

u

∣∣ , |z| < (p− q)N 1
4

3(p+ q)
− 1

2
,

is vulnerable by our attack. When p and q satisfy |p−q| = Ω
(√

N
)

, we also show

that the number of such exponents is at least N
3
4−ε where ε > 0 is arbitrarily

small for large N which is large comparatively to the number of weak exponents
in Wiener’s attack.

In a similar direction, the second attack works for all exponents e satisfying
an equation

eX −
(
N −

(
pu− q

u

))
Y = Z,

with
gcd(X,Y ) = 1, XY <

N

4
∣∣pu− q

u

∣∣ , |Z| < N
1
4Y.

We show that such exponents yield the factorization of N = pq. As an applica-
tion, we show that the exponents with the structure

e =
[(
N −

(
pu− q

u

)) Y
X

]
+ z,

where |u| < 1
2q and

gcd(X,Y ) = 1, X < Y <

√
N

2
√∣∣pu− q

u

∣∣ , |z| < N
1
4 ,

are weak and that the number of such exponents is at least N
3
4−ε.

The new attacks work as follows. We use the continued fraction algorithm to
recover X and Y among the convergents of e

N . Using X and Y , we show that
N − eX

Y is an approximation of pu + p
u (respectively pu − p

u ). Then we find an
approximation of pu− p

u (respectively pu+ p
u ) and therefore an approximation of

pu. The approximations are up to additive terms at mostN
1
4 . Afterwards, we find
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p and q using Coppersmith’s lattice based method. This yields the factorization
of N .

The remainder of this paper is organized as follows. In Section 2, we begin
with some notations and a brief review of basic facts about the continued frac-
tion algorithm and Coppersmith’s method. In Section 3, we present some useful
lemmas needed for the attack. In Section 4 we present our first attack on RSA
and estimate the size of the exponents that are weak for this attack. Similarly,
in Section 5 we present our second attack and estimate the size of the weak
exponents. Finally, we conclude in Section 6.

2 Preliminaries

We first introduce some notation. We use the notation [x] to denote the integer
closest to the real number x and bxc to denote the largest integer less than or
equal to x.

2.1 The Continued Fraction Algorithm

Let x 6= 0 be a real number. Put

x0 = x, a0 = bx0c.

Thus x0 = a0 + (x0 − a0) with 0 ≤ x0 − a0 < 1. For n ≥ 1, if xn−1 6= an−1,
define the double recurrence

xn =
1

xn−1 − an−1
, an = bxnc.

This process, which associates to a real number x the sequence of integers
a0, a1, a2, . . ., is called the continued fraction algorithm. Also, the continued frac-
tion expansion of x is

x = [a0, a1, a2, · · · ] = a0 +
1

a1 +
1

a2 +
1
· · ·

.

The quantities an are called partial quotients where a0 is an integer and a1, a2, · · ·
are positive integers. If the number of terms is finite, we write x = [a0, a1, a2, · · · , am].
Truncating at the k-th place (with k < m in the finite case), we get the rational
number

pk
qk

= [a0, a1, · · · , ak].

This number is called the k-th convergent of x.
The convergents of a continued fraction have nice properties and applications

in number theory. As in Wiener’s attack, a key role in our attacks is played by
the following theorem on good rational approximations (see Theorem 184 of [6]).
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Theorem 1. Let x be a real number. If X and Y are coprime integers such that∣∣∣∣x− Y

X

∣∣∣∣ < 1
2X2

,

then Y
X is a convergent of x.

2.2 Coppersmith’s Method

An important application of lattice basis reduction is finding small solutions to
modular univariate polynomial equations

f(x) =
∑
i

aix
i ≡ 0 (mod N), ai ∈ Z/NZ,

and small roots of bivariate polynomial equations

g(x, y) =
∑
i,j

ai,jx
iyj = 0, ai,j ∈ Z.

In 1996, Coppersmith introduced a method for solving the two equations using
the LLL-algorithm [9]. He showed that for any modulus N , all the solutions
f(x0) ≡ 0 (mod N) with |x0| < N1/δ may be found in time polynomial in logN
and δ where δ is the degree of f . Similarly, he showed that if g(x, y) has maximum
degree d in each variable separately, then one can find all integer pairs (x0, y0)
satisfying |x0| < X, |y0| < Y and g(x0, y0) = 0 in time polynomial in logW and
2d if X and Y satisfy

XY < W 2/(3d)−ε,

for some ε > 0 where W = maxi,j
∣∣ai,jXiY j

∣∣.
Since then, Coppersmith’s method has found many different applications

in the area of public key cryptography, specifically in cryptanalysis of some
instances of RSA (see [3]). As an important application of the bivariate case,
Coppersmith showed in 1996 that the knowledge of half of the most significant
bits of p is sufficient to find the factorization of an RSA modulus N = pq in
polynomial time. Later, Howgrave-Graham [7] and May [11] showed that the
univariate modular approach suffices. Our attacks make use of the following
generalization of Coppersmith’s result (see [11], Theorem 10).

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Suppose we
know an approximation P̃ of pu with |P̃ − pu| < 2N

1
4 where u is an unknown

integer that is not a multiple of q. Then we can find the factorization of N in
time polynomial in logN .

3 Useful Lemmas

In this section, we state and prove some useful lemmas. The first is about the
size of the balanced prime factors p, q of an RSA modulus N = pq.
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Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2N

1
2 < q < N

1
2 < p < 2

1
2N

1
2 .

Proof. Assume q < p < 2q. Then multiplying by p we get N < p2 < 2N .
This gives N

1
2 < p < 2

1
2N

1
2 . Similarly, multiplying q < p < 2q by q we get

q2 < N < 2q2 which leads to 2−
1
2N

1
2 < q < N

1
2 and the lemma follows.

The following lemma shows how to find an approximation of
∣∣pu− q

u

∣∣ using an
approximation of

∣∣pu+ q
u

∣∣.
Lemma 2. Let N = pq be an RSA modulus with q < p < 2q and u an integer.
If S is a positive integer such that∣∣∣S − ∣∣∣pu+

q

u

∣∣∣∣∣∣ < p− q
3(p+ q)

N
1
4 ,

then ∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣ < N
1
4 ,

where D =
√
|S2 − 4N |.

Proof. Let u be an integer. Suppose that S satisfies
∣∣S − ∣∣pu+ q

u

∣∣∣∣ < p−q
3(p+q)N

1
4 .

Define D =
√
|S2 − 4N |. Then∣∣∣∣D2 −

(
pu− q

u

)2
∣∣∣∣ =

∣∣∣∣∣∣S2 − 4N
∣∣− (pu− q

u

)2
∣∣∣∣

≤
∣∣∣∣S2 − 4N −

(
pu− q

u

)2
∣∣∣∣

=
∣∣∣∣S2 −

(
pu+

q

u

)2
∣∣∣∣

=
(
S +

∣∣∣pu+
q

u

∣∣∣) ∣∣∣S − ∣∣∣pu+
q

u

∣∣∣∣∣∣
≤
(
S +

∣∣∣pu+
q

u

∣∣∣)× p− q
3(p+ q)

N
1
4 .

Dividing by D +
∣∣pu− q

u

∣∣, we get

∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣ ≤ S +
∣∣pu+ q

u

∣∣
D +

∣∣pu− q
u

∣∣ × p− q
3(p+ q)

N
1
4 . (1)

Let us find an upper bound for
S+|pu+ q

u |
D+|pu− q

u |
in terms of p and q. We have

S +
∣∣pu+ q

u

∣∣
D +

∣∣pu− q
u

∣∣ < 2
∣∣pu+ q

u

∣∣+ p−q
3(p+q)N

1
4∣∣pu− q

u

∣∣ <
3
∣∣pu+ q

u

∣∣∣∣pu− q
u

∣∣ ≤ 3(p+ q)
p− q

.
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Plugging this in (1), we get∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣ ≤ 3(p+ q)
p− q

× p− q
3(p+ q)

N
1
4 = N

1
4 .

This terminates the proof.

Similarly, the following lemma shows how to find an approximation of
∣∣pu+ q

u

∣∣
using an approximation of

∣∣pu− q
u

∣∣.
Lemma 3. Let N = pq be an RSA modulus with q < p < 2q and u an integer.
If D is a positive integer such that∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣ < N
1
4 ,

then ∣∣∣S − ∣∣∣pu+
q

u

∣∣∣∣∣∣ < N
1
4 ,

where S =
√
D2 + 4N.

Proof. Let u be an integer. Suppose that D satisfies
∣∣D − ∣∣pu− q

u

∣∣∣∣ < N
1
4 .

Define S =
√
D2 + 4N. We have∣∣∣∣S2 −

(
pu+

q

u

)2
∣∣∣∣ =

∣∣∣∣D2 + 4N −
(
pu+

q

u

)2
∣∣∣∣

=
∣∣∣∣D2 −

(
pu− q

u

)2
∣∣∣∣

=
(
D +

∣∣∣pu− q

u

∣∣∣) ∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣
≤
(
D +

∣∣∣pu− q

u

∣∣∣)N 1
4 .

Dividing by S +
∣∣pu+ q

u

∣∣, we get∣∣∣S − ∣∣∣pu− q

u

∣∣∣∣∣∣ ≤ D +
∣∣pu− q

u

∣∣
S +

∣∣pu+ q
u

∣∣N 1
4 .

Since D < S and
∣∣pu− q

u

∣∣ < ∣∣pu+ q
u

∣∣, then∣∣∣S − ∣∣∣pu+
q

u

∣∣∣∣∣∣ < N
1
4 .

This terminates the proof.

4 The Exponents Satisfying eX −
(
N −

(
pu + q

u

))
Y = Z

In this section, we consider the class of the exponents e satisfying an equation

eX −
(
N −

(
pu+

q

u

))
Y = Z,

where X and Y are suitably small integers satisfying gcd(X,Y ) = 1 and Z is a
suitable rational.
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4.1 The Attack

We begin with a useful lemma connecting the parameters X and Y to the con-
vergents of e

N .

Lemma 4. Let N = pq be an RSA modulus with q < p < 2q. Let e be an
exponent satisfying an equation

eX −
(
N −

(
pu+

q

u

))
Y = Z,

for some u ∈ N. If

gcd(X,Y ) = 1, XY <
N

4
∣∣pu+ q

u

∣∣ , |Z| < p− q
3(p+ q)

N
1
4Y,

then Y
X is a convergent of e

N .

Proof. Suppose that e satisfies an equation

eX −
(
N −

(
pu+

q

u

))
Y = Z,

with |Z| < p−q
3(p+q)N

1
4Y . Then, since p >

√
N , we have |Z| <

∣∣pu+ q
u

∣∣Y and we
get ∣∣∣∣ eN − Y

X

∣∣∣∣ =
|eX −NY |

NX

=

∣∣Z − (pu+ q
u )
)
Y
∣∣

NX

≤ |Z|
NX

+

∣∣pu+ q
u

∣∣Y
NX

≤
2
∣∣pu+ q

u

∣∣Y
NX

.

In order to apply Theorem 1, we need
2|pu+ q

u |Y
NX < 1

2X2 . Solving for XY , we get

XY <
N

4
∣∣pu+ q

u

∣∣ .
Under this condition, Y

X is then a convergent of e
N .

We now present the first attack.

Theorem 3. Let N = pq be an RSA modulus with q < p < 2q. Let e be an
exponent satisfying an equation

eX −
(
N −

(
pu+

q

u

))
Y = Z,

for some u ∈ N. If

gcd(X,Y ) = 1, XY <
N

4
∣∣pu+ q

u

∣∣ , |Z| < p− q
3(p+ q)

N
1
4Y.

Then N can be factored in polynomial time.
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Proof. Let u be an integer. Suppose that e is an exponent satisfying an equation

eX −
(
N −

(
pu+

q

u

))
Y = Z,

with

gcd(X,Y ) = 1, XY <
N

4
∣∣pu+ q

u

∣∣ , |Z| < p− q
3(p+ q)

N
1
4Y.

Then, by Lemma 4, Y
X appears among the convergents of the continued fraction

expansion of e
N . Using X and Y , define

S =
∣∣∣∣N − eX

Y

∣∣∣∣ , D =
√
|S2 − 4N |.

Then S is an approximation of
∣∣pu+ q

u

∣∣ satisfying

∣∣∣S − ∣∣∣pu+
q

u

∣∣∣∣∣∣ ≤ ∣∣∣∣N − eX

Y
−
(
pu+

q

u

)∣∣∣∣ =
|Z|
Y

<
p− q

3(p+ q)
N

1
4 . (2)

By Lemma 2, it follows that D is an approximation of
∣∣pu− q

u

∣∣ satisfying∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣ < N
1
4 .

Combining this with (2), we get∣∣∣∣p|u| − S +D

2

∣∣∣∣ =
1
2
|2p|u| − (S +D)|

=
1
2

∣∣∣∣(p|u|+ q

|u|
− S

)
+
(
p|u| − q

|u|
−D

)∣∣∣∣
≤ 1

2

∣∣∣∣p|u|+ q

|u|
− S

∣∣∣∣+
1
2

∣∣∣∣p|u| − q

|u|
−D

∣∣∣∣
=

1
2

∣∣∣∣∣∣pu+
q

u

∣∣∣− S∣∣∣+
1
2

∣∣∣∣∣∣pu− q

u

∣∣∣−D∣∣∣
<

1
2
× p− q

3(p+ q)
N

1
4 +

1
2
N

1
4

< N
1
4 .

This implies that S+D
2 is an approximation of p|u| with an additive error term

at most N
1
4 . Hence, using Coppersmith’s technique (Theorem 2), this leads to

the factorization of N . Since the number of convergents of e
N is bounded by

O (logN) and the continued fraction algorithm and Coppersmith’s method are
polynomial time algorithms, then N can be factored in polynomial time.
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4.2 The Number of the Weak Exponents

Here, we present a class of exponents e with the structure

e =
[(
N −

(
pu+

q

u

)) Y
X

]
+ z,

with suitably small parameters X, Y and z for every |u| < 1
2q. We will show

that such exponents are vulnerable to our attack and will give a lower bound for
their number.

Lemma 5. Let N = pq be an RSA modulus with q < p < 2q. Suppose that e is
an exponent with the structure

e =
[(
N −

(
pu+

q

u

)) Y
X

]
+ z,

where |u| < 1
2q and

gcd(X,Y ) = 1, XY <
N

4
∣∣pu+ q

u

∣∣ , |z| < (p− q)N 1
4Y

3(p+ q)X
− 1

2
.

Then N can be factored in polynomial time.

Proof. Define

e0 =
[(
N −

(
pu+

q

u

)) Y
X

]
.

Then using the property of the round function [x], we get∣∣∣∣e0 − (N − (pu+
q

u

)) Y
X

∣∣∣∣ ≤ 1
2
.

If e = e0 + z then e satisfies∣∣∣∣e− (N − (pu+
q

u

)) Y
X

∣∣∣∣ ≤ ∣∣∣∣e0 − (N − (pu+
q

u

)) Y
X

∣∣∣∣+ |z| ≤ 1
2

+ |z|.

Multiplying by X, we get∣∣∣eX − (N − (pu+
q

u

))
Y
∣∣∣ ≤ (1

2
+ |z|

)
X.

In order to apply Theorem 3, we have to satisfy

gcd(X,Y ) = 1, XY <
N

4
∣∣pu+ q

u

∣∣ .
We have also to satisfy (

1
2

+ |z|
)
X <

p− q
3(p+ q)

N
1
4Y,
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which is satisfied if

|z| < (p− q)N 1
4Y

3(p+ q)X
− 1

2
.

This terminates the proof.

Let u be an integer satisfying 1 ≤ |u| < 1
2q. In the rest of this section, we define

α by the equality ∣∣∣pu+
q

u

∣∣∣ = N
1
2+α.

Since 1 ≤ |u| < 1
2q and p >

√
N , then α satisfies 0 < α < 1

2 .
Now, we consider the set of the exponents with the structure

e =
[(
N −

(
pu+

q

u

)) Y
X

]
+ z,

where the parameters X, Y and z satisfy

gcd(X,Y ) = 1, X ≤ Y <
1
2
N

1
4−

α
2 , |z| < (p− q)N 1

4

3(p+ q)
− 1

2
,

and propose to find a lower bound for the size of the number of such exponents.
Observe that, since XY < 1

4N
1
2−α = N

4|pu+ q
u |

, then, by Lemma 5, the new set

of exponents is weak to our attack.
The following result shows that for a common u, different parameters X, Y

define different exponents.

Lemma 6. Let N = pq be an RSA modulus with q < p < 2q. Let u be an integer
such that |u| < 1

2q. For i = 1, 2, let ei be two exponents satisfying

ei =
[(
N −

(
pu+

q

u

)) Yi
Xi

]
+ zi,

where

gcd(Xi, Yi) = 1, Xi ≤ Yi <
1
2
N

1
4−

α
2 , |zi| <

(p− q)N 1
4

3(p+ q)
− 1

2
,

and α is defined by
∣∣pu+ q

u

∣∣ = N
1
2+α. If (X1, Y1) 6= (X2, Y2) then e1 6= e2.

Proof. For i = 1, 2, suppose that the exponents ei satisfy

ei =
[(
N −

(
pu+

q

u

)) Yi
Xi

]
+ zi.

Then, as in the proof of Lemma 5, we have for i = 1, 2∣∣∣∣ei − (N − (pu+
q

u

)) Yi
Xi

∣∣∣∣ < 1
2

+ |zi|.
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Now, suppose that e1 = e2. Then(
N −

(
pu+

q

u

)) ∣∣∣∣ Y1

X1
− Y2

X2

∣∣∣∣
=
∣∣∣∣e1 − (N − (pu+

q

u

)) Y1

X1
− e2 +

(
N −

(
pu+

q

u

)) Y2

X2

∣∣∣∣
≤
∣∣∣∣e1 − (N − (pu+

q

u

)) Y1

X1

∣∣∣∣+
∣∣∣∣e2 − (N − (pu+

q

u

)) Y2

X2

∣∣∣∣
≤ 1 + |z1|+ |z2|.

Multiplying by X1X2, we get(
N −

(
pu+

q

u

))
|Y1X2 − Y2X1| ≤ (1 + |z1|+ |z2|)X1X2. (3)

For i = 1, 2, suppose that

Xi ≤ Yi <
1
2
N

1
4−

α
2 , |zi| <

(p− q)N 1
4

3(p+ q)
− 1

2
.

Then using Lemma 1, the right side of (3) satisfies

(1 + |z1|+ |z2|)X1X2 <
2(p− q)N 1

4

3(p+ q)
× 1

4
N

1
2−α <

(p− q)N 3
4−α

6(p+ q)
.

On the other hand, for 1 ≤ |u| < 1
2q, the expression N −

(
pu+ 1

uq
)

is minimal
for u = q

2 . More precisely,

N −
(
pu+

q

u

)
≥ N −

(
N

2
+ 2
)

=
N

2
− 2.

It follows that the term N −
(
pu+ q

u

)
in the left side of (3) satisfies

N −
(
pu+

q

u

)
≥ N

2
− 2 >

(p− q)N 3
4−α

6(p+ q)
.

Consequently, the inequality (3) implies that Y1X2 − Y2X1 = 0, and since
gcd(X1, Y1) = gcd(X2, Y2) = 1, then X1 = X2 and Y1 = Y2 which terminates
the proof.

Another result needed to count the number of weak exponents is the following
lemma. It shows that different parameters u define different exponents.

Lemma 7. Let N = pq be an RSA modulus with q < p < 2q. For i = 1, 2, let
ei be two exponents satisfying

ei =
[(
N −

(
pui +

q

ui

))
Yi
Xi

]
+ zi,

with

gcd(Xi, Yi) = 1, Xi ≤ Yi, |zi| <
(p− q)N 1

4

3(p+ q)
− 1

2
.

If u1 6= u2 then e1 6= e2.
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Proof. Suppose for contradiction that u1 6= u2, and, without loss of generality
that u1 < u2. Then

pu1 +
q

u1
−
(
pu2 +

q

u2

)
= (u1 − u2)

(
p− q

u1u2

)
≤ −

(
p− 1

2
q

)
.

From this, we deduce(
N −

(
pu1 +

q

u1

))
−
(
N −

(
pu2 +

q

u2

))
≥ p− 1

2
q. (4)

Now, for i = 1, 2, suppose that the exponents ei satisfy

ei =
[(
N −

(
pui +

q

ui

))
Yi
Xi

]
+ zi.

and that e1 = e2 = e. Then∣∣∣∣(N − (pu1 +
q

u1

))
Y1

X1
−
(
N −

(
pu2 +

q

u2

))
Y2

X2

∣∣∣∣
=
∣∣∣∣−e1 +

(
N −

(
pu1 +

q

u1

))
Y1

X1
+ e2 −

(
N −

(
pu2 +

q

u2

))
Y2

X2

∣∣∣∣
≤
∣∣∣∣e1 − (N − (pu1 +

q

u1

))
Y1

X1

∣∣∣∣+
∣∣∣∣e2 − (N − (pu2 +

q

u2

))
Y2

X2

∣∣∣∣
≤ 1 + |z1|+ |z2|.

Since Y1
X1

and Y2
X2

are two convergents of e
N , then Y1

X1
≈ Y2

X2
. This leads to∣∣∣∣(N − (pu1 +

q

u1

))
−
(
N −

(
pu2 +

q

u2

))∣∣∣∣ Y1

X1
< 1 + |z1|+ |z2|.

Rearranging, we get∣∣∣∣(N − (pu1 +
q

u1

))
−
(
N −

(
pu2 +

q

u2

))∣∣∣∣ < (1 + |z1|+ |z2|)
X1

Y1
. (5)

If

Xi ≤ Yi, |zi| <
(p− q)N 1

4

3(p+ q)
− 1

2
,

for i = 1, 2, then the right side of (5) satisfies

(1 + |z1|+ |z2|)
X1

Y1
≤ 1 + |z1|+ |z2| <

2(p− q)N 1
4

3(p+ q)
.

This is a contradiction since, combining Lemma 1 and inequality (4), the left
side of (5) satisfies

p− 1
2
q >
√
N − 2−

3
2
√
N >

2(p− q)N 1
4

3(p+ q)
.

Hence u1 = u2 and applying Lemma 6, it follows that X1 = X2 and Y1 = Y2.
This terminates the proof.



14 Abderrahmane Nitaj

We are now able to prove a lower bound for the number of the exponents with
the structure

e =
[(
N −

(
pu+

q

u

)) Y
X

]
+ z,

where the parameters X, Y and z satisfy the conditions of Lemma 6. We notice
that the X9.31 standard [1] for public key cryptography requires that the primes
p and q of an RSA modulus N = pq satisfy

|p− q| >
√
N

2100
.

The following result is valid for such modulus.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q and |p−q| >
√
N

2100 .
The number of the exponents e satisfying

e =
[(
N −

(
pu+

q

u

)) Y
X

]
+ z,

with |u| < 1
2q and

gcd(X,Y ) = 1, X ≤ Y <
1
2
N

1
4−

α
2 , |z| < (p− q)N 1

4

3(p+ q)
− 1

2
,

where
∣∣pu+ q

u

∣∣ = N
1
2+α, is at least N

3
4−ε where ε > 0 is arbitrarily small for

suitably large N .

Proof. The number of the exponents satisfying

e =
[(
N −

(
pu+

q

u

)) Y
X

]
+ z,

with the conditions of the theorem is

N =
b 1

2 qc∑
|u|=1

B1∑
Y=1

Y−1∑
X=1

gcd(X,Y )=1

B2∑
|z|=1

1. (6)

where

B1 =
⌊

1
2
N

1
4−

α
2

⌋
and B2 =

⌊
(p− q)N 1

4

3(p+ q)

⌋
.

We have
B2∑
|z|=1

1 = 2B2 >
(p− q)N 1

4

3(p+ q)
.
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Plugging this in (6), we get

N >
(p− q)N 1

4

3(p+ q)

b 1
2 qc∑
|u|=1

B1∑
Y=1

Y−1∑
X=1

gcd(X,Y )=1

1. (7)

Now, we have for 1 < Y < N (see [6], Theorem 328)

Y−1∑
X=1

gcd(X,Y )=1

1 = φ(Y ) >
cY

log log Y
>

cY

log logN
,

where c > 0 is a constant. Plugging in turn in (7), we get

N >
c(p− q)N 1

4

3(p+ q) log logN

b 1
2 qc∑
|u|=1

B1∑
Y=1

Y. (8)

Now, for |u| < 1
2q, we have

B1∑
Y=1

Y =
B1(B1 + 1)

2
>

1
8
N

1
2−α =

N

8
∣∣pu+ q

u

∣∣ > N

16p|u|
>

√
N

16
√

2|u|
,

where we used
∣∣pu+ q

u

∣∣ < 2p|u| and p <
√

2
√
N . Plugging in (8), we get

N >
c(p− q)

√
NN

1
4

48
√

2(p+ q) log logN

b 1
2 qc∑
|u|=1

1
|u|
. (9)

Using the estimation (see [6], Theorem 422)

n∑
x=1

1
x
≥ log n,

we get
b 1

2 qc∑
|u|=1

1
|u|

> 2 log
(⌊

1
2
q

⌋)
> log (2q) > log

(√
2
√
N
)
,

where we used q >
√

2
2

√
N . Plugging in (9), we get

N >
c(p− q)N 3

4 log
(√

2
√
N
)

48(p+ q)
√

2 log logN
>

c(p− q)
96
√

2(p+ q) log logN
N

3
4 logN. (10)

Suppose that the primes p and q satisfy

|p− q| >
√
N

2100
.
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(This is required by the X9.31 standard [1] for public key cryptography). Com-
bining with Lemma 1, this implies that for a normal RSA modulus, we find

p− q
p+ q

>

√
N

2100(
1 +
√

2
)√

N
=

1
2100

(
1 +
√

2
) > 1

2102
.

Plugging in (10), we get

N >
c

96× 2102
√

2 log logN
N

3
4 logN = N

3
4−ε,

where we put c logN

96×2102
√

2 log logN
= N−ε and ε > 0 is arbitrarily small for suitably

large N . This terminates the proof.

5 The Exponents Satisfying eX −
(
N −

(
pu − q

u

))
Y = Z

In this section, we consider the class of exponents e satisfying an equation

eX −
(
N −

(
pu− q

u

))
Y = Z,

with suitably small parameters X, Y , Z and u is an integer satisfying |u| < 1
2q.

The following lemma shows how to find X and Y using the convergents of e
N .

Lemma 8. Let N = pq be an RSA modulus with q < p < 2q. Let e be an
exponent satisfying an equation

eX −
(
N −

(
pu− q

u

))
Y = Z.

If

gcd(X,Y ) = 1, XY <
N

4
∣∣pu− q

u

∣∣ and |Z| < N
1
4Y,

then Y
X is a convergent of e

N .

Proof. The proof is similar to the proof of Lemma 4.

The following result presents the second attack.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Let e be an
exponent satisfying an equation

eX −
(
N −

(
pu− q

u

))
Y = Z.

If

gcd(X,Y ) = 1, XY <
N

4
∣∣pu− q

u

∣∣ and |Z| < N
1
4Y.

Then N can be factored in polynomial time.
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Proof. Suppose that e is an exponent satisfying an equation

eX −
(
N −

(
pu− q

u

))
Y = Z,

with

gcd(X,Y ) = 1, XY <
N

4
∣∣pu− q

u

∣∣ and |Z| < N
1
4Y.

Then Lemma 8 implies that Y
X is a convergent of e

N . Next, define

D =
∣∣∣∣N − eX

Y

∣∣∣∣ and S =
√
D2 + 4N.

Then D is an approximation of
∣∣pu− q

u

∣∣ satisfying

∣∣∣D − ∣∣∣pu− q

u

∣∣∣∣∣∣ ≤ ∣∣∣∣N − eX

Y
−
(
pu− q

u

)∣∣∣∣ =
|Z|
Y

< N
1
4 . (11)

Applying Lemma 3, S is then an approximation of
∣∣pu+ q

u

∣∣ which satisfies∣∣∣S − ∣∣∣pu+
q

u

∣∣∣∣∣∣ < N
1
4 .

Combining this with (11), we get, as in the proof of Theorem 3∣∣∣∣p|u| − S +D

2

∣∣∣∣ < N
1
4 ,

and we conclude using similar arguments.

Now, we consider the class of the exponents e with the structure

e =
[(
N −

(
pu− q

u

)) Y
X

]
+ z,

where |u| < 1
2q and

gcd(X,Y ) = 1, X < Y <

√
N

2
√∣∣pu− q

u

∣∣ and |z| < N
1
4 .

Then using similar arguments as in Subsection 4.2, where one mainly substitutes
pu+ q

u by pu− q
u , it is easy to show that such exponents are weak to our second

attack and that their number is at least N
3
4−ε, where ε > 0 is arbitrarily small

for suitably large N .
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6 Conclusion

In this paper, we studied the set of exponents e satisfying an equation

eX −
(
N −

(
pu± q

u

))
Y = Z.

where u is an integer with |u| < 1
2q and X, Y are suitably small coprime integers.

We show that a combination of the continued fraction algorithm and Copper-
smith’s method can be efficiently applied to find the parameters X, Y and more
importantly, the prime factors p and q of the modulus N = pq. In addition, when
p and q satisfy |p− q| = Ω

(√
N
)

, we show that the set of such weak exponents

is relatively large, namely that their number is at least N
3
4−ε where ε > 0 is

arbitrarily small for suitably large N . Our results illustrate once again the fact
that one should be cautious in the design of RSA exponents of special forms.
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