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Laboratoire de Mathématiques Nicolas Oresme
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Abstract. In RSA, the public modulus N = pq is the product of two
primes of the same bit-size, the public exponent e and the private expo-
nent d satisfy ed ≡ 1 (mod (p−1)(q−1)). In many applications of RSA,
d is chosen to be small. This was cryptanalyzed by Wiener in 1990 who
showed that RSA is insecure if d < N0.25. As an alternative, Quisquater
and Couvreur proposed the CRT-RSA scheme in the decryption phase,
where dp = d (mod (p− 1)) and dq = d (mod (q− 1)) are chosen signifi-
cantly smaller than p and q. In 2006, Bleichenbacher and May presented
an attack on CRT-RSA when the CRT-exponents dp and dq are both
suitably small. In this paper, we show that RSA is insecure if the public

exponent e satisfies an equation ex+y ≡ 0 (mod p) with |x||y| < N
√

2−1
2

and ex+y 6≡ 0 (mod N). As an application of our new attack, we present
the cryptanalysis of CRT-RSA if one of the private exponents, dp say,

satisfies dp < N

√
2

4√
e

. This improves the result of Bleichenbacher and May
on CRT-RSA where both dp and dq are required to be suitably small.
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1 Introduction

In the RSA cryptosystem, the modulus N = pq is the product of two primes of
the same bit-size. The public and private exponents e and d are positive integers
satisfying ed ≡ 1 (mod (p− 1)(q − 1)). The encryption and decryption in RSA
require taking heavy exponential multiplications modulo a large integer N . To
reduce the encryption time, one may be tempted to use a small public exponent
e. Unfortunately, it has been proven to be insecure against some small public
exponent attacks [8]. Conversely, to reduce the decryption time, one may also
be tempted to use a short secret exponent d. However, it is well-known that
RSA is vulnerable with a small private exponent. In 1990, Wiener [17] showed
that RSA is insecure if d < N0.25, which was extended to d < N0.292 by Boneh
and Durfee [3]. Wiener [17] proposed to use the Chinese Remainder Theorem
(CRT) for decryption and Quisquater and Couvreur made this explicit in [14].
In CRT-RSA, the public exponent e and the private CRT-exponents dp and
dq satisfy edp ≡ 1 (mod (p − 1)) and edq ≡ 1 (mod (q − 1)). One can further
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reduce the decryption time by carefully choosing d so that both dp and dq are
small. Combining dp and dq, the CRT finds d such that d ≡ dp (mod (p − 1))
and d ≡ dq (mod (q − 1)). The best known attack on CRT-RSA runs in time
complexity O

(
min

{√
dp,
√
dp
})

which is exponential in the bit-size of dp or dq.
At Crypto’07, Jochemsz and May [11] proposed the first polynomial time attack
on CRT exponents that are smaller than N0.073 when p and q are balanced and
e is full size, that is e

N ≈ 1. In the special case when e is much smaller than N ,
Bleichenbacher and May [1] proposed an attack that is applicable if both dp and

dq are such that dp, dq < min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
.

In this paper, we present an attack on RSA and a second attack on CRT-
RSA. We consider RSA with a modulus N = pq where p, q are of the same
bit-size. We present an attack on RSA if one of the primes, p say, satisfies an
equation ex+ y ≡ 0 (mod p), where the unknown parameters x, y satisfy

|x||y| < N
√

2−1
2 and ex+ y 6≡ 0 (mod N).

Our attack is based on the method of Coppersmith [5] for finding small solutions
of modular equations. In particular, we make use of a result from Herrmann and
May [9] to solve linear equations modulo divisors. Moreover, we estimate a very
conservative lower bound on the number of exponents for which our method
works as N

√
2

2 −ε where ε > 0 is a small constant depending only on N . As an
application of this method, we present the cryptanalysis of CRT-RSA with a
private decryption exponent dp satisfying

dp <
N
√

2
4

√
e
.

We notice that for balanced p and q and small e, the attack of Bleichenbacher
and May [1] works when both dp and dq satisfy dp, dq < min

{
1
4

(
N
e

) 2
5 , 1

3N
1
4

}
while in our new attack, only dp (or dq) is required to be small.

The rest of this paper is organized as follows. In Section 2, we will state
preliminaries on RSA, CRT-RSA, and bivariate linear equations modulo divisors.
Section 3 will contain the description of the attack for exponents e satisfying
ex+ y ≡ 0 (mod p) with suitably small parameters x, y and give a lower bound
for the number of such exponents. In Section 4, we will present an application of
our attack to CRT-RSA with small CRT-exponent dp when p and q are balanced.
In Section 5, we provide some experimental results. Finally, we conclude the
paper in Section 6.

2 Preliminaries

2.1 The original RSA and CRT-RSA

We first review the original RSA [15] and CRT-RSA [14].
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The original RSA. The RSA cryptosystem depends on two large primes p and
q used to form the RSA modulus N = pq. Let e and d be two integers satisfying
ed ≡ 1 (mod φ(N)), where φ(N) = (p − 1)(q − 1) is the Euler totient function
of N . In general, e is called the public exponent, and d is the secret exponent.
To encrypt a plaintext message M , one computes the corresponding ciphertext
C ≡ Me (mod N). To decrypt the ciphertext C, the receiver computes simply
M ≡ Cd (mod N).

CRT-RSA. In CRT-RSA, the public exponent e and the private CRT-exponents
dp and dq satisfy edp ≡ 1 (mod (p− 1)) and edq ≡ 1 (mod (q − 1)). The CRT-
RSA decryption is as follows. Compute Mp ≡ Cdp (mod p), Mq ≡ Cdq (mod q)
and use the Chinese Remainder Theorem (CRT) to find M satisfying M ≡ Mp

(mod p) and M ≡Mq (mod q).

2.2 Bivariate linear equations modulo divisors.

In our attack we will use a theorem of Herrmann and May [9] to factor an RSA
modulus N = pq using a linear equation f(x, y) = ax + by + c ≡ 0 (mod p).
Their method is based on Coppersmith’s technique for finding small roots of
polynomial equations [5] and consists in using the LLL algorithm [12] to obtain
two polynomials h1(x, y) and h2(x, y) sharing the same solution (x0, y0), that is
h1(x0, y0) = h2(x0, y0) = 0. If h1 and h2 are algebraically independent, then the
resultant of h1 and h2 recovers the common root (x0, y0). This relies on a heuris-
tic assumption for multivariate polynomials as required by most applications of
Coppersmith’s algorithm [5].

Assumption 1 Let h1(x, y), h2(x, y) be the polynomials that are found by
Coppersmith’s method. The resultant computations for the polynomials h1(x, y),
h2(x, y) yield non-zero polynomials.

Theorem 1 (Herrmann-May [9]). Let ε > 0 and let N be a sufficiently large
composite integer of unknown factorization with a divisor p > Nβ. Furthermore,
let f(x, y) ∈ Z[x, y] be a linear polynomial in two variables. Then, one can find
all solutions (x0, y0) of the equation f(x, y) ≡ 0 (mod p) with |x0| < Nγ and
|y0| < Nδ if

γ + δ ≤ 3β − 2 + 2(1− β)
3
2 − ε.

The time complexity of the algorithm is polynomial in logN and 1
ε .

For completeness reasons, let us give a sketch of the proof. First we recall two
important results. The first gives a bound on the smallest vectors of an LLL-
reduced lattice basis [12].

Theorem 2 (LLL [12]). Let L be a lattice with dimension n and determinant
det(L). Let B = 〈b1, . . . , bn〉 be an LLL-reduced basis. Then

‖b1‖ ≤ ‖b2‖ ≤ 2
n
4 (det(L))

1
n−1 .
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The next result gives a link between the roots of a polynomial modulo some
integer and the roots of the polynomial over the integers. For a multivariate
polynomial f(x1, . . . , xk) =

∑
i1,...,ik

ai1,...,ikx
i1 · · ·xik , the norm is defined as

‖f(x1, . . . , xk)‖ =

 ∑
i1,...,ik

a2
i1,...,ik

 1
2

.

Theorem 3 (Howgrave-Graham [10]). Let f(x1, . . . , xk) ∈ ZZ[x1, . . . , xk]
be a polynomial with at most ω monomials. Suppose that f(x(0)

1 , . . . , x
(0)
k ) ≡ 0

(mod B) where |x(0)
0 | < X1, . . . , |x(0)

k | < Xk and ‖f(X1x1, . . . , Xkxk)‖ < B√
ω

.

Then f(x(0)
1 , . . . , x

(0)
k ) = 0 holds over the integers.

We assume that f(x, y) = x + by + c since otherwise we can multiply f
by a−1 (mod N). To find a solution (x0, y0) such that f(x0, y0) ≡ 0 (mod p),
the basic idea consists in finding two polynomials h1(x, y) and h2(x, y) such that
h1(x0, y0) = h1(x0, y0) = 0 holds over the integers. Then the resultant of h1(x, y)
and h2(x, y) will reveal the root (x0, y0). To do so, we generate a collection of
polynomials gk,i(x, y) as

gk,i(x, y) = yi · f(x, y)k ·Nmax{t−k,0}

for 0 ≤ k ≤ m, 0 ≤ i ≤ m− k and integer parameters t and m with t < m that
will be specified later. Observe that for all k and i, we have

gk,i(x0, y0) = yi0 · f(x0, y0)k ·Nmax{t−k,0} ≡ 0 (mod pt).

We define the following ordering for the polynomials gk,i. If k < l, then gk,i < gl,j .
If k = l and i < j, then gk,i < gk,j . On the other hand, each polynomial gk,i(x, y)
is ordered in the monomials xiyk. The ordering for the monomials xiyk is as
follows. If i < j, then xiyk < xjyl. If i = j and k < l, then xiyk < xiyl.
Let X and Y be positive integers. Gathering the coefficients of the polynomials
gk,i(Xx, Y y), we obtain a matrix as illustrated in Table 1.

Let L be the lattice of row vectors from the coefficients of the polynomials
gk,i(Xx, Y y) in the basis 〈xkyi〉0≤k≤m,0≤i≤m−k. The dimension of L is

n =
m∑
i=0

(m+ 1− i) =
(m+ 2)(m+ 1)

2
.
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1 · · · ym x · · · xym−1 . . . xt · · · xtym−t · · · xm

g0,0 N t

...
. . .

g0,m N tY m

g1,0 ∗ . . . ∗ N t−1X
... ∗ · · · ∗

. . .

g1,m−1 ∗ · · · ∗ ∗ . . . N t−1XY m−1

... ∗
... ∗ ∗

... ∗
. . .

gt,0 ∗ . . . ∗ ∗ . . . ∗ . . . Xt

...
...

...
...

. . .

gt,m−t ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . XtY m−t

... ∗
... ∗ ∗

... ∗
... ∗

... ∗
. . .

gm,0 ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . ∗ . . . Xm

Table 1. Herrmann-May’s matrix of the polynomials gk,i(Xx, Y y) in the basis
〈xrys〉0≤r≤m,0≤s≤m−r.

From the triangular matrix of the lattice, we can easily compute the determinant
det(L) = XsxY syNsN where

sx =
m∑
i=0

i(m+ 1− i) =
m(m+ 1)(m+ 2)

6
,

sy =
m∑
i=0

m−i∑
j=0

j =
m(m+ 1)(m+ 2)

6
,

sN =
t∑
i=0

(t− i)(m+ 1− i) =
t(t+ 1)(3m+ 4− t)

6
.

We want to find two polynomials with short coefficients that contain all small
roots over the integer. This can be achieved by applying the LLL algorithm [12]
to the lattice L. From Theorem 2, we get two polynomials h1(x, y) and h2(x, y)
satisfying

‖h1(Xx, Y y)‖ ≤ ‖h2(Xx, Y y)‖ ≤ 2
n
4 (det(L))

1
n−1 .

To ensure that (x0, y0) is a root of both h1(x, y) and h2(x, y) over the integers,
we apply Howgrave-Graham’s Theorem 3 for h1(Xx, Y y) and h2(Xx, Y y) with
B = pt and ω = n. A sufficient condition is that

2n/4(det(L))1/(n−1) ≤ pt√
n
. (1)
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Let X = Nγ , Y = Nδ and p > Nβ with β ≥ 1
2 . We have n = (m+2)(m+1)

2 and
det(L) = XsxY syNsN = Nsx(γ+δ)+sN . Then the condition (1) transforms to

2
(m+2)(m+1)

8 N
2(γ+δ)sx+2sN

m(m+3) ≤ Nβt√
(m+2)(m+1)

2

. (2)

Define ε1 > 0 such that
2−

(m+2)(m+1)
8√

(m+2)(m+1)
2

= N−ε1 .

Then, the condition (2) simplifies to

2(γ + δ)sx + 2sN
m(m+ 3)

≤ βt− ε1.

Neglecting the ε1 term and using sx = m(m+1)(m+2)
6 and sN = t(t+1)(3m+4−t)

6 ,
we get

m(m+ 1)(m+ 2)
3

(γ + δ) +
t(t+ 1)(3m+ 4− t)

3
< m(m+ 3)βt.

It is shown in [9] that setting t =
(
1−
√

1− β
)
m leads to the condition

γ + δ < 3β − 2 + 2(1− β)
3
2 − ε,

with a small constant ε > 0 and that the method’s complexity is polynomial in
log(N) and 1/ε.

3 A New Class of Weak Public Exponents in RSA

In this section, we analyze the security of the RSA cryptosystem where the public
exponent e satisfies an equation ex + y ≡ 0 (mod p) with parameters x and y

satisfying ex + y 6≡ 0 (mod N) |x| < Nγ and |y| < N δ with γ + δ ≤
√

2−1
2 . We

firstly show that such exponents lead to the factorization of the RSA modulus
and secondly that a very conservative estimate for the number of such weak
exponents is N

√
2

2 −ε where ε > 0 is arbitrarily small for suitably large N .

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying an equation ex+y ≡ 0 (mod p) with |x| < Nγ and |y| < Nδ.
If ex+ y 6≡ 0 (mod N) and

γ + δ ≤
√

2− 1
2

,

then, under Assumption 1, N can be factored in polynomial time.
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Proof. Let N = pq be an RSA modulus with q < p < 2q. Then N < p2 and√
N < p. Hence p = Nβ for some β > 1

2 . Let e be a public exponent satisfying
an equation ex + y ≡ 0 (mod p), which is linear in the two variables x and y.
Assume that |x| < Nγ and |y| < Nδ with γ and δ satisfying

γ + δ ≤
√

2− 1
2

.

Then applying Theorem 1 with any β > 1
2 , we find x and y in polynomial time.

Using x and y, we get ex + y = pz for some integer z. Moreover, assume that
ex+ y 6≡ 0 (mod N). Then gcd(z, q) = 1. Hence

gcd(ex+ y,N) = gcd(pz,N) = p.

This terminates the proof. ut

Next, we estimate the number of exponents for which our method works.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. The number of
exponents e < N satisfying ex+ y ≡ 0 (mod p) and ex+ y 6≡ 0 (mod N) where
gcd(x, y) = 1, |x| < Nγ and |y| < Nδ, with

γ + δ ≤
√

2− 1
2

,

is at least N
√

2
2 −ε where ε is a small positive constant.

Proof. Consider the set

K = {e : 2 ≤ e < N, e = αp+
(
−yx−1 (mod p)

)
,with gcd(x, y) = 1,

0 ≤ α < q, |x| < Nγ , |y| < N
√

2−1
2 −γ and ex+ y 6≡ 0 (mod N)}.

Here
(
−yx−1 (mod p)

)
represents the unique positive integer lying in the inter-

val (0, p − 1). Each exponent e ∈ K satisfies ex + y ≡ 0 (mod p) where x and
y fulfil the condition of Theorem 4. Moreover, ex + y 6≡ 0 (mod N). Hence, we
can apply Theorem 4 to find the parameters x and y related to each exponent
e ∈ K. This shows that every exponent e ∈ K is vulnerable to the attack.

Next, let e1 ∈ K and e2 ∈ K with

e1 = α1p+
(
−y1x−1

1 (mod p)
)
, e2 = α2p+

(
−y2x−1

2 (mod p)
)
.

Suppose e1 = e2. Then e1 ≡ e2 (mod p) and −y1x−1
1 ≡ −y2x−1

2 (mod p). Equiv-
alently, we get y1x−1

1 −y2x
−1
2 ≡ 0 (mod p).Multiplying by x1x2 modulo p, we get

y1x2−y2x1 ≡ 0 (mod p). On the other hand, for i = 1, 2, we have xi, yi ≤ N
√

2−1
2 .

Hence, since q < p < 2q and
√
N < p, we get

|y1x2 − y2x1| ≤ |y1x2|+ |y2x1| ≤ 2N2×
√

2−1
2 = 2N

√
2−1 < N

1
2 < p.
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This implies that y1x2 − y2x1 = 0 and since (x1, y1) = 1 and (x2, y2) = 1, then
x1 = x2 and y1 = y2. Hence e1 = e2 reduces to α1p = α2p and α1 = α2. This
shows that each exponent e ∈ K is defined by a unique tuple (α, x, y). Observe
that if e satisfies ex+ y ≡ 0 (mod p) and ex+ y ≡ 0 (mod q) with x < q, then
ex + y ≡ 0 (mod N) and e ≡ −yx−1 (mod N). To find an estimation of #K,
consider the set

K′ = {e : 2 ≤ e < N, e =
(
−yx−1 (mod N)

)
,

with gcd(x, y) = 1 , |x| < Nγ , |y| < N
√

2−1
2 −γ}.

On the other hand, observe that the conditions |x| < Nγ and |y| < N
√

2−1
2 −γ

imply that |x||y| < N
√

2−1
2 . Let

M =
⌊
N
√

2−1
2

⌋
.

The number #K of exponents e ∈ K is such that

#K ≥
q−1∑
α=0

M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1−#K′

≥ q
M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1−
M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1

≥ (q − 1)
M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1

≥ (q − 1)M.

Since q − 1 = N
1
2−ε1 and M = N

√
2−1
2 −ε2 for some ε1 > 0 and ε2 > 0, then

#K > N
1
2−ε1 ×N

√
2−1
2 −ε2 = N

√
2

2 −ε,

where ε > 0 is a small constant. This terminates the proof. ut

4 Application to CRT-RSA

In this section, we present a new attack on CRT-RSA. Let N = pq be an RSA
modulus. Let e be a public exponent corresponding to the private exponent d.
Since the attacks of Wiener [17] and Boneh and Durfee [3], we know that RSA
with a small private key d is vulnerable. As an alternative approach, Wiener
proposed to use the Chinese Remainder Theorem (CRT) for decryption. Then
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Quisquater and Couvreur proposed a decryption scheme in [14]. The scheme uses
two private exponents dp and dq related to d by

dp ≡ d (mod (p− 1)), dq ≡ d (mod (q − 1)).

Many attacks on CRT-RSA show that using small dp and dq is also dangerous.
The best known result from Jochemsz and May [11] asserts that CRT-RSA is
vulnerable if dp and dq are smaller than N0.073.

Notice that the private exponents dp and dq satisfy the equations

edp ≡ 1 (mod (p− 1)), edq ≡ 1 (mod (q − 1)).

Rewriting the equation edp ≡ 1 (mod (p− 1)) as edp = 1 + kp(p− 1) where kp
is a positive integer, we get edp = 1− kp + kpp, and edp + kp − 1 ≡ 0 (mod p).
It follows that (dp, kp − 1) is a solution of the equation ex + y ≡ 0 (mod p) in
the variables (x, y). Hence one can apply Theorem 4 which leads to the following
result.

Corollary 1. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying e < N

√
2

2 and edp = 1 + kp(p− 1) for some dp with

dp <
N
√

2
4

√
e
.

Then, under Assumption 1, N can be factored in polynomial time.

Proof. Starting with the equation edp = 1 + kp(p − 1) with e = Nα, dp = Nδ

and p > N
1
2 , we get

kp =
edp − 1
p− 1

<
edp
p− 1

< Nα+δ− 1
2 . (3)

On the other hand, we have edp ≡ 1− kp (mod p) with dp < Nδ and

|1− kp| = kp − 1 < kp < Nα+δ− 1
2 .

To apply Theorem 4 with the equation ex+ y ≡ 0 (mod p) where x = dp < Nδ

and y = kp − 1 < Nα+δ− 1
2 , the parameters α and δ must satisfy

δ + α+ δ − 1
2
≤
√

2− 1
2

.

This leads to δ < 1
2

(√
2

2 − α
)

and dp < Nδ < N

√
2

4√
e

. Observe that α+ 2δ <
√

2
2 .

Plugging in (3), we get

kp < Nα+δ− 1
2 < Nα+2δ− 1

2 < N
√

2
2 −

1
2 < q.

Hence, the parameters dp and kp are such that edp + kp − 1 = kpp with kp 6≡ 0
(mod q). Hence edp − 1 + kp 6≡ 0 (mod N) which implies that the method of
Theorem 4 will give the factorization of N in polynomial time. ut
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Notice that our attack on CRT-RSA works for exponents e < N
√

2
2 , that

is when e is much smaller than N . This corresponds to a variant of RSA-CRT
proposed by Galbraith, Heneghan and McKee [6] and to another variant pro-
posed by Sun, Hinek and Wu [16]. We want to point out that our new attack

improves Bleichenbacher and May’s bound [1] where dp < min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
and dq < min

{
1
4

(
N
e

) 2
5 , 1

3N
1
4

}
, that is when both dp and dq are suitably small.

In other terms, our attack extends Bleichenbacher and May’s attack in the sense

that only dp (or dq) is small with dp <
N

√
2

4√
e
. On the other hand, the existing

results on cryptanalysis of CRT-RSA will directly work on the CRT-RSA variant
called Dual CRT-RSA. Consequently, our result improves the latest bounds on
dual CRT-RSA obtained by Sarkar and Maitra [13].

Next, we consider an instance related to CRT-RSA when the public exponent
e satisfies an equation ex = y+ z(p−1) with suitably small parameters x, y and
z. We obtain the following result as a corollary of Theorem 4.

Corollary 2. Let N = pq be an RSA modulus with q < p < 2q. Suppose e is a
public exponent satisfying e < N and ex = y + z(p− 1) with

x|z − y| < N
√

2−1
2 and gcd(z, q) = 1.

Then, under Assumption 1, N can be factored in polynomial time.

Proof. Rewrite the equation ex = y + z(p− 1) as ex+ z − y = pz. Assume that
gcd(z, q) = 1, x < Nγ and |z − y| < N δ. Then, by Theorem 4, we can find the
factorization of N in polynomial time if γ + δ ≤

√
2−1
2 , that is

x|z − y| < N
√

2−1
2 ,

which terminates the proof. ut

5 Experimental Results

We have implemented the attack described in Section 4 using the algebra system
Maple on a Intel(R) Core(TM)2 DUO CPU T5870 @ 2.00GHZ 2.00GHZ, 3.00Go
RAM machine. Let us first present a detailed example.

5.1 A working example

We choose a 200-bit N which is a product of two 100-bit primes p and q satisfying
q < p < 2q. We also choose a 100-bit e.

N = 2746482122383906972393557363644983749146398460239422282612197,
e = 1908717316858446782674807627631.
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We suppose that e satisfies edp = 1 + kp(p− 1) with dp < N

√
2

4√
e
. We rewrite this

equation as x0 +ey0 ≡ 0 (mod p) where x0 = kp−1 and y0 = dp. Next, consider
the polynomial f(x, y) = x+ey. We apply the lattice-based method of Herrmann
and May with m = 5 and t = 2 as explained in Subsection 2.2. We find that the
polynomials h1(x, y) and h2(x, y) share the common factor 407851x− 396114y.
Solving over the integers, this leads to the solution (x0, y0) = (kp − 1, dp) =
(396114, 407851). Hence dp = 407851 ≈ N0.09 and kp = 396115 ≈ N0.09. Using
(kp, dp), one can find p, q as

p = gcd(edp + kp − 1, N) = 1965268334695819089811552114253,

q =
N

p
= 1397509985733832541423163654649.

In connection with CRT-RSA, we observe that the private parameter dq satis-
fying edq ≡ 1 (mod (q− 1)) is dq = 822446363998652526665788028903 ≈ N0.49.

This is greater than the bound min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
≈ N0.2 obtained by Ble-

ichenbacher and May in [1]. This shows that the technique of [1] will not work
here.

5.2 Massive experiments

We generated 1000 RSA moduli N = pq with 512-bit primes. For each modulus

N , we generated a 512-bit exponent e such that dp < N

√
2

4√
e
. The implementation

was in all cases successful and it needs approximately 8 secondes to find the
factors of the RSA modulus.

We also ran our experiments with random 1024-bit moduli N = pq and
various size of dp as follows. We randomly select two distinct 512-bit primes p and
q and a positive integer dp of prescribed size such that gcd(dp, (p−1)(q−1)) = 1.
The exponent e is then calculated as e ≡ d−1

p (mod (p − 1)). Observe that e is
of size approximately N

1
2 , so that the condition connecting e and dp becomes

dp <
N
√

2
4

√
e
≈ N

√
2−1
4 .

Hence, for a 1024-bit modulus N , the CRT-exponent dp is typically of size at
most 110.

In Table 2, we give the details of the computations using the method de-
scribed in Subsection 2.2 with the lattice parameters m = 4 and t = 2.

6 Conclusion

In this paper, we presented a new attack on the RSA cryptosystem when the
public key (N, e) satisfies an equation ex + y ≡ 0 (mod p) with the constraint
that |x||y| < N

√
2−1
2 . We showed that the number of such exponents with e < N
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Size of dp Size of e Size of dq LLL execution time

10 511 510 5.35 sec
20 511 508 6.49 sec
40 511 508 6.49 sec
80 510 511 11.45 sec
90 510 510 11.80 sec
95 512 507 11.51 sec
100 511 511 11.74 sec
105 511 511 12.18 sec
110 502 511 11.06 sec

Table 2. Experimental results for various size of dp.

is at least N
√

2
2 −ε. As an application of our new attack, we presented the crypt-

analysis of CRT-RSA if the private exponent dp satisfies dp < N

√
2

4√
e

when p and q
are of the same bit-size and e is much smaller than N . This improves the former
result of Bleichenbacher and May for CRT-RSA with small CRT-exponents and
balanced primes in the case that the public exponent e is significantly smaller
than N.
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