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Université de Caen
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Abstract. Let N = pq be an RSA modulus where p, q are large primes of the same bitsize
and φ(N) = (p − 1)(q − 1). We study the class of the public exponents e for which there
exist integers X, Y , Z satisfying

eX + φ(N)Y = NZ,

with |XY | <
√

2

6
N

1
2 and all prime factors of |Y | are less than 1040. We show that these

exponents are of improper use in RSA cryptosystems and that their number is at least

O
“

N
1
2
−ε

”

where ε is a small positive constant. Our method combines continued fractions,

Coppersmith’s lattice-based technique for finding small roots of bivariate polynomials and
H. W. Lenstra’s elliptic curve method (ECM) for factoring.

1 Introduction

The RSA cryptosystem was invented by Rivest, Shamir and Adleman [15] in 1978 and
is currently the most widely known and widely used public key cryptosystem. Let p,
q be large distinct primes of the same size. A typical size for p and q is 512 bits, i.e.,
155 decimal digits. Define N = pq and let e and d be two integers satisfying ed ≡ 1
(mod φ(N)) where φ(N) = (p−1)(q−1) is the Euler totient function at N . The integers
N , e and d are commonly called the modulus, the public exponent and the private exponent

respectively. The public key is the pair (N, e) and the secret key is d.
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2 A. NITAJ

In order to speed up the decryption time, one may be tempted to use a small secret

key. Unfortunately, based on the convergents of the continued fraction expansion of
e

N
,

Wiener showed that RSA is insecure if d < 1
3N

1
4 . Verheul and van Tilborg [16] and

Dujella [6] proposed extensions of Wiener’s attack to d < N
1
4
+γ by doing an exhaustive

research of about 2γ + 8 bits. In 1999, Boneh and Durfe proposed an attack on RSA
with secret exponents d < N 0.292. This attack is based on Coppersmith’s lattice-based
technique [5] for finding small roots of bivariate modular polynomials. A similar attack
was proposed by Blömer and May [2] and works if d < N 0.290. In 2004, Blömer and
May [3] proposed a generalization of Wiener’s attack to the public exponents satisfying

ex + y = kφ(n) with 1 ≤ x < 1
3N

1
4 and |y| < N− 3

4 ex.
The previous attacks exploit arithmetical properties relating the public key e and φ(N).

Alternative attacks were recently introduced by the author in [12] and [13]. They concern
classes of RSA keys with arithmetical properties in connection with special functions
F (p, q). In this paper, we exploit another arithmetical property satisfied by the public
exponent. Since N , φ(N) and e are pairwize relatively prime, then the diophantine
equation

eX + φ(N)Y = NZ, (1)

has infinitely many solutions (see Section 2). First, we will show that it is possible to find

X and Z − Y by the continued fraction algorithm if |XY | <
√

2
6 N

1
2 . Next, we will show

how to find Y and Z by applying Coppersmith’s technique provided |p − q| < Nβ with
β < 3

8 . More generally, we show how to find Y and Z if all the prime factors of |Y | are

less than 1040 by factoring M = |eX−N(Z−Y )| using the elliptic curve method (ECM).
Our method is based on the combinaison of essential algorithms in computational number
theory, namely the continued fraction algorithm, LLL [11] (or PSLQ [1]) and ECM [10].
LLL is the Lenstra, Lenstra, Lovasz lattice basis reduction algorithm, PSLQ is Bailey and
Fegusson’s partial sum of least squares algorithm and ECM is H. W. Lenstra’s elliptic
curve method for factoring.

ECM was invented in 1985 by H. W. Lenstra Jr. [10] and is suited to find small prime
factors -say up to 40 decimal digits- of large numbers. For notational convenience, let

B = 1040, (2)

be the ECM bound.
The rest of this paper is organized as follows. In Section 2 we review some well-

known facts about the diophantine equation (1), the continued fraction expansion of
rational numbers, the lattice based technique of Coppersmith, and finally the elliptic curve
method for factoring. In Section 3 we present the general attack combining diophantine
approximations and Coppersmith’s technique or ECM. Section 4 gives an estimation of

the number of the public exponents e < N satisfying (1) with |XY | <
√

2
6 N

1
2 . We briefly

conclude the paper in Section 4.
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2 Preliminaries

In this section, some facts that will be used troughout this paper are briefly introduced
concerning the diophantine equation (1), the continued fraction expansion of a rational
number, Coppermith’s technique and the elliptic curve method for factoring.

2.1 The diophantine equation eX + φ(N)Y = NZ.

A solution (X,Y, Z) ∈ Z3 to the diophantine equation (1) is said to be proper if
gcd(X,Y, Z) = 1. Since N , φ(N) and e are pairwise relatively prime, then (1) has
infinitely many parametrized proper solutions. To see this, define X0 to be the unique
positive integer satisfying

X0 ≡ −φ(N)e−1 (mod N) with 1 ≤ X0 ≤ N − 1.

Then there exists a positive integer Z0 such that

eX0 + φ(N) = NZ0. (3)

Next, for any (a, Y ) ∈ Z2, let

X = X0Y − aN, Z = Z0Y − ae.

Using (3), we get

eX + φ(N)Y = e(X0Y − aN) + φ(N)Y

= (eX0 + φ(N))Y − eaN

= NZ0Y − aeN

= N(Z0Y − ae)

= NZ.

Hence (X,Y, Z) is a solution to the equation (1). On the other hand, we have

gcd(X,Y ) = gcd(X0Y − aN, Y ) = gcd(aN, Y ) = gcd(a, Y ),

unless gcd(Y,N) is non trivial which is unlikely for an RSA modulus. This means that
the proper solutions are obtained by choosing a and Y without common factors.
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2.2 The Continued fraction expansion and the Euclidean Algorithm.

Let a and b be relatively prime positive integers. It is well known that the process
of finding the continued fraction expansion of the rational number a

b
is similar to the

application of the Euclidean Algorithm to the pair a and b. The Euclidean Algorithm
starts with r−2 = a, r−1 = b and for i ≥ 0,

ai =

⌊
ri−2

ri−1

⌋
, ri = ri−2 − airi−1,

where bxc is the integral part of x. This procedure stops when rs = 0 for some positive
integer s ≥ 1. Using the successive quotients ai (i ≥ 0), we form the sequences {pi} and
{qi} according to the double recursions

pi = aipi−1 + pi−2, i ≥ 0, p−2 = 0, p−1 = 1,

qi = aiqi−1 + qi−2, i ≥ 0, q−2 = 1, q−1 = 0.

The rational numbers
pi

qi

(i ≥ 0) are the convergents of
a

b
and satisfy

gcd(pi, qi) = 1, and aqi − bpi = (−1)iri.

The running time of the Euclidean Algorithm for the positive integers a and b is

O (max (log a, log b)) .

Conversely, to chek whether a rational number
x

y
is a convergent of

a

b
we will use the

following classical theorem on diophantine approximations (see Corollary 2, [1, § 2] in [9]).

Theorem 2.1. (Legendre). Let ξ be a real number. If the coprime integers x and y
satisfy ∣∣∣∣ξ −

X

Y

∣∣∣∣ <
1

2Y 2
,

then X
Y

is a convergent of ξ.

2.3 Coppersmith’s technique.

Our attack makes use of Coppersmith’s method for finding small roots of bivariate
polynomials over Z [5].



RSA AND ECM 5

Theorem 2.2. (Coppersmith). Let f(x, y) ∈ Z[x, y] which is of maximum degree

δ in x and y separately. Suppose that f(x0, y0) = 0 where |x0| ≤ X̃, |y0| ≤ Ỹ . Let

W =
∣∣∣
∣∣∣f
(
X̃x, Ỹ y

)∣∣∣
∣∣∣
∞

, i.e. the absolute value of the largest coefficient of f
(
X̃x, X̃y

)
.

If

X̃Ỹ ≤ W
2
3δ ,

then x0 and y0 can be found in polynomial time in
(
log W, 2δ

)
.

2.4 The elliptic curve method for factoring (ECM).

The principle of ECM is based on Pollard’s (p − 1)-method [14]. We briefly descibe
ECM.

Let M be the integer to factor which is divisble by at least two different primes p, q
with p < q. Let P2(Z/MZ) be the projective plane over Z/MZ and E/Q be an elliptic
curve with the homogeonous Weierstrass equation

E(Z/MZ) = {(x : y : z) ∈ P2(Z/MZ), y2z ≡ x3 + axz2 + bz3 (mod M)},
where a, b ∈ Z/MZ with 4a3 + 27b2 6= 0. The point at infinity is O = (0 : 1 : 0). Let

E(Z/MZ) −→ E(Z/pZ)

P 7−→ P̃

be the reduction modulo p. Pick at random a point P ∈ E(Z/MZ) and fixe two bounds
B1, B2 with 0 < B1 < B2. The first phase of ECM works as follows. Calculate Q = kP
where

k =
∏

p≤B1
p prime

pep with ep =

⌊
log B1

log p

⌋
.

If Q̃ = Õ and Q 6= O, then the z-coordinate of Q is a multiple of p, hence gcd(z,M) will
reveal the factor p (or another factor of M). If the first phase has not been successful in
finding a factor of M , we may continue with a second phase. For each prime p′ satisfying

B1 < p′ < B2, compute p′Q = (x′ : y′ : z′) and check if p̃′Q = Õ. This can be done by
testing whether gcd(z′,M) > 1.

An advantage of ECM over Pollard’s (p−1)-method is the possibility to choose another
elliptic curve if no factor was found. The expected running time of ECM is

O
(
e(

√
2+o(1))

√
log p log log pα(log M)

)
,

to find the smallest factor p of M where α(log M) is the time required to multiply numbers
modulo M and the o(1) term tends to 0 as p → +∞.

The ECMNET project [7] is devoted to find large factors by ECM. The largest prime
factor found thus far by ECM is a 66-digit (220-bit) factor of the 180-digit (598-bit)
number 3466 + 1. The computation was carried out by B. Dodson and reported on April
2005.
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2.5 A useful lemma.

We state a simple lemma that will be used troughout the paper. We give bounds for
p + q when p and q are primes of the same bitsize.

Lemma 2.3. Let N = pq be an RSA modulus with q < p < 2q. Then

2
√

N < p + q <
3
√

2

2

√
N.

Proof. Assume that q < p < 2q. Then multiplying by q, we get q2 < N < 2q2. Similarly,
multiplying by p we get N < p2 < 2N . This gives

√
2

2
N

1
2 < q < N

1
2 < p <

√
2N

1
2 .

Rewrite

p + q = p +
N

p
.

An easy computation shows that p + N
p

is minimized at p = N
1
2 and maximized at

p =
√

2N
1
2 . This leads to

2N
1
2 < p + q <

3
√

2

2
N

1
2 ,

and terminates the proof. �

3 The new attack

3.1 Application of Legendre’s theorem.

Theorem 3.1. Let N = pq be an RSA modulus with q < p < 2q. Suppose that e satisfies

an equation eX + φ(N)Y = NZ with

|XY | <

√
2

6
N

1
2 .

Then
Z − Y

X
is a convergent of

e

N
.

Proof. Using φ(N) = N − (p + q − 1), we rewrite the equation eX + φ(N)Y = NZ as

eX − N(Z − Y ) = (p + q − 1)Y.
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This gives us ∣∣∣∣
e

N
− Z − Y

X

∣∣∣∣ =
(p + q − 1)|Y |

N |X| .

By Lemma 2.3, we have p+ q−1 < 3
√

2
2 N

1
2 . Then under the assumption |XY | <

√
2

6 N
1
2 ,

we get ∣∣∣∣
e

N
− Z − Y

X

∣∣∣∣ ≤
3
√

2N
1
2 |Y |

2N |X| <
1

2X2
,

so that, by Legendre’s theorem 2.1,
Z − Y

X
is a convergent of

e

N
which proves the lemma.

�

3.2 Application of Coppersmith’s technique.

In this section, we present an algorithm to factor N if the public exponent e satisfies (1)

with |XY | <
√

2
6 N

1
2 and the prime difference p − q satisfies

p − q ≤ Nβ with β <
3

8
,

Our approach makes use of Coppersmith’s technique (Theorem 2.2). Notice that if p−q ≤
N

1
4 , an algorithm of Fermat finds the factorization of N in polynomial time (see [17]).

Our approach makes use of the following lemma.

Lemma 3.2. Let β be a real value. Let N = pq, where p and q are two prime integers

such that q < p < 2q and p − q ≤ Nβ. Let S =
⌊
2N

1
2

⌋
+ 1. Then

0 < p + q − 1 − S < Nβ .

Proof. Assume that q < p < 2q and p − q ≤ Nβ . Let

S =
⌊
2N

1
2

⌋
+ 1.

By the definition of the intgeral part, we have

S ≤ 2N
1
2 + 1 < S + 1.

Combining this with Lemma 2.3, we get S + 1 ≤ 2N
1
2 + 2 < p + q and p + q − 1− S > 0.

Again applying Lemma 2.3, we get

2q < 2N
1
2 < 2N

1
2 + 1 < S + 1.

It follows that p + q − 1 − S < p − q < Nβ which terminates the proof. �
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Theorem 3.3. Let β and δ be real values such that δ + 4β ≤ 3
2 . Let N = pq, where p

and q are two prime integers such that q < p < 2q and p − q ≤ N β. Let e be a public

exponent and X, Y , Z be unknown integers satisfying eX +φ(N)Y = NZ with |Y | ≤ N δ

and |X| ≤
√

2
6 N

1
2
−δ. Then given (N, e) one can factor N in polynomial time.

Proof. Assume that |Y | ≤ N δ and |X| ≤
√

2
6 N

1
2
−δ. Then |XY | <

√
2

6 N
1
2 , and, by

Theorem 3.1, we can find X and Z − Y among the convergents of e
N

. Rewrite (1) as
(p+q−1)Y = eX−N(Z−Y ). Let M = |eX−N(Z−Y )|. We want to solve the equation

(p + q − 1)|Y | = M, (4)

with the unknowns p, q and Y . Assume that p − q ≤ Nβ . Let

S =
⌊
2N

1
2

⌋
+ 1.

Then, by Lemma 3.2, we have |p+q−1−S| < Nβ , which means that S is an approximation
of p + q − 1 with an error term of at most Nβ . Put

X̃ = Nβ , (5)

and define x0 by
x0 = p + q − 1 − S.

Then |x0| < X̃. Next, let

T =

⌊
M

S

⌋
.

Since p + q − 1 > S > 2N
1
2 , then

|Y | =
M

p + q − 1
<

M

S
.

Hence |Y | ≤
⌊

M
S

⌋
= T. Combining this and p + q − 1 > 2N

1
2 , we get

0 < T − |Y | <
M

S
− M

p + q − 1

=
M(p + q − 1 − S)

(p + q − 1)S

<
MNβ− 1

2

2S
.

Hence T is an approximation of |Y | with an error term bounded by

Ỹ =
MNβ− 1

2

2S
. (6)
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Define y0 by
y0 = |Y | − T.

Then |y0| < Ỹ . Using p + q − 1 = S + x0 and |Y | = T + y0 in (4), we get

(S + x0)(T + y0) = x0y0 + Tx0 + Sy0 + ST = M.

We can define the following polynomial

f(x, y) = xy + Tx + Sy + ST − M,

with a root (x0, y0) = (p + q − 1 − S, |Y | − T ) satisfying

|x0| < X̃, |y0| < Ỹ .

Let W denote the largest absolute value of the coefficients of f
(
X̃x, Ỹ y

)
with

f(X̃x, Ỹ y) = X̃Ỹ xy + TX̃x + SỸ y + ST − M.

Using (6), we get

W = max
(
X̃Ỹ , T X̃, SỸ , |ST − M |

)
≥ SỸ =

1

2
MNβ− 1

2 .

On the other hand, combining (5) and (6), we have

X̃Ỹ =
MN2β− 1

2

2S
<

MN2β− 1
2

4N
1
2

=
1

4
MN2β−1.

In order to apply Coppersmith’s theorem (Theorem 2.2), we have to satisfy the condition
(
X̃Ỹ

)3

≤ W 2.

This leads to
1

64
M3N6β−3 ≤ 1

4
M2N2β−1,

which in turn gives
M ≤ 16N2−4β .

By assumption |Y | < N δ. Then applying Lemma 2.3 we get

M = (p + q − 1)|Y | <
3
√

2

2
N

1
2 N δ =

3
√

2

2
N

1
2
+δ.

Hence, it suffices that
3
√

2

2
N

1
2
+δ ≤ 16N2−4β .

From this we get

N4β+δ− 3
2 ≤ 16

√
2

3
,

which is satisfied if 4β + δ − 3
2 ≤ 0. With this condition, Coppersmith’s technique finds

the solution (x0, y0). Finaly, using x0 = p + q − 1 − S, we can find the factorization of
N . This terminates the proof. �
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3.3 Application of ECM.

In this section, we present an algorithm that on input (N, e) outputs the factors p and

q of N if e satisfies the equation (1) with |XY | <
√

2
6 N

1
2 and if all prime factors of |Y |

are less than the ECM bound B = 1040.
Let N = pq be an RSA modulus with q < p < 2q and e a public exponent satisfying

eX + φ(N)Y = NZ,

for some unknown X, Y and Z such that |XY | <
√

2
6 N

1
2 . Remember that X and Z − Y

could be recovered using Theorem 3.1. Let M = |eX −N(Z − Y )|. Then (1) transforms
to a factorization problem, namely

M = (p + q − 1)|Y |,

with the unknown factors p + q − 1 and |Y |. A crucial step in our attack consists in
computing a set of divisors of M by extracting the primes p1, p2, · · · , ps that divide M
and are less than B. Since only partial factorization of M is required, ECM is a good
candidate for this task. Write

M = pr1

1 pr2

2 · · · prs
s M ′, with 1 < p1 < p2 < · · · < ps ≤ B,

to be the factorizaion of M as a product of powers of distinct primes less than B where
M ′ = 1 or M ′ has no prime divisor less than B. Then the B-smooth divisors of M are
the numbers

d = px1

1 px2

2 · · · pxs
s , with 0 ≤ xi ≤ ri.

Define τB(M) to be the number of the B-smooth divisors of M . Then

τB(M) =
s∏

i=1

(xi + 1).

By the prime number theorem

p1p2 · · · ps = e(1+o(1))ps = e(1+o(1))s log s ≤ M.

From this we find the inequality s log s < log M and so

s < C
log M

log log M
, (7)

where C is an absolute constante (see [8]). This gives an upper bound for the number
of the prime factors of the B-smooth part of M . For every i, 1 ≤ i ≤ s, we have
2xi ≤ pxi

i ≤ M . Then

x1 ≤ log M

log 2
. (8)
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Let

ε0 =
log 2

log
(
2
√

N
) .

By Lemma 2.3, we have M ≥ p + q − 1 > 2N
1
2 . then

ε0 ≥ log 2

log (M)
. (9)

Combining (8) and (9), we derive an upper bound for τB(M)

τB(M) =
s∏

i=1

(xi + 1) ≤
s∏

i=1

(1 + ε0)
log M

log 2
= (1 + ε0)

s

(
log M

log 2

)s

.

In practice, from Hardy and Ramanujan, we know that the average number τ(M) of
divisors of M is

τ(M) ∼ log M ≤ log N,

and τB(M) ≤ τ(M). Morever, let

D1 =

⌊
M

3
√

2
2

√
N

⌋
and D2 =

⌈
M

2
√

N

⌉
.

Since |Y | = M
p+q−1 is a divisor of M , then by Lemma 2.3, we have

D1 ≤ |Y | ≤ D2. (10)

Writing |Y | = px1

1 px2

2 · · · pxs
s and taking logarithms in (10), we obtain

log D1 ≤ x1 log p1 + x2 log p2 + · · · + xs log ps ≤ log D2,

in the unknowns 0 ≤ x1 ≤ r1, 0 ≤ x2 ≤ r2, . . . , 0 ≤ xs ≤ rs. This is a subset problem
which can be solved with polynomial time algorithms such LLL [11] (the exact integral
method of de Weger [18]) or PSLQ [1]. On the other hand, the estimation (7) gives an
upper bound for the number of the prime factors of |Y |, and consequently, the number
of the entries in PSLQ algorithm and the dimension of the lattice used by LLL to solve
the subset problem (e.g. s = 81 for a 1024 bit integer N).

Finally, let d be a divisor of M so that w = M
d

is a candidate for p + q − 1. Then,
using N = pq, we get the quadratic equation

p2 − (w + 1) p + N = 0,

which is solvable for p ∈ N if ∆ = (w + 1)2 − 4N is a perfect square.
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Summarising, we describe the algorithm attack as follows:

Algorithm :

INPUT: (N, e), where N = pq and eX + φ(N)Y = NZ for some unknown X, Y , Z

with |XY | <
√

2
6 N

1
2 and all prime factors of |Y | are less than B = 1040.

1. Compute the continued fraction expansion of e
N

.

2. For every convergent u
v

with v <
√

2
6 N

1
2 :

(i) Compute M = |ev − Nu|.
(ii) Compute D1 =

⌊
M

3
√

2
2

√
N

⌋
and D2 =

⌈
M

2
√

N

⌉
.

(iii) Find the B-smooth part M1 of M by ECM.
(iv) Find the divisors d of M1 in the interval [D1, D2] by LLL or PSLQ.
(v) For every such divisor d :

(a) Compute w = M
d

.

(b) Compute ∆ = (w + 1)2 − 4N .

(c)) If ∆ is a perfect square then compute p̃ = (w+1)+
√

∆
2 .

(d) If p̃|N , then stop.
3. Output p = p̃, q = N

p̃
.

It is well known that the continued fraction algorithm has polynomial time complexity.
It follows that Step 1 of the algorithm outputs at most O(log N) convergents of e

N
. Let

ps < B be the largest prime factor of M = |eX − N(Z − Y )| = (p + q − 1)|Y | with
unknown factors p + q − 1 and |Y |. ECM will find ps in

exp
((√

2 + o(1)
)√

log ps log log ps

)
≈ exp

((√
2 + o(1)

)√
log B log log B

)
,

expected running time. On the other hand, LLL performs Step 2, (iv) on lattices with

dimension at most log M
log log M

and entries smaller than log ps ≤ log B. Hence Step (2), (iv)
terminates in

O
((

log M

log log M

)6

(log B)3

)
= O

((
log N

log log N

)6

(log B)3

)
.

Finally, Step 2, (v) concerns O(log N) divisors.
Summarising, our attack requires

O
((

log N

log log N

)6

(log B)3(log N)2 exp
((√

2 + o(1)
)√

log B log log B
))

operations.
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4. The number of the exponents satisfying (1)

In this section we give a lower bound of the size of the public exponents satisfying the

equation (1) with |XY | <
√

2
6 N

1
2 . To do this, we define a subclass of public exponents

by

e ≡ −φ(N)Y

X
(mod N) with 1 ≤ e < N,

where X and Y are two integers satisfying gcd(X,NY ) = 1, |XY | <
√

2
6 N

1
2 and all prime

factors of |Y | are less than the ECM bound B = 1040. The following lemma shows that
different tuples (X,Y ) lead to different public keys.

Lemma 4.1. Let X, Y , X ′, Y ′ be integers with gcd(X,NY ) = gcd(X ′, NY ′) = 1,

|XY | <
√

2
6 N

1
2 and |X ′Y ′| <

√
2

6 N
1
2 . Let

e ≡ −φ(N)Y

X
(mod N), e′ ≡ −φ(N)Y ′

X ′ (mod N)

with 1 ≤ e, e′ < N. If (X,Y ) 6= (X ′, Y ′), then e 6= e′.

Proof. Suppose that (X,Y ) 6= (X ′, Y ′) and, for contradiction, that e = e′ where

e ≡ −φ(N)Y

X
(mod N), e′ ≡ −φ(N)Y ′

X ′ (mod N).

Since gcd(X,N) = gcd(X ′, N) = 1, then e = e′ implies

φ(N)Y X ′ ≡ φ(N)XY ′ (mod N).

This means that there exists an integer k such that

φ(N)(Y X ′ − Y X ′) = Nk.

Since gcd(φ(N), N) = 1, then N is a factor of Y X ′ − Y X ′ which is impossible since

|Y X ′ − Y X ′| ≤ |Y X ′| + |Y X ′| <

√
2

3
N

1
2 < N.

Hence (X,Y ) = (X ′, Y ′) which terminates the proof. �
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Theorem 4.2. The size of the set of the exponents e satisfying e ≡ − φ(N)Y
X

(mod N)

with gcd(X,NY ) = 1, |XY | <
√

2
6 N

1
2 and all prime factors of |Y | are less than B = 1040

is at least

O
(
N

1
2
−ε
)

,

where ε is a small positive constant.

Proof. Define α0 by
Nα0 = B = 1040.

Let Ω denote the number of the exponents satisfying

e ≡ −φ(N)Y

X
(mod N),

with gcd(X,NY ) = 1, |X| <
√

2
6 N

1
2
−α0 and |Y | < Nα0 . Let Y0 = bNα0c and X0 =⌊√

2
6 N

1
2
−α0

⌋
. Then

Ω =

Y0∑

|Y |=1

X0∑

|X|=1

gcd(X,NY )=1

1 =

Y0∑

|Y |=1

Y0−1∑

|X|=1

gcd(X,Y )=1

1 +

Y0∑

|Y |=1

X0∑

|X|=Y0

gcd(X,Y )=1

1

>

Y0∑

|Y |=1

|Y |−1∑

|X|=1

gcd(X,Y )=1

1 +

X0∑

|X|=Y0

Y0∑

|Y |=1

gcd(X,Y )=1

1.

First consider the sum

S1 =

Y0∑

|Y |=1

|Y |−1∑

|X|=1

gcd(X,Y )=1

1.

Observe that
|Y |−1∑

|X|=1

gcd(X,Y )=1

1 = φ(|Y |).

Recall that φ(·) is the Euler totient function and satisfies (see [19])

φ(x) ≥ e−γx

9 log log(x)
, (11)

where γ is the Euler-Mascheroni constant. Applying this with |Y | < Nα0 , we get

φ(|Y |) ≥ e−γ |Y |
9 log log |Y | ≥

e−γ |Y |
9 log log(Nα0)

= N−ε1 |Y |,



RSA AND ECM 15

where ε1 is a small positive constant. Hence

S1 =

Y0∑

|Y |=1

|Y |−1∑

|X|=1

gcd(X,Y )=1

1 >

Y0∑

|Y |=1

φ(|Y |) ≥
Y0∑

|Y |=1

N−ε1 |Y | = Y0(Y0 + 1)N−ε1 . (12)

Next consider the sum

S2 =

X0∑

|X|=Y0

Y0∑

|Y |=1

gcd(X,Y )=1

1.

Using the Möbius function µ(·), we have

Y0∑

|Y |=1

gcd(X,Y )=1

1 ≥ Y0

∑

d||X|
gcd(X,Y )=1

µ(d)

d
≥ Y0

φ(|X|)
|X| .

Applying (11) with |X| <
√

2
6 N

1
2
−α0 , we get

φ(|X|) ≥ e−γ |X|
9 log log |X| ≥

e−γ |X|
9 log log

(√
2

6 N
1
2
−α0

) ≥ N−ε2 |X|,

where ε2 is a small positive constant. Hence

S2 =

X0∑

|X|=Y0

Y0∑

|Y |=1

gcd(X,Y )=1

1 ≥
X0∑

|X|=Y0

Y0
φ(|X|)
|X| ≥

X0∑

|X|=Y0

Y0N
−ε2 = 2Y0(X0 − Y0)N

−ε2 . (13)

Plugging (12) and (13) in Ω and setting ε = max(ε1, ε2), we get

Ω > S1 + S2 ≥ Y0(Y0 + 1)N−ε + 2Y0(X0 − Y0)N
−ε ≥ X0Y0N

−ε ≈
√

2

6
N

1
2
−ε.

This gives the claimed result. �

5. Conclusion

In this paper we investigated two attacks on the RSA keys e satisfying the linear
diophantine equation eX +φ(N)Y = NZ with a small solution. The standard algorithms
for solving this task are the continued fraction algorithm, the lattice based method of
Coppersmith for solving bivariate polynomials, the elliptic curve method for factoring
and the LLL (or the PSLQ) algorithm. For this problem, we were able to lower-bound
the number of keys satisfying e < N and eX + φ(N)Y = NZ with a small solution by

O
(
N

1
2
−ε
)

where ε is a small positive constant.
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2. J. Blömer, A. May, Low secret exponent RSA revisited, In Cryptography and Lattices - Proceedings
of CALC ’01, Lecture Notes in Computer Science, Springer-Verlag 2146 (2001), 4–19.
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