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Abstract. Let N1 = p1q1 and N2 = p2q2 be two RSA moduli, not nec-
essarily of the same bit-size. In 2009, May and Ritzenhofen proposed a
method to factor N1 and N2 given the implicit information that p1 and
p2 share an amount of least significant bits. In this paper, we propose
a generalization of their attack as follows: suppose that some unknown
multiples a1p1 and a2p2 of the prime factors p1 and p2 share an amount
of their Most Significant Bits (MSBs) or an amount of their Least Sig-
nificant Bits (LSBs). Using a method based on the continued fraction
algorithm, we propose a method that leads to the factorization of N1
and N2. Using simultaneous diophantine approximations and lattice re-
duction, we extend the method to factor k ≥ 3 RSA moduli Ni = piqi,
i = 1, . . . , k given the implicit information that there exist unknown mul-
tiples a1p1, . . . , akpk sharing an amount of their MSBs or their LSBs.
Also, this paper extends many previous works where similar results were
obtained when the pi’s share their MSBs or their LSBs.

1 Introduction

Research in determining pre-requisites for strong primes for the integer factor-
ization problem (IFP) of a product of two primes N = pq has been intriguing
and have captured the attention of researchers since IFP came into prominence
via the RSA algorithm. The simplicity of the problem statement raised interest
on whether such a simple problem statement describing the IFP could only be
solved in exponential time for all cases, i.e. all types of primes. As can be found
in the literature, this is not the case. So-called weak primes were identified by
researchers and this caused an avalanche of research output on this matter. In
this paper, we focus on IFP when N = pq is unbalanced, that is when q is much
smaller than p.

In PKC 2009, May and Ritzenhofen [5] presented a method for factoring large
integers with some implicit hints. More precisely, let N1 = p1q1 and N2 = p2q2
be two RSA moduli of the same bit-size such that q1 and q2 are α-bit primes
and p1 and p2 share at least t least significant bits (LSBs). The method of May
and Ritzenhofen is a lattice based method that allows to find the factorization
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of N1 and N2 when t ≥ 2α + 3. May and Ritzenhofen’s method heuristically
generalizes to a lattice based method to simultaneously factor k RSA moduli
N1 = p1q1, . . . , Nk = pkqk when the pi’s share t ≥ k

k−1α many LSBs.
In [8], Sarkar and Maitra reconsidered the method of May and Ritzenhofen

for two RSA moduli. Sarkar and Maitra’s method works when N1 = p1q1 and
N2 = p2q2 are such that p1 and p2 share their LSBs or most significant bits
(MSBs) as well as a contiguous portion of bits at the middle.

In PKC 2010, Faugère, Marinier and Renault [1] presented a new and rigorous
lattice-based method that addresses the implicit factoring problem when p1 and
p2 share tMSBs. Moreover, when N1 = p1q1 and N2 = p2q2 are two RSA moduli
of the same bit-size and the prime factors qi are α-bit primes, the method of
Faugère et al. provably factors N1 and N2 as soon as p1 and p2 share t ≥ 2α+ 3
MSBs. The method heuristically generalizes to the case when p1 and p2 share an
amount of bits in the middle. It also heuristically generalizes to k RSA moduli
N1 = p1q1, . . . , Nk = pkqk when the pi’s share t ≥ k

k−1α+ 6 of MSBs.
In IWSEC 2013, Kurosawa and Ueda [3] presented a lattice-based method

to factor two RSA moduli N1 = p1q1 and N2 = p2q2 of the same bit size when
p1 and p2 share t LSBs with t ≥ 2α + 1 where q1 ≈ q2 ≈ 2α. Their method
takes advantage on using Gaussian reduction techniques. It slightly improves
the bound t ≥ 2α + 3 of May and Ritzenhofen. We notice that Kurosawa and
Ueda did not study a number of possible extensions of their method, namely,
when p1 and p2 share t MSBs and also when the multiple of the primes share
LSB’s and MSB’s.

All the former attacks apply when the RSA moduliN1 = p1q1, . . . , Nk = pkqk
are of the same bit-size and the pi’s share an amount of MSBs, LSBs or bits in
the middle. In this paper, we present novel approaches of implicit factoring that
generalize the former attacks and apply when some unknown multiples aipi of
the prime factors pi share an amount of MSBs or of LSBs.

Our first method concerns two RSA moduli N1 = p1q1, N2 = p2q2 of arbitrar-
ily sizes in the situation that there exist two integers a1, a2 such that a1p1 and
a2p2 share t many MSBs. We show that, using the continued fraction expansion
of N2

N1
, one can factor simultaneouslyN1 andN2 whenever |a1p1−a2p2| < p1

2a2q1q2
.

In particular, whenN1 andN2 are of the same bit size and q1, q2 are α-bit primes,
then one can factor N1 and N2 whenever ai ≤ 2β for i = 1, 2 and t ≥ 2α+2β+1.
When β = 0, that is a1 = a2 = 1, our result becomes t ≥ 2α + 1 and improves
the bound t ≥ 2α + 3 presented in [8] and [1] where the methods are based on
lattice reduction techniques.

Our second method is a heuristic generalization of the first method to an
arbitrary number k ≥ 3 of RSA moduli Ni = piqi, i = 1, . . . , k in the situation
that there exist k integers ai such that the aipi’s share t many MSBs. When the
RSA moduli are of the same bit size and the factors qi, i = 1, . . . , k, are α-bit
primes, the method allows us to factor the RSA moduli as soon as

t >
k

k − 1α+ k2

k − 1β + k

2(k − 1) (1 + log2(πe)) , (1)
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where β is such that ai ≤ 2β . Once again, with β = 0, we improve the bound
presented in the attack of [1].

Our third method addresses the implicit factoring problem when two unbal-
anced RSA moduli N1 = p1q1 and N2 = p2q2 of arbitrarily sizes are such that
there exist two integers a1 and a2 such that a1p1 and a2p2 share t many LSBs.
We show that it is possible to factor both N1 and N2 if a1a2q1q2 < 2t−1. This
method is also based on the continued fraction algorithm, applied to T

2t where
T ≡ N2N

−1
1 (mod 2t). We notice that, when a1 = a2 = 1 and q1, q2 are α-bit

primes, the former condition on t transforms to t ≥ 2α + 1 which improves the
bound on t for LSBs in [5] and [8] and retrieves the bound of [3].

Our fourth method is a generalization of the third method to k ≥ 3 RSA
moduli Ni = piqi, i = 1, . . . , k. Assume that there exist k integers ai such that
the aipi’s share t many LSBs. If the RSA moduli are of the same bit size and
the qi’s are α-bit primes, our method allows us to address the implicit factoring
problem whenever t satisfies (1) where β is such that ai ≤ 2β .

In fact our findings under the four scenarios, further discus possible malicious
key generation of RSA moduli by observing not only the difference between
primes, but also the differences of the multiple of primes. At the same time it
generalizes the previous works by [5], [8], [1] and [3]. Contrarily to the previous
works, we study all the possible situations involving k = 2 as well as k ≥ 3 in
both cases of MSBs and LSBs. In Table 1, we compare the applicability of our
methods against the previous methods for the different scenarios.

Table 1. Applicability of the methods for k RSA moduli.

Method MSBs LSBs
k = 2 k ≥ 3 k = 2 k ≥ 3

May, Ritzenhofen [5] No No Yes Yes
Sarkar, Maitra [8] Yes No Yes No
Faugère et al. [1] Yes Yes No No
Kurosawa, Ueda [3] No No Yes No
Our methods Yes Yes Yes Yes

Also, we notice that not only the new bounds improve the previous ones, but
also that the rank of the new underlying lattices are often lower than the ranks
of the lattices used in the former methods. In Table 2 and Table 3, we compare
our results against the former results with k RSA moduli in terms of bounds
and dimension of the lattices.

We apply our results to the implicit factorization of k ≥ 2 RSA for Para-
noids [7] Ni = piqi, i = 1, . . . , k, where pi ≈ 24500 and qi ≈ 2500. For example,
we show that we can easily factor two RSA for Paranoids moduli N1 = p1q1,
N2 = p2q2 if there exist two integers a1 and a2 such that a1p1 and a2p2 share t
MSBs or t LSBs with t ≥ 1001 + 2β where β is such that ai ≤ 2β for i = 1, 2.
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Table 2. Comparison of the bounds on t for k RSA moduli in the MSB case.

Method for MSBs Number of RSA moduli
k = 2 Number of RSA moduli k ≥ 3

May, Ritzenhofen [5] Not studied Not studied

Sarkar, Maitra [8]

For q1 ≈ q2 ≈ 2α
and |p1 − p2| < 2t,
the bound is heuristi-
cally better than t ≥
2α+3 and the dimension
of the lattice is at least 9
(m = t = 1).

Can not be applied

Faugère et al. [1]

For q1 ≈ q2 ≈ 2α and
|p1 − p2| < 2t, the rigor-
ous bound is t ≥ 2α + 3
using 2-dimensional lat-
tices of Z3.

For q1 ≈ . . . ≈ qk ≈ 2α and
|pi − pj | < 2t, the heuristic
bound is t > k

k−1α + 1 +
k

2(k−1)

(
2 + log2(k)

2 + log2(πe)
)

using k-dimensional lattices of
Z

k(k+1)
2 .

Kurosawa, Ueda [3] Not studied. Can not be applied

Our results

For q1 ≈ q2 ≈ 2α and
|a1p1 − a2p2| < 2t for
some unknown integers
a1, a2 ≤ 2β , the rigorous
bound is t ≥ 2α+ 2β+ 1
using the continued frac-
tion algorithm. For a1 =
a2 = 1, β = 0 and the
the rigorous bound is t ≥
2α+ 1.

For q1 ≈ . . . ≈ qk ≈ 2α and
|aipi − ajpj | < 2t for some un-
known integers a1, . . . , ak, the
heuristic bound is t > k

k−1α +
k2

k−1β+ k
2(k−1) (1 + log2(πe)) us-

ing k-dimensional lattices of Zk.
For a1 = . . . = ak = 1,
β = 0 and the the heuris-
tic bound is t > k

k−1α +
k

2(k−1) (1 + log2(πe)).
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Table 3. Comparison of the bounds on t for k RSA moduli in the LSB case.

Method for LSBs Number of RSA moduli
k = 2 Number of RSA moduli k ≥ 3

May, Ritzenhofen [5]

For q1 ≈ q2 ≈ 2α
and p1 ≡ p2 (mod 2t),
the rigorous bound is
t ≥ 2α + 3 using 2-
dimensional lattices of
Z2.

For q1 ≈ . . . ≈ qk ≈ 2α and
pi ≡ pj (mod 2t), the heuris-
tic bound is t ≥ k

k−1α using k-
dimensional lattices of Zk.

Sarkar, Maitra [8]

For q1 ≈ q2 ≈ 2α
and p1 ≡ p2 (mod 2t),
the bound is heuristi-
cally better than t ≥
2α+3 and the dimension
of the lattice is at least 9
(m = t = 1).

Can not be applied.

Faugère et al. [1] Not studied. Not studied.

Kurosawa, Ueda [3]

For q1 ≈ q2 ≈ 2α
and p1 ≡ p2 (mod 2t),
the rigorous bound is
t ≥ 3α + 1 using 2-
dimensional lattices of
Z2.

Can not be applied

Our results

For q1 ≈ q2 ≈ 2α and
|a1p1 − a2p2| < 2t for
some unknown integers
a1, a2 ≤ 2β , the rigorous
bound is t ≥ 2α+ 2β+ 1
using the continued frac-
tion algorithm. For a1 =
a2 = 1, β = 0 and the
the rigorous bound is t ≥
2α+ 1.

For q1 ≈ . . . ≈ qk ≈
2α and aipi ≡ ajpj (mod 2t)
for some unknown integers
a1, . . . , ak, the heuristic bound
is t > k

k−1α + k2

k−1β +
k

2(k−1) (1 + log2(πe)) using k-
dimensional lattices of Zk. For
a1 = . . . = ak = 1, β = 0 and
the the heuristic bound is t >
k
k−1α+ k

2(k−1) (1 + log2(πe)).
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The rest of this paper is organized as follows. In Section 2, we introduce some
useful background on continued fractions and lattice basis reduction. In section
3, we present our first method to address the problem of implicit factoring of
two RSA moduli N1 = p1q1 and N2 = p2q2 when a1p1 and a2p2 share t MSBs.
In section 4, we present a generalization to k ≥ 3 RSA moduli Ni = piqi,
i = 1, . . . , k, in the situation that the aipi’s share t MSBs. In section 5, we
present an attack on two RSA moduli N1 = p1q1 and N2 = p2q2 when a1p1 and
a2p2 share t LSBs and we generalize this attack to k ≥ 3 RSA moduli in Section
6. In Section 7, we present our experiments and we conclude in Section 8.

2 Preliminaries

In this section, we review some knowledge background on continued fractions
and lattice basis reduction.

2.1 Continued fractions

First we give the definition of continued fractions and state a related theorem.
The details can be referenced in [2]. For any positive real number ξ, define ξ0 = ξ
and for i = 0, 1, . . . , n, ai = bξic, ξi+1 = 1/(ξi− ai) unless ξn is an integer. Then
ξ can be expanded as a continued fraction in the following form

x = a0 +
1

a1 +
1

. . . +
1

an +
1
. . .

,

which, for simplicity, can be rewritten as ξ = [a0, a1, . . . , an, . . .]. If ξ is a rational
number, then the process of calculating the continued fraction expansion would
be finished in some finite index n and then ξ = [a0, a1, . . . , an]. The convergents
a
b of ξ are the fractions defined by a

b = [a0, . . . , ai] for i ≥ 0. We note that, if
ξ = a

b is a rational number, then the continued fraction expansion of ξ is finite
with the total number of convergents being polynomial in log(b).

Another important result on continued fractions that will be used throughout
this paper is the following (Theorem 184 of [2]).

Theorem 1 (Legendre). Let ξ be a positive number. Suppose gcd(a, b) = 1
and ∣∣∣ξ − a

b

∣∣∣ < 1
2b2 .

Then a
b is one of the convergents of the continued fraction expansion of ξ.
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2.2 Lattice reduction

Let us present some basics on lattice reduction techniques. Let b1 . . . , bd be d
linearly independent vectors of Rn with d ≤ n. The set of all integer linear
combinations of the bi forms a lattice L. Namely,

L =
{

d∑
i=1

xibi | xi ∈ Z

}
.

The integer n is the rank of the lattice L and d is its dimension. The set
(b1, . . . , bd) is called a basis of L. The determinant of L is defined as det(L) =√
BtB where B is the basis matrix, i.e., the matrix of the bi’s in the canonical

basis of Rn. The determinant is invariant under unimodular basis transforma-
tions of B and reduces to det(L) = |det(B)| when d = n. Let us denote by ‖v‖
the Euclidean norm of a vector v ∈ L. A central problem in lattice reduction is
to find short non-zero vectors in L. Vectors with short norm can be computed
by the LLL algorithm of Lenstra, Lenstra, and Lovász [4].
Theorem 2 (LLL). Let L be a lattice spanned by a basis (u1, . . . , ud). Then
the LLL algorithm produces a new basis (b1, . . . , bd) of L satisfying

‖b1‖ ≤ 2
d−1

4 det(L) 1
d .

On the other hand, for comparison, the Gaussian Heuristic says that the length
of the shortest non-zero vector of a lattice L is usually approximately σ(L) where

σ(L) ≈
√

d

2πe det(L) 1
d .

3 Factoring two RSA Moduli in the MSB Case

In this section, we study the problem of factoring two RSA moduli N1 = p1q1
and N2 = p2q2 where a1p1 and a2p2 coincide on the t most significant bits
(MSBs), that is when |a2p2 − a1p1| is sufficiently small.

3.1 The general attack for two RSA Moduli in the MSB Case

We begin by the following result which applies to two RSA moduli not necessarily
of the same bit size.
Theorem 3. Let N1 = p1q1, N2 = p2q2 be two RSA moduli. If there exist two
integers a1, a2 such that a1 < p2, a2 < p1 and |a1p1 − a2p2| < p1

2a2q1q2
, then one

can factor N1 and N2 in polynomial time.

Proof. For N1 = p1q1 and N2 = p2q2, let x = a1p1 − a2p2. Multiplying x by
q2, we get a1p1q2 − a2N2 = xq2. Suppose that |x| < p1

2a2q1q2
. Then, dividing by

a2N1 = a2p1q1, we get∣∣∣∣N2

N1
− a1q2

a2q1

∣∣∣∣ = |x|q2

a2p1q1
<

p1

2a2q1q2
× q2

a2p1q1
= 1

2(a2q1)2 .
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Hence, from Theorem 1, it follows that a1q2
a2q1

, in lowest term is one of the conver-
gents in the continued fraction expansion of N2

N1
. If we assume a1 < p2, a2 < p1,

then using a1q2
a2q1

, we get q1 = gcd(N1, a2q1) and therefore p1 = N1
q1

. Similarly, we
get q2 = gcd(N2, a1q2) and p2 = N2

q2
. ut

Remark 1. The result of Theorem 3 is valid even when the RSA moduli are not
of the same size. Comparatively, the attacks presented by Sarkar and Maitra
in [8] and Faugère et al. in [1] are valid only if N1 ≈ N2 and q1 ≈ q2.

Example 1. Consider the following RSA moduli

N1 = 63431782986412625310912155582547071972279848634479,
N2 = 9946006657067710178027582903059286609914354223.

The first partial quotients of N2
N1

are

[0, 6377, 1, 1, 1, 1, 2, 2, 3, 1, 1, 3, 9, 1, 1, 1, 1, 7, 1, 19, 1, 1, 11,
1, 1, 23, 1, 1, 3, 2, 3, 2, 3, 4, 2, 1, 1, 1, 8, 1, 322, 3, 4, 1, 1, 2, . . .]

Each convergent a
b of N2

N1
is a candidate for a1q2

a2q1
and the good one will reveal q1

and q2 if the conditions of Theorem 3 are fulfilled. Indeed, the 40th convergent
is a

b = 1351300027964332
8618068847003717463 and gives

q1 = gcd(N1, b) = 2125300178867,

p1 = N1

q1
= 29846034747067203786403150576377329237,

q2 = gcd(N2, a) = 9531501481,

p2 = N2

q2
= 1043487920228935667940393294165327383.

We notice that p1 and p2 do not share any amount of LSBst nor MSBs nor bits
in the middle. This shows that the attacks presented in [8] and [1] will not give
a result in this situation.

3.2 Application to unbalanced RSA and RSA for Paranoids

As an application of Theorem 3 to factor two unbalanced RSA moduli of the
same bit-size, we get the following result.

Corollary 1. Let N1 = p1q1, N2 = p2q2 be two unbalanced RSA moduli of the
same bit-size n. Suppose that qi ≈ 2α, pi ≈ 2n−α for i = 1, 2. Let a1, a2 be two
integers such that ai ≤ 2β, i = 1, 2. If a1p1 and a2p2 share t most significant
bits with t ≥ 2α+ 2β + 1, then one can factor N1 and N2 in polynomial time.

Proof. Let N1 = p1q1, N2 = p2q2 be two RSA moduli with N1 ≈ N2 ≈ 2n and
q1 ≈ q2 ≈ 2α. Suppose that a multiple a1p1 and a multiple a2p2 share the t
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most significant bits, that is a1p1− a2p2 = x with |x| ≤ 2n−α+β−t. Assume that
t ≥ 2α+ 2β + 1. Then

2a2q1q2|x| < 21+β+2α+n−α+β−t ≤ 2n−α ≈ p1,

which can be transformed into the inequality |x| < p1
2a2q1q2

. Hence, as in Theo-
rem 3, it follows that a1q2

a2q1
is a convergent of the continued fraction of N2

N1
which

leads to the factorization of N1 and N2. ut

Remark 2. If we consider β = 0 in Corollary 1, that is, if a1 = a2 = 1, a sufficient
condition to factor the two RSA moduli is t ≥ 2α + 1 which slightly improves
the bound t ≥ 2α+ 3 found by Faugère et al. in [1]. This shows that the bound
found by Faugère et al. with lattice reduction techniques can be achieved using
the continued fraction algorithm instead.

Consider two RSA for Paranoids moduli Ni = piqi with Ni ≈ 25000, qi ≈ 2500

and pi ≈ 24500 for i = 1, 2. Then α = 500 and by Corollary 1, it is possible
to factor N1 and N2 if a multiple a1p1 and a multiple a2p2 share the t MSBs
whenever t ≥ 2α+ 2β + 1, that is whenever t ≥ 1001 + 2β.

4 Factoring k RSA Moduli in the MSB Case

The attack mounted for two RSA moduli can be generalized to an arbitrary
number k ≥ 3 of moduli Ni = piqi, i = 1 . . . , k where the qi’s are α-bit primes
and the aipi’s share t MSBs. Instead of using the continued fraction algorithm,
we use a lattice based method to find simultaneous diophantine approximations.

Theorem 4. Let Ni = piqi, i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli where the
qi’s are α-bit primes. Suppose that there exist k integers a1, . . . , ak with ai ≤ 2β,
i = 1, . . . , k, such that the aipi’s share all t most significant bits. If

t >
k

k − 1α+ k2

k − 1β + k

2(k − 1) (1 + log2(πe)) ,

then, under the Gaussian Heuristic assumption, one can factor the k RSA moduli
N1, · · · , Nk in polynomial time.

Proof. For 2 ≤ i ≤ k, we set xi = aipi− a1p1. Then, multiplying by q1qi, we get
aiq1Ni − a1qiN1 = q1qixi. Define a =

∏k
j=1 aj . Multiplying by a

ai
, we get

aq1Ni −
aa1qi
ai

N1 = aq1qixi
ai

.

Let C be a number to be fixed later. Consider the vector

v =
(
Caq1,

aq1q2x2

a2
, . . . ,

aq1qkxk
ak

)
∈ Zk. (2)
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Then v =
(
aq1,

aa1q2
a2

. . . , aa1qk

ak

)
×M, where M is the k × k-matrix

M =



C N2 N3 . . . Nk−1 Nk

0 −N1 0 . . . 0 0
0 0 −N1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −N1 0
0 0 0 . . . 0 −N1


.

Let L be the lattice defined by the rows of M . The dimension of L is k and the
determinant is det(L) = CNk−1

1 . The Gaussian Heuristic for L asserts that the
length of its shortest non-zero vector is usually σ(L) where

σ(L) ≈
√

k

2πe det(L) 1
k =

√
k

2πeC
1
kN

k−1
k

1 . (3)

If we choose C such that σ(L) > ‖v‖, then v can be found among the shortest
non-zero vectors of the lattice L. Using (2), we get

‖v‖2 = C2a2q2
1 +

k∑
i=2

a2q2
1q

2
i x

2
i

a2
i

. (4)

Suppose that for i = 1, . . . , k, we have

Ni ≈ 2n, qi ≈ 2α, pi ≈ 2n−α, ai ≤ 2β .

Moreover, suppose that the aipi’s share all t MSBs. Then, for i ≥ 2, we have

|xi| = |aipi − a1p1| ≤ 2n−α+β−t.

Hence (4) leads to

‖v‖2 < C2 × 22kβ+2α + (k − 1)22kβ+4α+2(n+β−α−t)−2β

= C2 × 22kβ+2α + (k − 1)× 22kβ+2α+2n−2t.

Define C such that C2 × 22kβ+2α ≥ 22kβ+2α+2n−2t, that is C ≥ 2n−t. Then
‖v‖2 < kC2 × 22kβ+2α. On the other hand, using Ni ≈ 2n in (3), we get

σ(L)2 ≈ k

2πeC
2
k × 2

2n(k−1)
k .

Suppose σ(L) > ‖v‖. Then σ(L)2 > ‖v‖2, that is

k

2πeC
2
k 2

2n(k−1)
k > kC2 × 22kβ+2α.
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Hence
C

2(k−1)
k <

1
πe

2
2n(k−1)

k −2kβ−2α−1.

Plugging C ≥ 2n−t and extracting t, we get

t >
k

k − 1α+ k2

k − 1β + k

2(k − 1) (1 + log2(πe)) .

Using (2), we get q1 = gcd(Caq1, N1) and for i = 2, . . . , k, qi = gcd(aa1qi

ai
, Ni).

This terminates the proof. ut

We notice that with β = 0, that is ai = 1 for i = 1, . . . , k, we get

t >
k

k − 1α+ k

2(k − 1) (1 + log2(πe)) ,

which slightly improves the bound obtained by Faugère et al. in [1]. This shows
that our result extends the result of Faugère et al. where they considered only
the case when the pi’s share t MSBs.

5 Factoring Two RSA Moduli in the LSB Case

The study of implicit factorization when p1, p2 share some LSBs has been con-
sidered in [5], [8], [1] and [3]. In this section, we extend the former attacks to
the case where an unknown multiple a1p1 of p1 and an unknown multiple a2p2
of p2 share their t LSBs.

5.1 The general attack

Theorem 5. Let N1 = p1q1, N2 = p2q2 be two RSA moduli. Assume that there
exist two integers a1, a2 with a1 < p2, a2 < p1 such that a1p1 and a2p2 share t
many LSBs. If a1a2q1q2 < 2t−1, then one can factor N1 and N2 in polynomial
time.

Proof. Let N1 = p1q1 and N2 = p2q2. Assume that a1p1 and a2p2 share t many
LSBs. Then a1p1 − a2p2 = 2tx for some integer x and we have

q1q2(a1p1 − a2p2) = N1a1q2 −N2a2q1 = 2txq1q2.

Then N1a1q2−N2a2q1 ≡ 0 (mod 2t). Since gcd(N1, 2) = 1, then N−1
1 (mod 2t)

exists and a1q2−a2q1N2N
−1
1 ≡ 0 (mod 2t). Define T ≡ N2N

−1
1 (mod 2t). Then

a1q2 − a2q1T ≡ 0 (mod 2t) and there exists an integer y such that

a1q2 = a2q1T − 2ty. (5)

Suppose that a1a2q1q2 < 2t−1. Then dividing by 2ta2q1, we get∣∣∣∣ T2t − y

a2q1

∣∣∣∣ = |a2q1T − 2ty|
2ta2q1

= a1q2

2ta2q1
<

a1q2

2a1a2q1q2a2q1
= 1

2(a2q1)2 .
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Therefore from Theorem 1, it follows that y
a2q1

is one of the convergents in the
continued fraction expansion of T

2t . Since a2 < p1, we get q1 = gcd(N1, a2q1)
and p1 = N1

q1
. Using (5), we get a1q2 = a2q1T − 2ty. Similarly, since a1 < p2, we

get q2 = gcd(N2, a1q2) and p2 = N2
q2

. This terminates the proof. ut

5.2 Application to unbalanced RSA and RSA for Paranoids
Here we apply Theorem 5 in the situation that the two RSA moduli N1 = p1q1,
N2 = p2q2 are of the same shape, that is N1 and N2 are of the same bit-size and
the qi’s are α-bit primes.
Corollary 2. Let N1 = p1q1, N2 = p2q2 be two unbalanced n-bit size RSA
moduli with q1 ≈ q2 ≈ 2α. Suppose that there exist two positive integers a1 ≤ 2β,
a2 ≤ 2β such that a1p1 and a2p2 share the t LSBs. If t ≥ 2α+ 2β + 1, then one
can factor N1 and N2 in polynomial time.

Proof. Let N1 = p1q1, N2 = p2q2 be two RSA moduli with N1 ≈ N2 ≈ 2n and,
q1 ≈ q2 ≈ 2α. Suppose that a multiple a1p1 and a multiple a2p2 share the t least
significant bits where ai ≤ 2β for i = 1, 2. Define T ≡ N2N

−1
1 (mod 2t). As in the

proof of Theorem 5, we have a1p1−a2p2 = 2tx and a1q2 = a2q1T −2ty for some
integers x and y. Suppose that t ≥ 2α+2β+1. Then a1a2q1q2 < 22β+2α ≤ 2t−1.
Therefore, using the same arguments than Theorem 5, we conclude that y

a2q1
is

one of the convergents in the continued fraction expansion of T
2t which leads to

the factorization of N1 and N2. ut

Remark 3. Here again, if β = 0, then the condition of Corollary 2 becomes t ≥
2α+ 1 which improves the bounds found in the former approaches of [5], [8], [1]
and retrieves the bound of [3].

As an application of Corollary 2, consider two 1024-bit RSA for Paranoids moduli
N1 = p1q1, N2 = p2q2 where q1, q2 are 500-bit primes. Hence α = 500 and using
Corollary 2, one can factor N1 and N2 if there exist two integers a1 ≤ 2β and
a2 ≤ 2β such that a1p1 and a2p2 share t LSBs with t > 2001 + 2β.

6 Factoring k RSA Moduli in the LSB Case

In this section, we assume that we are given k ≥ 3 different RSA moduli Ni =
piqi, i = 1, . . . , k where some unknown multiples aipi’s coincide on the t least
significant bits. For suitably large t, we show that there is an efficient algorithm
that recovers the factorization of the k RSA moduli. To this end, we use the
lattice reduction techniques to solve a simultaneous diophantine approximations
problem.
Theorem 6. Let Ni = piqi, i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli where the
qi’s are α-bit primes. Suppose that there exist k positive integers a1, . . . , ak with
ai ≤ 2β, i = 1, . . . , k, such that the aipi’s share all t least significant bits. If

t >
k

k − 1α+ k2

k − 1β + k

2(k − 1) (1 + log2(πe)) ,
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then, under the Gaussian Heuristic assumption, one can factor the k RSA moduli
N1, · · ·Nk in polynomial time.

Proof. For 1 ≤ i ≤ k, suppose that the aipi’s share t least significant bits. Then,
for 1 ≤ i ≤ k, aipi− a1p1 = 2txi. Multiplying by q1qi, we get aiq1Ni− a1qiN1 =
2tq1qixi. Define a =

∏k
j=1 aj . Multiplying by a

ai
, we get

aq1Ni −
aa1qi
ai

N1 = 2taq1qixi
ai

.

Transforming modulo 2t, we get aq1NiN
−t
1 − aa1qi

ai
≡ 0 (mod 2t). Define Ti ≡

NiN
−1
1 (mod 2t). Then aq1Ti − aa1qi

ai
≡ 0 (mod 2t) and there exists an integer

yi such that aq1Ti − 2tyi = aa1qi

ai
. Consider the vector

v =
(
aq1,

aa1q2

a2
, . . . ,

aa1qk
ak

)
∈ Zk. (6)

Then v = (aq1, y2 . . . , yk)×M, where M is the k × k-matrix

M =



1 T2 T3 . . . Tk−1 Tk

0 −2t 0 . . . 0 0
0 0 −2t . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −2t 0
0 0 0 . . . 0 −2t


.

Let L be the lattice defined by the rows of the matrix M . The dimension of L is
k and the determinant is det(L) = 2(k−1)t. The Gaussian Heuristics for L asserts
that the length of its shortest non-zero vector is σ(L) where

σ(L) ≈
√

k

2πe det(L) 1
k =

√
k

2πe2
(k−1)t

k . (7)

Observe that the norm of v satisfies

‖v‖2 = a2q2
1 +

k∑
i=2

(
aa1qk
ak

)2
.

If the aipi’s share all t least significant bits, then, for i = 1, . . . , k, we have

qi ≈ 2α, ai ≤ 2β , |xi| =
|aipi − a1p1|

2t < 2n−α+β−t.

Hence

‖v‖2 < 22kβ+2α + (k − 1)22kβ+2α = k22kβ+2α. (8)
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Using (8) and (7) and transforming σ(L)2 > ‖v‖2 into k
2πe2

2(k−1)t
k > k22kβ+2α,

we get

t >
k

k − 1α+ k2

k − 1β + k

2(k − 1) (1 + log2(πe)) .

Using (6), we get q1 = gcd(aq1, N1) and for i = 2, . . . , k, qi = gcd(aa1qi

ai
, Ni).

This terminates the proof. ut

Once again, if β = 0, then ai = 1 and the bound of Theorem 6 transforms to
t > k

k−1α+ k
2(k−1) (1 + log2(πe)) , which improves the bound of [1].

7 Experiments

In this section, we describe the experiments that we conducted for k = 4, 10, 30
and 50 RSA moduli, in connection with Theorem 4 and Theorem 6. We verified
our assumptions by running experiments on a Core2 Duo 2GHz notebook. The
lattice reduction basis technique was based on the LLL algorithm.

Assume that a1p1 and the aipi’s share t MSBs. Then since aipi ≤ 2n−α+β ,
we see that |aipi − a1p1| ≤ 2n−α+β−t. Therefore, t ≤ n − α + β. Similarly,
assume that a1p1 and the aipi’s share t LSBs. Then |aipi − a1p1| = 2txi with
t ≤ n− α+ β. In both cases, combining with the bound of t in Theorem 4 and
Theorem 5, we get

n− α+ β ≥ t > k

k − 1α+ k2

k − 1β + k

2(k − 1) (1 + log2(πe)) ,

which is satisfied if

β <
n(k − 1)
k2 − k + 1 −

2k − 1
k2 − k + 1α−

k

2(k2 − k + 1) (1 + log2(πe)) . (9)

Consequently, we only consider the situation where the bit-size β of the ai’s
satisfies condition (9).

We generated many random 1024-bit RSA moduli for k = 4, 10, 30, 50 and
various values of α and β according to the bound (9). All our experiments were
successful and the assumptions on the Gaussian Heuristics were verified. In Ta-
ble 4, we notice the experimentally lowest values of t that have 100% success
rate.

8 Conclusion

In this work we have designed a technique to factor k ≥ 2 RSA moduli Ni = piqi,
i = 1, . . . , k when some unknown multiples aipi share t many Most Significant
Bits (MSBs) or t many Least Significant Bits (LSBs). The new technique gen-
eralizes many previous results where the prime factors pi share t many MSBs
or t many LSBs. This provides practitioners tighter conditions for the primes
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Table 4. Experiments for k RSA moduli in the MSB and the LSB cases.

Number Bit-size Max Used Minimal Experimental Experimental Number
k α of bit-size bit-size theoretical bound bound of
of the β of the β of bound for t in for t in experi-

moduli qi’s ai’s (9) the ai’s for t MSB case LSB case ments
4 150 154 100 737 602 611 1000
4 250 100 80 763 655 662 1000
4 350 46 35 657 609 616 1000
4 400 20 15 617 594 601 1000
10 150 69 50 725 649 674 1000
10 250 48 40 725 667 684 1000
10 350 27 20 614 591 603 1000
10 400 17 12 581 563 570 1000
30 150 23 15 623 585 592 500
30 250 17 12 634 596 603 500
30 350 10 8 613 544 572 500
30 400 6 4 541 533 536 500
50 150 14 10 666 648 650 100
50 250 10 7 615 597 605 100
50 350 6 4 564 546 551 100
50 400 4 3 564 556 559 100

that are generated for utilization with the RSA algorithm. On the other hand,
our results also serve their purpose to provide a peace of mind for practitioners
knowing that the generated RSA moduli does not fall into any of the categories
mentioned in this work.
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