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Abstract. Let n = pq be an RSA modulus with unknown prime factors of equal bit-size.
Let e be the public exponent and d be the secret exponent satisfying ed ≡ 1 (mod φ(n))
where φ(n) is the Euler totient function. To reduce the decryption time or the signature
generation time, one might be tempted to use a small private exponent d. Unfortunately, in
1990, Wiener showed that private exponents smaller than 1

3
n1/4 are insecure and in 1999,

Boneh and Durfee improved the bound to n0.292. In this paper we show that instances
of RSA with even large private exponents can be efficiently broken if there exist positive
integers X, Y such that |eY −XF (u)| and Y are suitably small where F is a function of
publicly known expression for which there exists an integer u 6= 0 satisfying F (u) ≈ n and
pu or qu is computable from F (u) and n. We show that the number of such exponents is

at least O
(
n3/4−ε

)
when F (u) = p(q − u).

1 Introduction

Let n = pq be an RSA modulus, i.e the product of two large primes p, q of roughly the
same size. Let e and d be the public and secret exponents satisfying ed ≡ 1 (mod φ(n))
where φ(n) = (p − 1)(q − 1) is the Euler totient function related to n. The public key
and the private key consist of the tuples (n, e) and (p, q, d) respectively.

Since its publication in 1978, the RSA cryptosystem [8] has been analyzed for vul-
nerability by many researchers (see [2]). Since RSA is computationally expensive, one
might be tempted to use short secret exponents d in order to speed up the decryption
process. Unfortunately, in 1990, Wiener [11] showed that RSA is insecure if d ≤ 1

3n
1
4 .

In 2000, Boneh and Durfee [3] (heuristically) improved the bound to d ≤ n0.292. While
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2 RSA WITH CONSTRAINED EXPONENTS

Wiener’s attack uses continued fractions, the Boneh and Durfee attack is based on Cop-
persmith’s method for finding small roots of modular polynomial equations [4]. In 2002,
de Weger [10] improved these bounds for the RSA modulus n = pq with small prime
difference |p− q|. Recently, Blömer and May [1] extended both Wiener and de Weger at-
tacks for the RSA cryptosystems with secret exponents having the modular factorization
d ≡ −xy−1 (mod φ(n)) where x and y are suitably small. Moreover, they showed that
the number of such weak exponents is at least O

(
n3/4−ε

)
where ε is a positive constant.

All the known non-factoring attacks on RSA exploit the weakness of the public expo-
nent e relative to φ(n) focusing on the information encoded in e and φ(n). The starting
point is the equation

ed− kφ(n) = 1,

or, as considered in [1], the more general equation

ex + y = kφ(n),

where x, y, k are suitably small relatively prime integers.
In this paper, we present an attack on RSA by exploiting additional information that

may be encoded in the public exponent e relatively to special functions of the primes p
and q. Let F be a function satisfying the conditions

There exists an integer u 6= 0 such that F (u) ≈ n. (1)

There exists a transformation relating F (u) to a multiple of p or q. (2)

We now introduce the concept of F -constrained public exponents. Let us formalize this
notion.

Definition 1.1. Let n be an RSA modulus and F a function satisfying the condi-
tions (1), (2). A public exponent e is F -constrained if there exist an integer u and
two coprime positive integers X and Y such that both Y and |eY − F (u)X| are suitably
small.

The integers X, Y will be formally defined in Theorem 3.1. We list below typical
examples of functions satisfying the conditions (1), (2). Let u0 6= 0 be a fixed rational
and F a function defined by one of the following expressions

F1(u) = p(q − u), 1 ≤ |u| < q.

F ′1(u) = (p− u)q, 1 ≤ |u| < p.

F2(u) = n + u0 − pu, 1 ≤ |u| < q +
u0

p
.

F ′2(u) = n + u0 − qu, 1 ≤ |u| < p +
u0

q
.

F3(u) = (q − u)
(
p− u0

u

)
, 1 ≤ |u| < q.

F ′3(u) = (p− u)
(
q − u0

u

)
, 1 ≤ |u| < p.



RSA WITH CONSTRAINED EXPONENTS 3

Observe that when u0 = 1, we have F3(1) = (p − 1)(q − 1) = φ(n). This indicates that
our method is a natural extension of the attack of Blömer and May [1] which in turn is
an extension of Wiener’s attack [11]. In this paper, we mainly study the cryptanalysis
of RSA with F1-constrained exponents. More precisely, we show that if e satisfies the
equation

eY − F1(u)X = Z (3)

with unknown integers u, X, Y , Z such that

1 ≤ Y ≤ 1
2

(
qF1(u)
e|u|

) 1
2

and 1 ≤ |Z| ≤ 2n−
3
4 (n− p|u|) eY

F1(u)
,

then n can be factored in polynomial time. In a new way, we will show that the number
of F1-constrained exponents is at least O

(
n3/4−ε

)
.

Our new method works as follows. Assume that e is F (u)-constrained for some integer
u where F is a function satisfying (1), (2). We use the continued fraction algorithm to
find X and Y in (3) by replacing e

F (u) by e
n . For every convergent X

Y of the expansion, we

compute the approximation F (u) ≈ eY
X and by (2), an approximation P̃ of a multiple of

p or q. We then apply May’s extension (Theorem 10 of [7]) of Coppersmith’s method [4]
to find the factorization of n.

The RSA cryptosystem and digital signature schemes are based on the generation
of random primes p, q of roughly equal size and generation of random exponents e, d
such that ed ≡ 1 (mod φ(pq)). Indeed, RSA with private exponent d < n0.292, can be
efficiently broken with Wiener’s continued fraction attack [11] or Boneh and Durfee’s
lattice-based attack [3]. In this paper we show that there are some security risks if
the public exponent is chosen poorly even if the companion private exponent is large.
We recommend to avoid public exponents e satisfying eY − F (u)X = Z with suitably
small values X, Y , Z where F is a function of publicly known expression satisfying the
conditions (1), (2). Notice that it is easy for a crypto-designer to see that the public
exponent e is constrained by checking if eY − F (u)X = Z is solvable in suitably small
X, Y , Z for any function F in a fixed public list. On the other hand, our study shows
that such exponents are numerous (at least O

(
n3/4−ε

)
with F = F1).

The remainder of this paper is organized as follows. In Section 2 we review former
continued fraction attacks on RSA with short secret exponents. In Section 3, we discuss
the possibility of determining the first convergents of the continued fraction expansion of

e
F (u) using e

n if e is F (u)-constrained. In Section 4 we show how to factor the RSA mod-
ulus n when e is F1-constrained and give an estimation of the number of such exponents.
We will use techniques from the continued fraction expansion combined with Copper-
smith’s Theorem [4] and May’s extension [7]. In Section 5, we give a numerical example
to illustrate our attack. Exploiting the symmetry on the primes p and q in F1 and F ′1, the
vulnerability of an RSA cryptosystem with an F ′1-constrained public exponent e follows.

A key role in our attack is played by the following extension of the well-known theorem
of Coppersmith [4].
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Theorem 1.2. (May, Theorem 10 of [7]). Let n = pq be an RSA modulus with
q < p. Let u be an (unknown) integer that is not a multiple of q. Suppose we know an
approximation P̃ of pu with

|pu− P̃ | ≤ 2n
1
4 .

Then n can be factorized in time polynomial in log n.

2 Former continued fraction attacks on RSA with weak exponents

In this section, we present three former attacks on RSA based on the continued frac-
tions. All the attacks exploit the weakness of the public exponent e relative to φ(n).

2.1 The Wiener attack.
The public and private exponents are related by the equation ed−kφ(n) = 1 rewritten

as
e

φ(n)
− k

d
=

1
φ(n)d

.

Wiener exploits the fact that e
φ(n) ≈ e

n and n = pq for primes p, q of the same bit-size.

Combining the arithmetical properties of φ(n) with the assumption d < 1
3n

1
4 , this leads

to ∣∣∣∣
e

n
− k

d

∣∣∣∣ <
1

2d2
.

By Legendre’s theorem (see [6]), k
d is a convergent of the continued fraction expansion of

e
n .

2.2 The de Weger attack.
The continued fraction part of the de Weger attack [10] applies to an RSA modulus

with small difference between its primes. It exploits the approximation φ(n) ≈ n+1−2
√

n
and the weakness of e relative to φ(n) and works as follows. Using ed − kφ(n) = 1 and
assuming that φ(n) > 3

4n, n > 8d with

d <
n

3
4

p− q
,

de Weger showed that ∣∣∣∣
e

n + 1− 2
√

n
− k

d

∣∣∣∣ <
1

2d2
.

Hence k
d is a convergent of the continued fraction expansion of e

n+1−2
√

n
.

2.3 The Blömer-May attack.
The attack of Blömer and May [1] combines the continued fraction expansion of e

n
and Coppersmith’s lattice-based technique for finding small roots of univariate modular
polynomial equations [4]. The attack applies when the public exponent e is weak relative
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to φ(n) and is based on the existence of coprime integers x, y, k satisfying ex+y = kφ(n)
with

0 < x ≤ 1
3
n

1
4 and |y| ≤ cn−

3
4 ex,

where c ≤ 1. Combining with the properties of φ(n), they showed that

∣∣∣∣
e

n
− k

x

∣∣∣∣ <
1

2x2
.

Hence k
x is a convergent of the continued fraction expansion of e

n . Next, they applied
Coppersmith’s method [4] to find the factorization of the modulus n as follows. Using
ex + y = k(n + 1− p− q), we have

p + q = n + 1− ex

k
− y

k
.

Since k and x are known, then s = n+1− ex
k is an approximation of p+ q up to an error

term |y|
k ≤ 4

3cn
1
4 (see [1] for more details). Let t =

√
s2 − 4n. Then t is an approximation

of p− q up to an error term bounded by 9n
1
4 . This shows that s+t

2 is an approximation
of p that can be bounded by 6n

1
4 . Applying Coppersmith’s algorithm with s+t

2 gives the
factorization of n.

The extension of the continued fraction attacks by Verheul and van Tilborg [9] and
its modification by Dujella [5] applies to d ≤ n

1
4+ γ

2 provided exhaustive search on
O(γ log2(n)) bits. These extensions are also based on the weakness of e relative to φ(n).

3 The continued fraction expansion of
e

F (u)

Let F be a function satisfying (1), (2). Our goal in this section is to guess a part of the
continued fraction expansion of e

F (u) . Recall that F (u) is close to n for some unknown
u. Moreover, we suppose that 0 < F (u) < 2n so that there exists α with − 1

2 < α < 1
2

such that
|F (u)− n| = n

1
2+α. (4)

Theorem 3.1. Let F be a function satisfying (1), (2) and n = pq an RSA modulus with
p < q. Let u be an integer such that |F (u)− n| = n

1
2+α, with − 1

2 < α < 1
2 . Let X, Y , Z

be coprime integers satisfying eY − F (u)X = Z. If

Y <
1
2
n

1
4−α

2

(
F (u)

e

) 1
2

, (5)

and
|Z| ≤ nα− 1

2 eY, (6)
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then X
Y is a convergent among the continued fraction expansion of e

n .

Proof. Using eY − F (u)X = Z, we get
∣∣∣∣
e

n
− X

Y

∣∣∣∣ ≤
∣∣∣∣
e

n
− e

F (u)

∣∣∣∣ +
∣∣∣∣

e

F (u)
− X

Y

∣∣∣∣

=
e|F (u)− n|

nF (u)
+
|eY − F (u)X|

F (u)Y

=
enα− 1

2

F (u)
+

|Z|
F (u)Y

.

Since |Z| ≤ nα− 1
2 eY , then

∣∣∣∣
e

n
− X

Y

∣∣∣∣ ≤
enα− 1

2

F (u)
+

enα− 1
2

F (u)
=

2enα− 1
2

F (u)
.

By assumption, we have

Y <
1
2
n

1
4−α

2

(
F (u)

e

)1/2

,

Hence
2enα− 1

2

F (u)
<

1
2Y 2

.

which gives ∣∣∣∣
e

n
− X

Y

∣∣∣∣ <
1

2Y 2
.

By Legendre’s theorem (see [6]), X
Y is a convergent of the continued fraction expansion

of e
n .

¥

Theorem 3.1 relates the unknowns Y , Z in the equation (3). Let us find a lower bound
for the quantity X.

Corollary 3.2. With the hypothesis of Theorem 3.1, we have

X ≥
(
1− nα− 1

2

) eY

F (u)
. (7)

Proof. Since by assumption − 1
2 < α < 1

2 , then −1 < α − 1
2 < 0. Hence 1 − nα− 1

2 > 0.
Combining Z = eY − F (u)X and |Z| ≤ nα− 1

2 eY , we get

X =
eY − Z

F (u)
≥ eY − |Z|

F (u)
=

eY

F (u)

(
1− |Z|

eY

)
≥ eY

F (u)

(
1− nα− 1

2

)
,

which terminates the proof.
¥
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4. Vulnerability of RSA using F = F1

In this section, we will show that using an RSA modulus n = pq with q < p and an
F1-constrained public exponent e is insecure. Recall that F1(u) = p(q − u). We will also
give an estimation of the number of F1(u)-constrained exponents for a fixed u and derive
an estimation of the number of F1-constrained exponents.

4.1 Cryptanalysis of RSA with F1-constrained exponents.
Theorem 3.1 relates the unknowns Y , Z of the equation (3) and shows that the first

convergents of e
F1(u) are among the convergents of e

n . In the following theorem, we give
a condition relating X and Y and leading to the factorization of n.

Theorem 4.1. Let X, Y be coprime positive integers. If there exists an integer u with
1 ≤ |u| ≤ q − 1 such that |eY − F1(u)X| ≤ 2n

1
4 X, then n can be factored in polynomial

time.

Proof. Put Z = eY − F1(u)X. Using F1(u) = p(q − u), we get

pu = n− eY

X
+

Z

X
.

Let P̃ = n− eY
X . We have

∣∣∣P̃ − pu
∣∣∣ =

|Z|
X

≤ 2n
1
4 X

X
= 2n

1
4 .

Hence P̃ is an approximation of pu with an error term less than 2n
1
4 . We conclude the

proof by applying Theorem 1.2.
¥

Let us consider the α term as defined in (4). Since q <
√

n < p and F1(u) = p(q−u) =
n− pu with 1 ≤ |u| ≤ q − 1 we get |F1(u)− n| = p|u| = n

1
2+α with 0 < α < 1

2 .
We now state our result concerning the vulnerability of RSA using F = F1.

Theorem 4.2. Let n = pq be an RSA modulus with q < p and u an integer satisfying
1 ≤ |u| ≤ q − 1 and p|u| = n

1
2+α. Let X, Y be coprime positive integers. If X and Y

satisfy eY − F1(u)X = Z, with

Y <
1
2
n

1
4−α

2

(
F1(u)

e

) 1
2

, (8)

and

|Z| ≤
2n

1
4

(
1− nα− 1

2

)
eY

F1(u)
, (9)

then X
Y is a convergent of e

n and n can be factored in polynomial time.
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Proof. Let us first show that X
Y is a convergent of e

n . Observe that Y satisfies the
inequality (5) of Theorem 3.1 with F = F1. Let Z = eY − F1(u)X. Assume that Z

satisfies (9). Since F1(u) ≥ n− n
1
2+α, we get

|Z| ≤
2n

1
4

(
1− nα− 1

2

)
eY

F1(u)
≤

2n
1
4

(
1− nα− 1

2

)
eY

n− n
1
2+α

= 2n−
3
4 eY ≤ nα− 1

2 eY.

This shows that (6) is also satisfied. Hence, by Theorem 3.1, X
Y is a convergent of e

n . On
the other hand, combining (7) with F = F1 and (9), we get

|Z|
X

≤ |Z|F1(u)(
1− nα− 1

2

)
eY

≤ 2n
1
4 .

Hence, by Theorem 4.1, n can be factored in polynomial time.
¥

4.2 The number of F1(u)-constrained exponents.
Let u be a fixed integer satisfying 1 ≤ |u| ≤ q − 1. We indicate below how the crypto

designer could build public exponents which are F1(u)-constrained using only very short
values of X, Y . We begin by the following useful lemma. We use the usual notation bxc
for the integral part of x.

Lemma 4.3. Let n = pq be an RSA modulus with q < p and u an integer satisfying
1 ≤ |u| ≤ q − 1 and p|u| = n

1
2+α. Let X, Y be coprime integers with

1 ≤ X ≤ Y <
1
2
n

1
4−α

2 .

If e =
⌊
F1(u)X

Y

⌋
, then e > n

1
2−α.

Proof. Let Z = eY − F1(u)X. By the definition of e, we have

0 ≤ F1(u)
X

Y
− e < 1.

Combining with the inequalities 1 ≤ X < Y < 1
2n

1
4−α

2 , this gives us

e + 1 > F1(u)
X

Y
≥ (n− p|u|) 1

Y
> 2 (n− p|u|)n

α
2− 1

4 .

To show that e > n
1
2−α, it suffices to show that

2 (n− p|u|)n
α
2− 1

4 > n
1
2−α + 1. (10)
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Note that p|u| = n
1
2+α. Then nα = p|u|n− 1

2 and consequently

n
α
2− 1

4 = p
1
2 |u| 12 n−

1
4 n−

1
4 =

( |u|
q

) 1
2

.

Similarly,
n

1
2−α = n

1
2 p−1|u|−1n

1
2 =

q

|u| .

Hence (10) is equivalent with

2 (n− p|u|)
( |u|

q

) 1
2

>
q

|u| + 1.

Let

f(u) = 2 (n− p|u|)
( |u|

q

) 1
2

− q

|u| − 1,

with 1 ≤ |u| ≤ q − 1. An arithmetical study of the derivatives of f shows that for any
such u we have

f(u) ≥ min(f(1), f(q − 1)) = f(q − 1) = 2p

(
q − 1

q

) 1
2

− q

q − 1
− 1 > 0.

This confirms (10) and completes the proof.
¥

Corollary 4.4. Let n = pq be an RSA modulus with q < p and u an integer satisfying
1 ≤ |u| ≤ q − 1 and p|u| = n

1
2+α. Let X, Y be coprime integers with

1 ≤ X ≤ Y <
1
2
n

1
4−α

2 .

If e =
⌊
F1(u)X

Y

⌋
, then X

Y is a convergent of both e
F1(u) and e

n and e is F1(u)-constrained.

Proof. Let Z = eY − F1(u)X. Since 1 ≤ |u| ≤ q − 1, p >
√

n and 1 ≤ X ≤ Y < 1
2n

1
4−α

2 ,
then

F1(u) = n− pu ≥ n− p|u| ≥ n− p(q − 1) = p > n
1
2 > 2Y 2.

On the other hand, by the definition of e, we have

0 ≤ F1(u)
X

Y
− e < 1. (11)

Hence ∣∣∣∣
e

F1(u)
− X

Y

∣∣∣∣ <
1

F1(u)
<

1
2Y 2

.
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This shows that X
Y is a convergent of e

F1(u) . Let us show that X
Y is a convergent of e

n .
By (11) and Lemma 4.3 we have

|Z| = |eY − F1(u)X| < Y < nα− 1
2 eY,

and the inequality (6) of Theorem 3.1 is satisfied where F = F1. Moreover, by (11), we
have

F1(u)
e

≥ Y

X
≥ 1.

Combining with Y < 1
2n

1
4−α

2 , this gives

Y <
1
2
n

1
4−α

2

(
F1(u)

e

) 1
2

,

and (5) is also satisfied with F = F1. Hence, by Theorem 3.1, X
Y is a convergent of e

n .
Finally, using (11), we have

|Z|
X

=
|eY − F1(u)X|

X
<

Y

X
≤ Y <

1
2
n

1
4−α

2 < 2n
1
4 .

Thus, by Theorem 4.1, e is F1(u)-constrained which terminates the proof.
¥

Corollary 4.4 indicates that every couple (X, Y ) of coprime positive integers with
1 ≤ X < Y < 1

2n
1
4−α

2 and every integer u with 1 ≤ |u| ≤ q − 1 yield a candidate public
exponent e for which the RSA cryptosystem is insecure. We show below that different
couples produce different candidate public exponents.

Lemma 4.5. Let n = pq be an RSA modulus with q < p and u an integer satisfying
1 ≤ |u| ≤ q − 1 and p|u| = n

1
2+α with 0 < α < 1

2 . Let X, X ′, Y and Y ′ be positive
integers with gcd(X,Y ) = gcd(X ′, Y ′) = 1 and

1 ≤ X ≤ Y <
1
2
n

1
4−α

2 and 1 ≤ X ′ < Y ′ <
1
2
n

1
4−α

2 .

Let e =
⌊
F1(u)X

Y

⌋
and e′ =

⌊
F1(u)X′

Y ′

⌋
. If e = e′, then (X, Y ) = (X ′, Y ′).

Proof. Without loss of generality, suppose that X
Y ≥ X′

Y ′ . By definition, e satisfies (11).
Similarly, we have

0 ≤ F1(u)
X ′

Y ′ − e′ < 1. (12)

Combining (11) and (12), we get
(

X

Y
− X ′

Y ′

)
F1(u)− 1 < e− e′ <

(
X

Y
− X ′

Y ′

)
F1(u) + 1.
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From this, we derive

0 ≤
(

X

Y
− X ′

Y ′

)
F1(u) < e− e′ + 1.

By assumption e = e′. Then 0 ≤
(

X
Y − X′

Y ′

)
F1(u) < 1 or equivalently,

0 ≤ (XY ′ − Y X ′)F1(u) < Y Y ′.

Combining the inequalities 1 ≤ Y < 1
2n

1
4−α

2 , 1 ≤ Y ′ < 1
2n

1
4−α

2 and F1(u) ≥ n − p|u| ≥
n− p(q − 1) = p > n

1
2 , we get

0 ≤ (XY ′ −X ′Y ) <
Y Y ′

F1(u)
<

1
4n

1
2−α

n
1
2

< 1.

Hence XY ′ − X ′Y = 0 and since gcd(X, Y ) = gcd(X ′, Y ′) = 1, we get X = X ′ and
Y = Y ′.

¥

For a fixed integer u satisfying 1 ≤ |u| ≤ q − 1, we state below a lower bound for the
number of F1(u)-constrained public exponents.

Theorem 4.6. Let n = pq be an RSA modulus with q < p and u an integer satisfying
1 ≤ |u| ≤ q − 1 and p|u| = n

1
2+α. The number of F1(u)-constrained public exponents is

at least O
(
n

3
4−α−ε

)
.

Proof. Let ε be a positive constant and u a fixed integer with 1 ≤ |u| ≤ q−1. Let X and
Y be coprime positive integers satisfying 1 ≤ X ≤ Y < 1

2n
1
4−α

2−ε. Define e =
⌊
F1(u)X

Y

⌋
and Z = eY − F1(u)X. Using similar arguments as in the proof of Corollary 4.4, we get
|Z|
X < 2n

1
4−ε. If gcd(e, φ(n)) 6= 1, then e is not a valid public exponent. Let e′ = e + h

for some integer h with gcd(e + h, φ(n)) = 1 and

1 ≤ h ≤ n
1
4
X

Y
.

Let Z ′ = e′Y − F1(u)X. Since Z < 0, then

|Z ′|
X

=
|(e + h)Y − F1(u)X|

X
=
|Z + hY |

X
≤ max(|Z|, hY )

X
< n

1
4 .

Hence, by Theorem 4.1, e′ is F1(u)-constrained. This shows that every couple (X,Y )
satisfying gcd(X, Y ) = 1 builds approximately 1

2n
1
4 X

Y public exponents which are F1(u)-
constrained. Hence, the number of such exponents depends on the number of couples
(X,Y ) satisfying gcd(X, Y ) = 1 and 1 ≤ X ≤ Y < n

1
4−α

2−ε. For a fixed Y , there are
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φ(Y ) positive integers X such that gcd(X,Y ) = 1 and 1 ≤ X ≤ Y . Let m =
⌊

1
2n

1
4−α

2−ε
⌋
.

Using the well known estimation

φ(Y ) ≥ KY

log log(Y )
≥ KY

log log(n)
= Y n−ε′ ,

where K is a constant related to the Euler constant, the number of the F1(u)-constrained
exponents is at least

∑

1≤X≤Y≤m

1
2
n

1
4
X

Y
φ(Y ) ≥

m∑

X=1

1
2
n

1
4−ε′X = n

1
4−ε′ m(m + 1)

4
= O

(
n

3
4−α−2ε−ε′

)
.

Replacing 2ε + ε′ by ε, this terminates the proof.
¥

4.3 The number of F1-constrained exponents.
Theorem 4.6 gives an estimation of the number of F1(u)-constrained exponents for a

fixed u. It remains to give an estimation of the number of F1-constrained exponents.
Let u and u′ be a fixed integers with 1 ≤ |u|, |u′| ≤ q − 1. We show below that if e is
simultaneously constrained to F1(u) and F1(u′), then u = u′.

Lemma 4.7. Let n = pq be an RSA modulus with q < p and let u, u′ be integers
satisfying 1 ≤ |u|, |u′| ≤ q − 1 and p|u| = n

1
2+α, p|u′| = n

1
2+α′ . Let X, Y , X ′, Y ′ be

positive integers satisfying gcd(X,Y ) = gcd(X ′, Y ′) = 1, and

1 ≤ X ≤ Y <
1
2
n

1
4−α

2 and 1 ≤ X ′ < Y ′ <
1
2
n

1
4−α′

2 .

Let e =
⌊
F1(u)X

Y

⌋
and e′ =

⌊
F1(u′)X′

Y ′

⌋
. If e = e′ then u = u′ and (X, Y ) = (X ′, Y ′).

Proof. Assume that

e =
⌊
F1(u)

X

Y

⌋
= e′ =

⌊
F1(u′)

X ′

Y ′

⌋
.

From this, we get ∣∣∣∣F1(u)
X

Y
− F1(u′)

X ′

Y ′

∣∣∣∣ < 1.

Using F1(u) = n− pu, F1(u′) = n− pu′, this gives

|(q − u)XY ′ − (q − u′)X ′Y | < Y Y ′

p
.

Since by assumption 1 ≤ X ≤ Y < 1
2n

1
4−α

2 , 1 ≤ X ′ < Y ′ < 1
2n

1
4−α′

2 and p >
√

n, then

|(q − u)XY ′ − (q − u′)X ′Y | < Y Y ′

p
<

1
4
n

1
4−α

2 + 1
4−α′

2 − 1
2 =

1
4
n−

α+α′
2 < 1.
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Since (q − u)XY ′ − (q − u′)X ′Y is an integer, then (q − u)XY ′ − (q − u′)X ′Y = 0 and
consequently (q − u)XY ′ = (q − u′)X ′Y . Set g = gcd(q − u, q − u′). Then

q − u

g
XY ′ =

q − u′

g
X ′Y

Further, gcd((q − u)/g, (q − u′)/g) = gcd(X, Y ) = gcd(X ′, Y ′) = 1. From this, it follows
that

X =
q − u′

g
X ′, Y =

q − u

g
Y ′, X ′ =

q − u

g
X, Y ′ =

q − u′

g
Y.

Combining X and X ′, we get

X =
q − u′

g
X ′ =

q − u′

g

q − u

g
X

and q−u′

g
q−u

g = 1. Hence q−u′

g = q−u
g = 1 and u = u′. Finally, by Lemma 4.5, we obtain

(X,Y ) = (X ′, Y ′) which terminates the proof.
¥

We now give an estimation for the number of F1-constrained public exponents.

Theorem 4.8. Let n = pq be an RSA modulus with q < p < 2q. The number of
F1-constrained public exponents is at least O

(
n

3
4−ε

)
.

Proof. By Theorem 4.6, for every u with 1 ≤ |u| ≤ q − 1 and p|u| = n
1
2+α, the number

of the F1(u)-constrained exponents is at least O
(
n

3
4−α−ε

)
. Hence, the number of the

F1-constrained exponents is at least

N(F1) =
∑

0<α<1

n
3
4−α−ε.

Since q < p < 2q, then n < p2 < 2n and p < 2
1
2 n

1
2 . Combining this with nα = n−

1
2 p|u|,

we get
n−α = n

1
2 p−1|u|−1 > 2−

1
2 |u|−1.

It follows that

N(F1) = n
3
4−ε

∑
α

n−α > 2−
1
2 n

3
4−ε

q−1∑

|u|=1

|u|−1.

The sum
∑q−1
|u|=1 |u|−1 is related to the harmonic series

∑∞
u=1 u−1 which diverges. Triv-

ially, we have
q−1∑

|u|=1

|u|−1 > 2

and finally
N(F1) ≥ 2

1
2 n

3
4−ε,

which terminates the proof.
¥
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5. A numerical example using F = F1

Let n = pq be an RSA modulus with q < p. Let e be a public exponent. In this
section, we give an algorithm to factor the modulus n if e is F1(u)-constrained for some
unknown u where F1(u) = p(q − u).

The algorithm.

INPUT: a) The RSA modulus n = pq with unknown prime factors.
b) The public exponent e such that eY − F (u)X = Z for some unknown

integers
u, X, Y and Z satisfying (8) and (9).

1. Compute the continued fraction expansion of e
n .

2. For every convergent X
Y such that Y < 1

2n
1
4 :

i) Compute P̃ = n− eX
Y .

ii) Apply Coppersmith’s algorithm with P̃ and output a value N .
iii) Compute g = gcd(N, n). If g 6= n then stop.

OUTPUT: p = g, q = n
p , u = N

p .

Let us now consider the 48 digit example.

n = 941096252089784462564816358283310787682673275523,
e = 31562534055617334057122389124448605297040382267.

The first 24 partial quotients of the continued fraction expansion of e
n are

[0, 29, 1, 4, 2, 5, 1, 7 1, 12, 14, 2, 1, 1, 1, 1, 1, 1, 1, 5, 2, 3020, 1, 1, ...].

The 21th convergent is X
Y = 78754791

2348222057 . With P̃ = n − eY
X , Coppersmith’s algo-

rithm outputs N = −1684416133919688132169065675. This gives p = gcd(N,n) =
1321110693270343633073777, u = N

p = −1271, q = n
p = 712352308465649934350899,

and the factorization of n is achieved.
We are now able to analyze our attack and the Blömer-May attack. The attack

of Blömer and May gives the factorization of n if the prime factors p and q satisfy
|n + 1 − ex

k − p − q| < n
1
4 for some convergent k

x of e
n or e

n+1−2
√

n
. No such convergent

exists which explains why Blömer-May’s attack fails. Our attack succeeds since there
exist an integer u = −1271 and a convergent X

Y = 78754791
2348222057 of e

n such that (8) and (9)
are satisfied.

The secret exponent is d = 565214697101365558758015289139548803045295395763
and satisfies d ≈ n0.995··· > 1

3n
1
4 which explains why the original attack of Wiener [11]

fails. Similarly, we have d > n3/4

p−q , which explains why the continued fraction attack of
de Weger [10] also fails.
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6. Conclusion

Using methods based on continued fractions and May’s extension of Coppersmith’s
Theorem, we showed that an RSA cryptosystem with modulus n = pq and a public
exponent e is insecure if there exist an integer u such that n− pu ≈ n and a convergent
X
Y of e

n for which both |eY − (n−pu)X| and Y are relatively small. Moreover we showed

that there are at least O
(
n

3
4−ε

)
public exponents making the cryptosystem insecure.

We analysed the security of RSA using the function F1 where F1(u) = p(q − u). The
situation is similar with the symmetric function F ′1 where F ′1(u) = q(p−u). As mentioned
in the introduction, RSA could be insecure if the public exponent e is constrained with
other sort of functions satisfying similar conditions. Our results show that one should be
very cautious when using an RSA modulus with a constrained exponent.
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