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Abstract. Let N = pq be an RSA modulus, i.e. the product of two
large unknown primes of equal bit-size. In this paper, we describe an
attack on RSA in the presence of two or three exponents ei with the
same modulus N and satisfying equations eixi − φ(N)yi = zi, where
φ(N) = (p− 1)(q − 1) and xi, yi, zi are unknown parameters. The new
attack is an extension of Guo’s continued fraction attack as well as the
Blömer and May lattice-reduction basis attack.
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1 Introduction

The RSA public-key cryptosystem was invented by Rivest, Shamir, and Adle-
man [9] in 1978. Since then, the RSA system has been the best known and
most widely accepted public key cryptosystem. Encryption and decryption in
RSA each requires an exponentiation modulo a large modulus N which is the
product of two large primes, p and q. The exponents in the exponentiations are
the public exponent e for encryption and the private exponent d for decryption.
The exponents e and d are related by the equation ed − kφ(N) = 1 for some
positive integer k where φ(N) = (p−1)(q−1) is the Euler totient function of N .
To reduce the decryption time or signature generation, it may be tempting to
use a small private exponent d. Unfortunately, based on the convergents of the
continued fraction expansion of e

N , Wiener [10] showed that the RSA system can
be totally broken if d < 1

3N
1
4 . Then, in 1999, based on lattice basis reduction,

Boneh and Durfee [2] proposed a new attack on the use of short secret exponents.
They showed that the RSA system can be totally broken if d < N0.292. In 1994,
Blömer and May [1] proposed a different attack on RSA with a public exponent
e satisfying the equation ex+ y = kφ(N) with x < 1

3N
1
4 and |y| < O

(
N−

3
4 ex
)

.
This attack combines the convergents of the continued fraction expansion of
e
N and the seminal work of Coppersmith [3] for solving bivariate polynomial
equations.
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In 1999, Guo (see [6]) proposed an attack on RSA when there are two or
more instances of RSA, having the same modulus, with public exponents ei,
i = 1, 2, . . .. The attack is based on the continued fraction algorithm and can be
used to factor the modulus if the private exponents di are each less than N

1
3−ε for

some ε > 0. In 1999, Howgrave-Graham and Seifert [6] proposed an extension
of Guo’s attack that allows the RSA system to be broken in the presence of
two decryption exponents (d1, d2) with d1, d2 < N

5
14 . In the presence of three

decryption exponents, Howgrave-Graham and Seifert improved the bound to
N

2
5 . The attack of Howgrave-Graham and Seifert is based on lattice reduction

methods. Very recently, Sarkar and Maitra [7] used a different lattice based
technique and improved the bound N

5
14 for the case of two decryption exponents

up to N0.416. In [7], Sarkar and Maitra proposed a generalized attack when n ≥ 2
many decryption exponents di are used with the same RSA modulus N and
di < N

3n−1
4n+4 for each i, 1 ≤ i ≤ n.

In this paper, we combine the attack of Guo and the attack of Blömer and
May to mount a new attack on RSA with two or three decryption exponents
and a common modulus. Let N = pq be an RSA modulus with q < p < 2q and
ei, i = 1, 2, . . ., be two or three public exponents. Assume that each exponent
satisfies an equation eixi − φ(N)yi = zi. We show, that, depending on certain
inequalities verified by the parameters xi, yi, zi, one can find the factorization
of the RSA modulus N . The new approach still uses the continued fraction
algorithm and the lattice-reduction basis technique of Coppersmith [3].

The rest of this paper is organized as follows. In Section 2 we present the
attack of Guo as well as the attack of Blömer and May. In Section 3, we prove
three lemmas to be used in our new approach. We present the new approach for
two exponents in Section 4 and for three exponents in Section 5. We conclude
the paper in Section 6.

2 Former Attacks

Since the motivation for our new attack originates from Guo’s continued fraction
attack and the Blömer and May lattice attack, we revisit these attacks in this
section.

2.1 Guo’s attack for two exponents

Guo’s attack was described in [6] by Howgrave-Graham and Seifert (see also [5]).
It is based on the continued fraction algorithm and makes use of the following
result (see [4], Theorem 184).

Theorem 1 (Legendre). Let ξ be a real number. If a and b are coprime inte-
gers such that ∣∣∣ξ − a

b

∣∣∣ < 1
2b2

,

then a
b is a convergent of the continued fraction expansion of ξ.
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Guo’s attack concerns at least two public exponents e1, e2 such that e1d1 −
k1φ(N) = 1 and e2d2 − k2φ(N) = 1, where φ(N) = (p− 1)(q − 1). Eliminating
φ(N), we find the equation e1d1k2 − e2d2k1 = k2 − k1. Dividing by e2d1k2, we
get ∣∣∣∣e1e2 − d2k1

d1k2

∣∣∣∣ =
|k2 − k1|
e2d1k2

.

Hence, if 2|k2 − k1|d1k2 < e2, then

|k2 − k1|
e2d1k2

<
1

2(d1k2)2
.

Thus, by Theorem 1, d2k1
d1k2

must be one of the convergents of the continued
fraction of e1

e2
. Moreover, if d1 and d2 are bounded, d1 < Nδ, d2 < Nδ say, then

k1 and k2 are also bounded since for ei < φ(N) we have

ki =
eidi − 1
φ(N)

<
eidi
φ(N)

< di.

It follows that the condition 2|k2 − k1|d1k2 < e2 reduces to 2N3δ < N , or
equivalently δ < 1

3 − ε, where ε is a small positive constant.
In practice, Guo’s attack is effective if one can find d1 or d2 using the

convergent d2k1
d1k2

. This means that the quantities di, ki, i = 1, 2, must satisfy
gcd(d1k2, d2k1) = 1. Moreover, it is necessary to factor d1k2 or d2k1. Since
ki < di < N δ, i = 1, 2, then max (d1k2, d2k1) < N2δ < N

2
3 . Depending on the

structure of the quantities di and ki, i = 1, 2, the numbers d1k2 and d2k1 are not
expected to be of a difficult factorization shape and can be factored easily. Using
the exact values of d1 and k1 in e1d1 − k1φ(N) = 1, this gives the factorization
of N .

Later, using lattice based techniques, Howgrave-Graham and Seifert [6] in-
creased the bound up to d1, d2 < N

5
14 . This bound was recently improved to

d1, d2 < N0.416 by Sarkar and Maitra [7].

2.2 Guo’s attack for three exponents

To avoid the factorization problem, Guo proposed to use three exponents. Con-
sider that three public exponents e1, e2, e3 satisfying the key equations

e1d1 − k1φ(N) = 1, e2d2 − k2φ(N) = 1, e3d3 − k3φ(N) = 1,

satisfy also the inequalities 2|k2 − k1|d1k2 < e2 and 2|k3 − k1|d1k3 < e3. Com-
bining the key equations, we get

e1d1k2 − e2d2k1 = k2 − k1, e1d1k3 − e3d3k1 = k3 − k1.

Proceeding as in Guo’s first attack, we find the inequalities∣∣∣∣e1e2 − d2k1

d1k2

∣∣∣∣ =
|k2 − k1|
e2d1k2

<
1

2(d1k2)2
,∣∣∣∣e1e3 − d3k1

d1k3

∣∣∣∣ =
|k3 − k1|
e3d1k3

<
1

2(d1k3)2
.
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Using Theorem 1, we see that d2k1
d1k2

is one of the convergents of the continued
fraction of e1

e2
and similarly, d3k1

d1k3
is one of the convergents of the continued

fraction of e1e3 . Suppose in addition that gcd(d2k1, d1k2) = 1, gcd(d3k1, d1k3) = 1,
gcd(d2, d3) = 1 and gcd(k2, k3) = 1, then d2k1

d1k2
and d3k1

d1k3
are in lowest terms and

gcd(d1k2, d1k3) = d1, gcd(d2k1, d3k1) = k1.

With d1 and k1 known, the factorization of N becomes trivial using the equation
e1d1 − k1φ(N) = 1.

In 1999, it was shown by Howgrave-Graham and Seifert [6] that the bound
di < N

1
3 with i = 1, 2, 3 can be improved using lattice reduction techniques and

very recently, Sarkar and Maitra [8] increased this bound up to di < N
1
2 .

2.3 The Blömer and May attack

In 2004, Blömer and May[1] proposed an attack on RSA with a modulus N = pq
with q < p < 2q and a public exponent e satisfying an equation ex + y =
kφ(N). The attack is based on a combination of the continued fraction algorithm
and Coppersmith’s lattice-based technique for finding small roots of bivariate
polynomial equation [3].

Theorem 2 (Coppersmith). Let N = pq be the product of two unknown
primes such that q < p < 2q. Suppose we know an approximation P̃ of p such
that

∣∣∣p− P̃ ∣∣∣ < 2N
1
4 . Then N can be factored in polynomial time.

Suppose that e satisfies an equation ex+ y = kφ(N). Under the conditions

0 < x <
1
3
N

1
4 and |y| = |ex− kφ(N)| ≤ O

(
N−

3
4 ex
)
, (1)

the fraction k
x satisfies

∣∣k
x −

e
N

∣∣ < 1
2x2 . By Theorem 1, this shows that k

x can be
found among the convergents of the continued fraction expansion of e

N . Using
φ(N) = (p− 1)(q − 1) = N + 1− p− q in the equation ex+ y = kφ(N), Blömer
and May showed that N + 1− ex

k is an approximation of p+ q satisfying

∣∣∣p+ q −
(
N + 1− ex

k

)∣∣∣ =
|y|
k
<

4
3
cN

1
4 ,

where c < 1 is a positive constant satisfying p − q > cN
1
2 . Next, they derived

that
√(

N + 1− ex
k

)2 − 4N is an approximation of p− q up to an error term at

most 9N
1
4 . Finally, combining the approximations of p+ q and p− q, they found

an approximation of p up to an error term of at most 6N
1
4 which leads to the

exact value of p using Coppersmith’s Theorem 2.
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3 Useful Lemmas

In this section we state and prove three lemmas needed for the new attack. The
first is the following result.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Suppose that S is
an approximation of p+ q satisfying S > 2

√
N and

|p+ q − S| < D

S
N

1
4 , (2)

where D =
√
S2 − 4N. Then P̃ = 1

2 (S +D) is an approximation of p with∣∣∣p− P̃ ∣∣∣ < 2N
1
4 .

Proof. Suppose that S > 2
√
N is a positive integer satisfying (2) where D =√

S2 − 4N. We have∣∣∣D2 − (p− q)2
∣∣∣ =

∣∣∣∣∣S2 − 4N
∣∣− (p− q)2

∣∣∣
≤
∣∣∣S2 − 4N − (p− q)2

∣∣∣
=
∣∣∣S2 − (p+ q)2

∣∣∣
= (p+ q + S) |p+ q − S|

≤ (p+ q + S)× DN
1
4

S
.

Dividing by p− q +D, we get

|p− q −D| ≤ p+ q + S

p− q +D
× DN

1
4

S
. (3)

Let us find a bound for p+q+S
p−q+D . Since D < S, then from (2), we derive

p+ q + S < 2S +
DN

1
4

S
< 2S +N

1
4 < 3S.

On the other hand, we have p− q +D > D. Hence

p+ q + S

p− q +D
<

3S
D

Plugging in (3), we deduce

|p− q −D| ≤ 3S
D
× DN

1
4

S
= 3N

1
4 . (4)
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Now, using (2) and (4), we get

|2p− S −D| = |p+ q − S + (p− q −D)|
≤ |p+ q − S|+ |p− q −D|

<
DN

1
4

S
+ 3N

1
4

< 4N
1
4 .

Dividing by 2, we find ∣∣∣∣p− S +D

2

∣∣∣∣ =
∣∣∣p− P̃ ∣∣∣ < 2N

1
4 ,

which terminates the proof. ut

Notice that when the primes p and q satisfy q < p < 2q, then p+ q > 2
√
N and

if S is an approximation of p+ q, then S also satisfies S > 2
√
N .

The second lemma is the following.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Let e1, e2 be
integers satisfying the equations

e1x1 − φ(N)y1 = z1, e2x2 − φ(N)y2 = z2.

If 2x1y2|z1y2 − z2y1| < e2 then x2y1
x1y2

is a convergent of e1
e2

.

Proof. Suppose that e1, e2 satisfy the equations e1x1−φ(N)y1 = z1 and e2x2−
φ(N)y2 = z2. Then eliminating φ(N), we get

e1x1y2 − e2x2y1 = z1y2 − z2y1.

Dividing both sides by e2x1y2, we get∣∣∣∣e1e2 − x2y1
x1y2

∣∣∣∣ =
|z1y2 − z2y1|

e2x1y2
. (5)

Suppose that the parameters satisfy the inequality 2x1y2|z1y2 − z2y1| < e2.
Then (5) yields ∣∣∣∣e1e2 − x2y1

x1y2

∣∣∣∣ < 1
2(x1y2)2

.

Combining with Theorem 1, we see that x2y1
x1y2

is a convergent of e1
e2

. ut

Finally, we will use the following result.

Lemma 3. Let N = pq be an RSA modulus with q < p < 2q. Let e1 be an integer
satisfying the equation e1x1 − φ(N)y1 = z1, with known positive parameters x1,
y1. Let

S = N + 1− e1x1

y1
and D =

√
|S2 − 4N |.
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Then, under the conditions S > 2
√
N and

|z1| <
D

S
N

1
4 y1,

N can be factored in polynomial time.

Proof. Suppose that e1 satisfies the conditions of the theorem where x1, y1 are
known positive integers. Using φ(N) = N + 1 − p − q in the equation e1x1 −
φ(N)y1 = z1, we get∣∣∣∣p+ q −

(
N + 1− e1x1

y1

)∣∣∣∣ =
|z1|
y1

<
D

S
N

1
4 .

This implies that S = N + 1− e1x1
y1

is an approximation of p+ q up to an error

term satisfying the condition of Lemma 1. Hence P̃ = 1
2

(
S +

√
|S2 − 4N |

)
is an

approximation of p up to an error term at most 2N
1
4 . Thus, using Coppersmith’s

Theorem 2, one can find p in polynomial time. ut

4 The New Attack on RSA with Two Exponents

In this section, we investigate RSA with the same modulus and two public expo-
nents e1 and e2 satisfying the equations e1x1−φ(N)y1 = z1, and e2x2−φ(N)y2 =
z2, where the parameters satisfy

gcd(x2y1, x1y2) = 1, (6)

x1y2|z1y2 − z2y1| <
e2
2
. (7)

This means that the conditions of Lemma 2 are satisfied which implies that x2y1
x1y2

can be found in the continued fraction expansion of e1e2 . The condition (6) implies
that the convergent x2y1

x1y2
is in lowest terms which gives x2y1 and x1y2. Now, we

wish to recover the values of the parameters x1, y1, x2, y2. Using the assumptions
that x1, y2, |z1y2 − z2y1| are at most Nδ and that e2 ≈ N , the condition (7) is
satisfied whenever N3δ < 1

2N, that is δ = 1
3 − ε, for some small ε > 0. Moreover,

if x2y1 and x1y2 are not of a difficult factorization shape, then their factorization
is feasible for instances of RSA with a 1024-bit modulus. Thus, factoring x2y1
and x1y2 will reveal the parameters x1, y1. To find the prime factors p and q of
the RSA modulus N = pq, we must make the assumption that the parameter z1
satisfies

|z1| <
D

S
N

1
4 y1,

where S = N + 1 − e1x1
y1

and D =
√
|S2 − 4N |. Thus, the conditions of

Lemma 3 are satisfied which leads to the factorization of N .
We summarize the first attack in Algorithm 1.
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Algorithm 1 Two exponents
Input: N = pq with q < p < 2q, two public exponents ei, i = 1, 2 satisfying eixi −
φ(N)yi = zi with unknown parameters xi, yi, zi.

Output: The prime factors p and q.
Compute the continued fraction expansion of e1

e2
.

For every convergent pk
qk

of e1
e2

with max(pk, qk) < N
2
3 do

Factor pk and qk.
For every divisor y1 of pk do

For every divisor x1 of qk do

Compute S = N + 1− e1x1
y1

and P̃ = 1
2

(
S +

√
|S2 − 4N |

)
.

Apply Coppersmith’s algorithm (Theorem 2) with P̃ as an approximation of
p.

If Coppersmith’s algorithm outputs the factorization of N , then
stop.

End if
End for

End for
End for

An Example for the New Attack with Two Exponents

As an example, let us take

N = 78783023222142579402299,
e1 = 20339472065400293617,
e2 = 16071808231974749459.

The first 30 partial quotients of e1
e2

are

[1, 3, 1, 3, 3, 1, 2, 59, 1, 2, 2, 2, 1, 1, 3, 1, 1,
4, 3, 1, 7, 18, 10, 1, 13, 1, 1, 316, 4, 1, · · · ]

Each convergent a
b is a candidate for x2y1

x1y2
. The 27th convergent is

a

b
=

3889559329731
3073445144167

We see that a ≈ N0.550, b ≈ N0.546 are not of difficult factorization shape. We
get easily a = 33 · 229 · 6079 · 103483 and b = 41 · 43 · 71 · 1693 · 14503 and we see
that the largest prime factor is 103483 ≈ N0.22. Next, the decomposition

a = x2y1 = 71092821 · 54711, b = x1y2 = 211917889 · 14503,

gives x1 = 211917889, y1 = 54711, x2 = 71092821 and y2 = 14503. Using the
equation e1x1 − φ(N)y1 = z1, we get p+ q = N + 1− e1x1

y1
+ z1

y1
. We then make
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the assumption that

p+ q ≈ S = N + 1− e1x1

y1
≈ 594807230437.

From this, we get the approximation

p− q ≈ D =
√
|S2 − 4N | ≈ 196630487186.

Combining the approximations of p+ q and p− q, we get

p ≈ S +D

2
≈ 395718858812.

Then Coppersmith’s algorithm 2 gives p = 395718860549 and q = 199088370751.
Note that, in this example, the private exponents di ≡ e−1

i (mod φ(N)),
i = 1, 2, are

d1 = 63426822067770650216953 ≈ N0.996,

d2 = 68134122111136587656939 ≈ N0.997,

so that d1, d2 > N
1
2 , which explains why Guo’s attack would fail in this case. On

the other hand, in connection with the attack of Blömer and May as described
in Subsection 2.3, the fraction y1

x1
is not among the convergents of the continued

fraction of e1
N . Similarly, y2

x2
is not among the convergents of the continued frac-

tion of e2
N . Moreover, all the convergents x

k of e1
N with x < 1

3N
1
4 are such that

|e1x− kφ(N)| > N−
3
4 e1x so that the condition (1) is never satisfied. We have a

similar result with the convergents of e2
N . This explains why Blömer and May’s

attack would also fail in this case.

5 The New Attack on RSA with Three Exponents

To avoid factoring integers of size N
2
3 , we consider in this section that a third

instance of RSA with the same modulus is available. Suppose we have three
public exponents e1, e2, e3 satisfying the equations

e1x1 − φ(N)y1 = z1, e2x2 − φ(N)y2 = z2, e3x3 − φ(N)y3 = z3,

where the parameters satisfy gcd(x2y1, x1y2) = 1, gcd(x3y1, x1y3) = 1 and

x1y2 |z1y2 − z2y1| <
e2
2
,

x1y3 |z1y3 − z3y1| <
e3
2
.

This immediately shows that the conditions of Lemma 2 are satisfied for (e1, e2)
and for (e1, e3). Hence x2y1

x1y2
is in lowest terms and is a convergent of e1e2 . Similarly,

x3y1
x1y3

is in lowest terms and is a convergent of e1
e3

. This gives

gcd(x1y2, x1y3) = x1, gcd(x2y1, x3y1) = y1.
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Now, if the condition

|z1| <
D

S
N

1
4 y1,

is satisfied, where S = N + 1− e1x1
y1

and D =
√
|S2 − 4N |, then by Lemma 3

one can find p using Coppersmith’s Theorem with the approximation

P̃ =
1
2

(
S +

√
|S2 − 4N |

)
.

of p.
We summarize the attack in Algorithm 2

Algorithm 2 Three Exponents
Input: N = pq with q < p < 2q, three public exponents ei, i = 1, 2, 3, satisfying
eixi − φ(N)yi = zi with unknown parameters xi, yi, zi.

Output: The prime factors p and q.
Compute the continued fraction expansion of e1

e2
.

Compute the continued fraction expansion of e1
e3

.
For every convergent a

b
of e1

e2
do

For every convergent c
d

of e1
e3

do
Compute x1 = gcd(b, d), y1 = gcd(a, c).

Compute S = N + 1− e1x1
y1

and P̃ = 1
2

(
S +

√
|S2 − 4N |

)
.

Apply Coppersmith’s algorithm (Theorem 2) with P̃ as an approximation of p.

If Coppersmith’s algorithm outputs the factorization of N , then
stop.

End if
End for

End for

An Example for the New Attack with Three Exponents

Here we take an RSA modulus N = pq and three public exponents e1, e2 and
e3 as

N = 95026423511070214659367,
e1 = 988283832402044225959,
e2 = 35887685050144510339,
e3 = 4465685820126103902929.

The candidates for x2y1
x1y2

are the convergents of e1
e2

. Indeed, the 25th convergent
of e1

e2
is 44398785042941

1612259112200 . Similarly, the candidates for x3y1
x1y3

are the convergents of
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e1
e3

. The 35th convergent of e1
e3

is 6433869008153
29072252986700 . From the two convergents, we

get

x1 = gcd(1612259112200, 29072252986700) = 59365900,
y1 = gcd(44398785042941, 6433869008153) = 617411.

Using the equation e1x1 − φ(N)y1 = z1, we get p+ q = N + 1− e1x1
y1

+ z1
y1
, and

neglecting z1
y1

, we get

p+ q ≈ S = N + 1− e1x1

y1
≈ 642772787002.

From this, we get the approximation

p− q ≈ D =
√
|S2 − 4N | ≈ 181799784560.

Using the approximations S and D, we get p ≈ S+D
2 ≈ 412286285781. Finally,

applying Coppersmith’s Theorem 2, we get

p = 412286285849, q =
N

p
= 230486501183.

We notice that, for i = 1, 2, 3, the integers di related to ei by the relations
eidi ≡ 1 (mod φ(N)) satisfy di > N0.98 which is far from Guo’s upper bound
N

1
3 as described in Subsection 2.2. This shows that Guo’s method would fail

here. On the other hand, for i = 1, 2, 3, the convergents of the rational numbers
ei

N are all different from the expected convergents yi

xi
. Moreover, for i = 1, 2, 3,

the conditions (1) are not satisfied by the convergents of ei

N . This shows that the
method of Blömer and May would also fail in this case.

6 Conclusion

In this paper, we have presented a new attack on RSA with the same modulus
N = pq and two or three exponents satisfying equations eixi − φ(N)yi = zi
with specific unknown parameters xi, yi, zi. Our attack is an extension of Guo’s
attack as well as an extension of the Blömer and May attack. The new attack
enables us to find p and q efficiently with two exponents and in polynomial time
with three exponents. This proves once again that, under some conditions, RSA
is insecure even when the private exponents are sufficiently large.
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