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Abstract. Let N = pq be an RSA modulus with a public exponent e
and a private exponent d. Wiener’s famous attack on RSA with d <
N0.25 and its extension by Boneh and Durfee to d < N0.292 show that
using a small d makes RSA completely insecure. However, for larger d,
it is known that RSA can be broken in polynomial time under special
conditions. For example, various partial key exposure attacks on RSA
and some attacks using additional information encoded in the public
exponent e are efficient to factor the RSA modulus. These attacks were
later improved and extended in various ways. In this paper, we present
a new attack on RSA with a public exponent e satisfying an equation
ed−k(N+1−ap−bq) = 1 where a

b
is an unknown approximation of q

p
. We

show that RSA is insecure when certain amount of the Least Significant
Bits (LSBs) of ap and bq are known. Further, we show that the existence
of good approximations a

b
of q

p
with small a and b substantially reduces

the requirement of LSBs of ap and bq.

Keywords: RSA, Cryptanalysis, Factorization, Lattice, LLL algorithm, Cop-
persmith’s method

1 Introduction

The RSA cryptosystem was invented by Rivest, Shamir and Adleman [16] in 1977
and is today’s most important public-key cryptosystem. The standard notations
in RSA are as follows:

• p and q are two large primes of the same bit size.
• N = pq is the RSA modulus and φ(N) = (p − 1)(q − 1) is Euler’s totient

function.
• e and d are respectively the public and the private exponents and satisfy
ed− kφ(N) = 1 for some positive integer k.

There have been a large number of attacks on RSA. Some attacks, called small
private key attacks can break RSA in polynomial time when the private key is
small. For example, Wiener [17] showed that if the private key satisfies d < 1

3N
1
4 ,

then N can be factored and Boneh and Durfee [4] showed that RSA is insecure if



d < N0.292. Some attacks, called partial key exposure attacks exploit the knowl-
edge of a portion of the private exponent or of one of the prime factors. Partial
key exposure attacks are mainly motivated by using side-channel attacks, such as
fault attacks, power analysis and timing attacks ([10], [11]). Using a side-channel,
an attacker can expose a part of one of the modulus prime factors p or q or of the
private key d. In 1998, Boneh, Durfee and Frankel [5] presented several partial
key exposure attacks on RSA with a public key e < N1/2 where the attacker re-
quires knowledge of most significant bits (MSBs) or least significant bits (LSBs)
of the private exponent d. In [2], Ernest et al. [7] proposed several partial key
exposure attacks that work for e > N1/2. Notice that Wiener’s attack[17] and
the attack of Boneh and Durfee[4] can be seen as partial key exposure attacks
because the most significant bits of the private exponent are known and are
equal to zero. Sometimes, it is possible to factor the RSA modulus even if the
private key is large and no bits are exposed. Such attacks exploit the knowledge
of special conditions verified by the modulus prime factors or by the exponents.
In 2004, Blömer and May [3] showed that RSA can be broken if the public expo-
nent e satisfies an equation ex = y+kφ(N) with x < 1

3N
1
4 and |y| < N−

3
4 ex. At

Africacrypt 2009, Nitaj [15] presented an attack when the exponent e satisfies
an equation eX − (N − (ap + bq))Y = Z with the constraints that a

b is an un-

known convergent of the continued fraction expansion of q
p , 1 ≤ Y ≤ X < 1

2
N

1
4√
a

,
gcd(X,Y ) = 1, and Z depends on the size of |ap− bq|. Nitaj’s attack combines
techniques from the theory of continued fractions, Coppersmith’s method [6]
for finding small roots of bivariate polynomial equations and the Elliptic Curve
Method [12] for integer factorization.

In this paper we revisit Nitaj’s attack by studying the generalized RSA equa-
tion ed− k(N + 1− ap− bq) = 1 with different constraints using Coppersmith’s
method [6] only. We consider the situation when an amount of LSBs of ap and bq
are exposed where a

b is an unknown approximation of q
p , that is when a =

[
bq
p

]
.

More precisely, assume that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 where m0, p0

and q0 are known to the attacker. We show that one can factor the RSA modulus
if the public key e satisfies an equation ed1 − k1(N + 1 − ap − bq) = 1 where
e = Nγ , d1 < Nδ, 2m0 = Nβ and a < b < Nα satisfy

δ ≤

{
δ1 if γ ≥ 1

2 (1 + 2α− 2β),
δ2 if γ < 1

2 (1 + 2α− 2β).

with

δ1 =
7
6

+
1
3

(α− β)− 1
3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1,

δ2 =
1
4

(3− 2(α− β)− 2γ).

We notice the following facts

• When a = b = 1, the equation becomes ed1 − k1(N + 1 − p − q) = 1 as in
standard RSA.



• When γ = 1 and α = β, the RSA instance is insecure if d < 7
6 −

√
7

3 ≈ 0.284.
This is a well known boundary in the cryptanalysis of RSA (see e.g. [4]).

• When γ = 1 and β = 0, that is no LSBs of ap nor of bq are known, the
RSA instance is insecure if δ < 7

6 + 1
3α−

1
3

√
α2 + 16α+ 7. This considerably

improve the bound δ < 1
4 (1− 2α) of [15].

• The ANSI X9.31 standard [1] requires that the prime factors p and q shall
not be near the ratio of two small integers. Our new attack shows that this
requirement is necessary and can be easily checked once one has generated
two primes simply by computing the convergents of the continued fraction
expansion of q

p .

The rest of the paper is organized as follows. In Section 2 we review some basic
results from lattice theory and their application to solve modular equations as
well as two useful lemmas. In Section 3 we describe the new attack on RSA.
In Section 4, we present various numerical experiments. Finally, we conclude in
Section 5.

2 Preliminaries

2.1 Lattices

Let ω and n be two positive integers with ω ≤ n. Let b1, · · · , bω ∈ Rn be ω
linearly independent vectors. A lattice L spanned by {b1, · · · , bω} is the set of
all integer linear combinations of b1, · · · , bω, that is

L =

{
ω∑
i=1

xibi | xi ∈ Z

}
.

The set 〈b1 . . . , bω〉 is called a lattice basis for L. The lattice dimension is
dim(L) = ω. We say that the lattice is full rank if ω = n. If the lattice is
full rank, then the determinant of L is equal to the absolute value of the de-
terminant of the matrix whose rows are the basis vectors b1, · · · , bω. In 1982,
Lenstra, Lenstra and Lovász [13] invented the so-called LLL algorithm to reduce
a basis and to find a short lattice vector in time polynomial in the bit-length of
the entries of the basis matrix and in the dimension of the lattice. The following
lemma, gives bounds on LLL-reduced basis vectors.

Theorem 1 (Lenstra, Lenstra, Lovász). Let L be a lattice of dimension ω.
In polynomial time, the LLL- algorithm outputs two reduced basis vectors v1 and
v2 that satisfy

‖v1‖ ≤ 2
ω
2 det(L)

1
ω , ‖v2‖ ≤ 2

ω
2 det(L)

1
ω−1 .

Using the LLL algorithm, Coppersmith [6] proposed a method to efficiently com-
pute small roots of bivariate polynomials over the integers or univariate modular
polynomials. Howgrave-Graham [8] gave a simple reformulation of Coppersmith’s



method in terms of the norm of the polynomial f(x, y) =
∑
aijx

iyj which is
defined by

‖f(x, y)‖ =
√∑

a2
ij .

Theorem 2 (Howgrave-Graham). Let f(x, y) ∈ Z[x, y] be a polynomial which
is a sum of at most ω monomials. Suppose that f(x0, y0) ≡ 0 (mod em) where
|x0| < X and |y0| < Y and ‖f(xX, yY )‖ < em

√
ω
. Then f(x0, y0) = 0 holds over

the integers.

2.2 Useful Lemmas

Let N = pq be an RSA modulus. The following lemma is useful to find a value
of ap− bq using a known value of ap+ bq.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q and S be a positive
integer. Suppose that ap + bq = S where a

b is an unknown approximation of q
p .

Then

ab =
⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4

⌊
S2

4N

⌋
N.

Proof. Observe that multiplying q < p < 2q by p gives N < p2 < 2N and
consequently

√
N < p <

√
2
√
N . Suppose that a

b is an approximation of q
p , that

is a =
[
bq
p

]
. Hence

∣∣∣a− bq
p

∣∣∣ ≤ 1
2 , which gives

|ap− bq| ≤ p

2
≤
√

2
√
N

2
< 2
√
N.

Next, suppose that ap+ bq = S. We have S2 = (ap+ bq)2 = (ap− bq)2 + 4abN.
Since |ap − bq| < 2

√
N , then the quotient and the remainder in the Euclidean

division of S2 by 4N are respectively ab and (ap− bq)2. Hence

ab =
⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4abN,

which terminates the proof. ut

The following lemma shows how to factor N = pq using a known value of ap+bq.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q and S be a positive
integer. Suppose that ap + bq = S where a

b is an unknown approximation of q
p .

Then N can be factored.



Proof. Suppose that a
b is an approximation of q

p and that ap + bq = S. By

Lemma 1, we get ab =
⌊
S2

4N

⌋
and |ap− bq| = D where

D =
√
S2 − 4abN.

Hence ap− bq = ±D. Combining with ap+ bq = S, we get 2ap = S ±D. Since
a < q, then gcd(N,S ± D) = gcd(N, 2ap) = p. This gives the factorization of
N . ut

3 The New Attack

Let e, d1, k1 be positive integers such that ed1−k1(N + 1−ap− bq) = 1. In this
section, we consider the following parameters.

• 2m0 = Nβ where m0 is a known integer.
• a < b < Nα with α < 1

2 where a
b is an unknown approximation of q

p .
• ap = 2m0p1 + p0 where p0 is a known integer.
• bq = 2m0q1 + q0 where q0 is a known integer.
• e = Nγ .
• d1 = Nδ.

The aim in this section is to prove the following result.

Theorem 3. Suppose that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 where m0,
p0 and q0 are known with 2m0 = Nβ and a

b is an unknown approximation of q
p

satisfying a, b < Nα. Let e = Nγ , d1 = Nδ and k1 be positive integers satisfying
an equation ed1−k1(N +1−ap− bq) = 1. Then one can factor N in polynomial
time when

δ ≤

{
δ1 if γ ≥ 1

2 (1 + 2α− 2β),
δ2 if γ ≤ 1

2 (1 + 2α− 2β),

where

δ1 =
7
6

+
1
3

(α− β)− 1
3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1,

δ2 =
1
4

(3− 2(α− β)− 2γ).

Proof. Suppose that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 with known m0, p0

and q0. Then ap + bq = 2m0(p1 + q1) + p0 + q0. Starting with the variant RSA
equation ed1 − k1(N + 1− ap− bq) = 1, we get

ed1 − k1 (N + 1− p0 − q0 − 2m0(p1 + q1)) = 1.

Reducing modulo e, we get

−2m0k1(p1 + q1) + (N + 1− p0 − q0)k1 + 1 ≡ 0 (mod e).



Observe that gcd(2m0 , e) = 1. Then multiplying by −2−m0 (mod e), we get

k1(p1 + q1) + a1k1 + a2 ≡ 0 (mod e),

where

a1 ≡ −(N + 1− p0 − q0)2−m0 (mod e),
a2 ≡ −2−m0 (mod e).

Consider the polynomial

f(x, y) = xy + a1x+ a2.

Then (x, y) = (k1, p1+q1) is a modular root of the equation f(x, y) ≡ 0 (mod e).
Assuming that α� 1

2 , we get

k1 =
ed1 − 1

N + 1− ap− bq
∼ Nγ+δ−1.

On the other hand, we have

p1 + q1 <
ap+ bq

2m0
< N

1
2+α−β .

Define the bounds X and Y as

X = Nγ+δ−1, Y = N
1
2+α−β .

To find the small modular roots of the equation f(x, y) ≡ 0 (mod e), we apply
the extended strategy of Jochemsz and May [9]. Let m and t be positive integers
to be specified later. For 0 ≤ k ≤ m, define the set

Mk =
⋃

0≤j≤t

{xi1yi2+j
∣∣∣ xi1yi2 monomial of fm(x, y)

and
xi1yi2

(xy)k
monomial of fm−k}.

Observe that fm(x, y) satisfies

fm(x, y) =
m∑
i1=0

(
m

i1

)
xi1(y + a1)i1am−i12

=
m∑
i1=0

(
m

i1

)
xi1

(
i1∑
i2=0

(
i1
i2

)
yi2ai1−i21 am−i12

)

=
m∑
i1=0

i1∑
i2=0

(
m

i1

)(
i1
i2

)
xi1yi2ai1−i21 am−i12 .



Hence, xi1yi2 is a monomial of fm(x, y) if

i1 = 0, . . . ,m, i2 = 0, . . . , i1.

Consequently, for 0 ≤ k ≤ m, when xi1yi2 is a monomial of fm(x, y), then xi1yi2

(xy)k

is a monomial of fm−k(x, y) if

i1 = k, . . . ,m, i2 = k, . . . , i1.

Hence, for 0 ≤ k ≤ m, we obtain

xi1yi2 ∈Mk if i1 = k, . . . ,m, i2 = k, . . . , i1 + t.

Similarly,

xi1yi2 ∈Mk+1 if i1 = k + 1, . . . ,m, i2 = k + 1, . . . , i1 + t.

For 0 ≤ k ≤ m, define the polynomials

gk,i1,i2(x, y) =
xi1yi2

(xy)k
f(x, y)kem−k with xi1yi2 ∈Mk

∖
Mk+1.

For 0 ≤ k ≤ m, these polynomials reduce to the following setsk =0, . . . ,m,
i1=k, . . . ,m,
i2=k,

or

k =0, . . . ,m,
i1=k,
i2=k + 1, . . . , i1 + t.

This gives rise to the polynomials

Gk,i1(x, y) = xi1−kf(x, y)kem−k, for k = 0, . . .m, i1 = k, . . .m,

Hk,i2(x, y) = yi2−kf(x, y)kem−k, for k = 0, . . .m, i2 = k + 1, . . . , k + t.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1(xX, yY ) and Hk,i2(xX, yY ). The ordering of two monomials xi1yi2 , xi

′
1yi
′
2

is as in the following rule: if i1 < i′1, then xi1yi2 < xi
′
1yi2 and if i1 = i′1 and

i2 < i′2, then xi1yi2 < xi
′
1yi
′
2 . Notice that the matrix is left triangular. For

m = 3 and t = 1, the coefficient matrix for L is presented in Table 1. The
non-zero elements are marked with an ‘~’.
From the triangular form of the matrix, the ~ marked values do not contribute
in the calculation of the determinant. Hence, the determinant of L is

det(L) = eneXnXY nY . (1)

From the construction of the polynomials Gk,i1(x, y) and Hk,i2(x, y), we get

ne =
m∑
k=0

m∑
i1=k

(m− k) +
m∑
k=0

k+t∑
i2=k+1

(m− k) =
1
6
m(m+ 1)(2m+ 3t+ 4).



1 x x2 x3 y xy x2y x3y xy2 x2y2 x3y2 x2y3 x3y3 x3y4

G0,0 e3 0 0 0 0 0 0 0 0 0 0 0 0 0

G0,1 0 Xe3 0 0 0 0 0 0 0 0 0 0 0 0

G0,2 0 0 X2e3 0 0 0 0 0 0 0 0 0 0 0

G0,3 0 0 0 X3e3 0 0 0 0 0 0 0 0 0 0

H0,1 0 0 0 0 Y e3 0 0 0 0 0 0 0 0 0

G1,1 ~ ~ 0 0 0 XY e2 0 0 0 0 0 0 0 0

G1,2 0 ~ ~ 0 0 0 X2Y e2 0 0 0 0 0 0 0

G1,3 0 0 ~ ~ 0 0 0 X3Y e2 0 0 0 0 0 0

H1,2 0 0 0 0 ~ ~ 0 0 XY 2e2 0 0 0 0 0

G2,2 ~ ~ ~ 0 0 ~ ~ 0 0 X2Y 2 0 0 0 0

G2,3 0 ~ ~ ~ 0 0 ~ ~ 0 0 X3Y 2e 0 0 0

H2,3 0 0 0 0 ~ ~ ~ 0 ~ ~ 0 X2Y 3e 0 0

G3,3 ~ ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ 0 X3Y 3 0

H3,4 0 0 0 0 ~ ~ ~ 0 ~ ~ ~ ~ ~ X3Y 4

Table 1. The coefficient matrix for the case m = 3, t = 1.

Similarly, we have

nX =
m∑
k=0

m∑
i1=k

i1 +
m∑
k=0

k+t∑
i2=k+1

k =
1
6
m(m+ 1)(2m+ 3t+ 4),

and

nY =
m∑
k=0

m∑
i1=k

k +
m∑
k=0

k+t∑
i2=k+1

i2 =
1
6

(m+ 1)(m2 + 3mt+ 3t2 + 2m+ 3t).

Finally, we can calculate the dimension of L as

ω =
m∑
k=0

m∑
i1=k

1 +
m∑
k=0

k+t∑
i2=k+1

1 =
1
2

(m+ 1)(m+ 2t+ 2).

For the following asymptotic analysis we let t = τm. For sufficiently large m,
the exponents ne, nX , nY and the dimension ω reduce to

ne =
1
6

(3τ + 2)m3 + o(m3),

nX =
1
6

(3τ + 2)m3 + o(m3),

nY =
1
6

(3τ2 + 3τ + 1)m3 + o(m3),

ω =
1
2

(2τ + 1)m2 + o(m2).

To apply Theorem 2 to the shortest vector in the LLL-reduced basis of L, we
have to set

2
ω
2 det(L)

1
ω−1 <

em√
ω
.



This transforms to

det(L) <
1(

2
ω
2
√
ω
)ω em(ω−1) < emω.

Using (1), we get
eneXnXY nY < emω.

Plugging ne, nX , nY , ω as well as the values e = Nγ , X = Nγ+δ−1, and
Y = N

1
2+α−β , we get

1
6

(3τ + 2)m3γ +
1
6

(3τ + 2)m3 (γ + δ − 1) +
1
6

(3τ2 + 3τ + 1)m3(
1
2

+ α− β)

<
1
2

(2τ + 1)m3γ,

which transforms to

3(2α− 2β + 1)τ2 + 3(2α+ 2δ − 2β − 1)τ + (2γ + 2α+ 4δ − 2β − 3) < 0. (2)

Next, we consider the cases τ 6= 0 and τ = 0 separately. First, we consider the
case τ > 0. The optimal value for τ in the left side of (2) is

τ =
1 + 2β − 2α− 2δ
2(1 + 2α− 2β)

. (3)

Observe that for α < 1
2 and β < 1

2 , we have 1 + 2α − 2β > 0. To ensure τ > 0,
δ should satisfy δ < δ0 where

δ0 =
1
2

(1− 2(α− β)) . (4)

Replacing τ by the optimal value (3) in the inequation (2), we get

−12δ2 + 4(7 + 2α− 2β)δ + 4(α− β)2 + 4(4γ − 1)(α− β) + 8γ − 15 < 0,

which will be true if δ < δ1 where

δ1 =
1
3

(α− β) +
7
6
− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1. (5)

Since δ has to satisfy both δ < δ0 and δ < δ1 according to (4) and (5), let us
find the minimum min(δ0, δ1). A straightforward calculation shows that

min(δ0, δ1) =

{
δ0 if γ ≤ 1

2 (1 + 2α− 2β),
δ1 if γ ≥ 1

2 (1 + 2α− 2β).

Now, consider the case τ = 0, that is t = 0. Then the inequation (2) becomes

2γ + 2α+ 4δ − 2β − 3 < 0,



which leads to δ < δ2 where

δ2 =
1
4

(2β + 3− 2γ − 2α). (6)

To obtain an optimal value for δ, we compare δ2 as in (6) to min(δ0, δ1), obtained
respectively with τ > 0 and τ = 0. First suppose that γ ≤ 1

2 (1 + 2α− 2β). Then

min(δ0, δ1)− δ2 = δ0 − δ2 =
1
2

(
g − 1

2
(1 + 2α− 2β)

)
≤ 0.

Hence min(δ0, δ1) ≤ δ2. Next suppose that γ ≥ 1
2 (1 + 2(α− β)). Then

min(δ0, δ1)− δ2 = δ1 − δ2

=
5
6

(α− β) +
1
2
γ +

5
12

−1
3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1.

On the other hand, we have(
5
6

(α− β) +
1
2
γ +

5
12

)2

−
(

1
3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1

)2

=
1
16

(1 + 2(α− β)− 2γ)2,

which implies that min(δ0, δ1) ≥ δ2.
Summarizing, the attack will succeed to find k1, p1 + q1 and d1 = Nδ when
δ < δ′ with

δ′ =

{
δ1 if γ ≥ 1

2 (1 + 2α− 2β),
δ2 if γ ≤ 1

2 (1 + 2α− 2β),

where δ1 and δ2 are given by (5) and (6).
Next, using the known value of p1 + q1, we can precisely calculate the value
ap + bq = 2m0(p1 + q1) + p0 + q0 = S. Then using Lemma 1 and Lemma 2, we
can find p and q. Since every step in the method can be done in polynomial time,
then N can be factored in polynomial time. This terminates the proof. ut

For example, consider the standard instance with the following parameters

• 2m0 = Nβ with β = 0.
• a ≤ b ≤ Nα with α = 0, that is ap+ bq = p+ q.
• ap = 2m0p1 + p0 = p1, that is p0 = 0.
• bq = 2m0q1 + q0 = q1, that is q0 = 0.
• e = Nγ with γ = 1.
• d1 = Nδ.



Then γ ≥ 1
2 (1 + 2α − 2β) > 1

2 and the instance is insecure if δ < δ1, that is
if δ < 7

6 −
√

7
3 ≈ 0.284 which is the same boundary as in various cryptanalytic

approaches to RSA (see e.g. [4]).
Now suppose that γ = 1 and that a, b are small. Then α ≈ 0 and the bound-
ary (5) becomes

δ1 <
7
6
− 1

3
β − 1

3

√
4β2 − 16β + 7,

where the right side increases from 0.284 to 1 when β ∈
[
0, 1

2

[
. This implies that

the existence of good approximation a
b of qp substantially reduces the requirement

of LSBs of ap and bq for the new attack. This confirms the recommendation of
the X9.31-1997 standard for public key cryptography [1] regarding the generation
of primes, namely that q

p shall not be near the ratio of two small integers.

4 Experimental Results

We have implemented the new attack for various parameters. The machine was
with Windows 7 and Intel(R) Core(TM)2 Duo CPU, 2GHz and the algebra
system was Maple 12 [14]. For each set of parameters, we solved the modular
equation f(x, y) ≡ 0 (mod e) using the method described in Section 3. We
obtained two polynomials f1(x, y) and f2(x, y) with the expected root (k1, p1 +
q1). We then solved the equation obtained using the resultant of f1(x, y) and
f2(x, y) in one of the variables. For every instance, we could recover k1 and
p1 + q1 and hence factor N . The experimental results are shown in Table 2

N γ β α δ lattice parameters LLL-time (sec)

2048 0.999 0.219 0.008 0.340 m = 2, t = 1, dim=9 54

2048 0.999 0.230 0.018 0.340 m = 3, t = 2, dim=18 2818

2048 0.999 0.172 0.114 0.273 m = 2, t = 1, dim=9 22

2048 0.999 0.150 0.096 0.272 m = 2, t = 1, dim=9 20

2048 0.999 0.091 0.019 0.280 m = 2, t = 1, dim=9 16

1024 0.999 0.326 0.123 0.368 m = 3, t = 2, dim=18 429

1024 0.999 0.326 0.123 0.339 m = 2, t = 1, dim=9 7

1024 0.998 0.229 0.050 0.326 m = 2, t = 1, dim=9 7

1024 0.995 0.102 0.008 0.297 m = 2, t = 1, dim=9 4

1024 0.999 0.131 0.123 0.239 m = 2, t = 1, dim=9 4

Table 2. Experimental results.

In the rest of this section, we present a detailed numerical example. Consider
an instance of a 200-bit RSA public key with the following parameters.

• N = 2463200821438139415679553190953343235761287240746891883363309.



• e = 266625289801406462041749617541089513158406651283204161816153.
Hence e = Nγ with γ = 0.984.

• m0 = 35. Hence 2m0 = Nβ with β = 0.174.
• a < b < N0.080. Hence α = 0.080.
• m = 4, t = 2.

Now suppose we know p0 = 28297245379 and q0 = 28341074839 such that
ap = 2m0p1 + p0 and bq = 2m0q1 + q0. The modular equation to solve is then
f(x, y) = xy + a1x+ a2 ≡ 0 (mod e), where

a1 = 39647847095344866596181159701545336706740936762997081713297,
a2 = 230870662106105785001116936880561535466903107693317985538102.

Working with m = 4 and t = 2, we get a lattice with dimension ω = 25. Using
the parameters γ = 0.984, α = 0.080, and β = 0.174, the method will succeed
with the bounds X and Y satisfying

p1 + q1 < X = Nγ+δ−1 ≈ 252,

k1 < Y = N
1
2+α−β ≈ 281,

if δ < 0.356. Applying the LLL algorithm, we find two polynomials f1(x, y) and
f2(x, y) sharing the same integer solution. Then solving the resultant equation
in y, we get x = 4535179907267444 and solving the resultant equation in x, we
get y = 3609045068101717298446784. Hence

p1 + q1 = 4535179907267444,
k1 = 3609045068101717298446784.

Next, define

S = 2m0(p1 + q1) + p0 + q0 = 124005844298295748786131327649328730.

Then S is a candidate for ap+ bq, and using Lemma 1, we get

ab =
⌊
S2

4N

⌋
= 1560718201,

|ap− bq| = D =
√
S2 − 4abN = 1089287630585421413834056059092.

Using S for ap+ bq and D for |ap− bq|, we get 2ap = S −D, and finally

p = gcd (N,S −D) = 2973592513804257910045501261169.

Hence q = N
p = 828358562917839001533347328061. This terminates the factor-

ization of the modulus N . Using the equation ed1 = k1(N + 1 − ap − bq) + 1,
we get d1 = 41897971798817657 ≈ N0.275. We notice that, with the standard
RSA equation ed− kφ(N) = 1, we have d ≡ e−1 (mod φ(N)) ≈ N0.994 which is
out of reach of the attack of Boneh and Durfee as well as the attack of Blömer
and May. Also, using 2ap = S −D, we get a = S−D

2p = 20851. Similarly, using
2bq = S + D, we get b = S+D

2q = 74851. We notice that gcd(a, b) = 1 and a
b

is not among the convergents of q
p . This shows that Nitaj’s attack as presented

in [15] can not succeed to factor the RSA modulus in this example.



5 Conclusion

In this paper, we propose a new polynomial time attack on RSA with a public
exponent satisfying an equation ed1 − k1(N + 1 − ap − bq) = 1 where a

b is an
unknown approximation of q

p and where certain amount of the Least Significant
Bits of ap and aq are known to the attacker. The attack is based on the method
of Coppersmith for solving modular polynomial equations. This attack can be
seen as an extension of the well known partial key attack on RSA when a = b = 1
and certain amount of the Least Significant Bits of one of the modulus prime
factors is known.
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