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Abstract. A well-known attack on RSA with low secret-exponent d
was given by Wiener in 1990. Wiener showed that using the equation
ed − (p − 1)(q − 1)k = 1 and continued fractions, one can efficiently
recover the secret-exponent d and factor N = pq from the public key

(N, e) as long as d < 1
3
N

1
4 . In this paper, we present a generalization

of Wiener’s attack. We show that every public exponent e that satisfies
eX − (p− u)(q − v)Y = 1 with

1 ≤ Y < X < 2−
1
4 N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,

and all prime factors of p − u or q − v are less than 1050 yields the
factorization of N = pq. We show that the number of these exponents is

at least N
1
2−ε.

Keywords: RSA, Cryptanalysis, ECM, Coppersmith’s method, Smooth num-
bers

1 Introduction

The RSA cryptosystem invented by Rivest, Shamir and Adleman [20] in 1978 is
today’s most important public-key cryptosystem. The security of RSA depends
on mainly two primes p, q of the same bit-size and two integers e, d satisfying
ed ≡ 1 (mod (p−1)(q−1)). Throughout this paper, we label the primes so that
q < p < 2q. The RSA modulus is given by N = pq and Euler’s totient function is
φ(N) = (p−1)(q−1). The integer e is called the public (or encrypting) exponent
and d is called the private (or decrypting) exponent.

To reduce the decryption time or the signature-generation time, one may
wish to use a short secret exponent d. This was cryptanalysed by Wiener [22] in
1990 who showed that RSA is insecure if d < 1

3N
0.25. Wiener’s method is based

on continued fractions. These results were extended by Boneh and Durfee [3] in
1999 to d < N0.292. The method of Boneh and Durfee is based on Coppersmith’s
results for finding small solutions of modular polynomial equations [6]. In 2004,
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Blömer and May [2] presented a generalization of Wiener’s attack by combin-
ing continued fractions and Coppersmith’s method. They showed that RSA is
insecure for every (N, e) satisfying ex+ y ≡ 0 (mod φ(N)) with x < 1

3N
1/4 and

|y| = O
(
N−3/4ex

)
.

In this paper, we present another generalization of Wiener’s attack. Our
method combines continued fractions, integer partial factorization, integer re-
lation detection algorithms and Coppersmith’s method. Let us introduce the
polynomial

ψ(u, v) = (p− u)(q − v).

Observe that ψ(1, 1) = (p − 1)(q − 1) = φ(N), so ψ could be seen as a gener-
alization of Euler’s function. We describe an attack on RSA that works for all
public exponents e satisfying

eX − ψ(u, v)Y = 1, (1)

with integers X, Y , u, v such that

1 ≤ Y < X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,

with the extra condition that all prime factors of p−u or q− v are less than the
Elliptic Curve Method of Factoring smoothness bound Becm = 1050. Here and
throughout this paper, we let [x] and bxc denote the nearest integer to the real
number x and the fractional part of x.

Observe that when u = 1, we get v = −1 and rewriting (1) as

eX − (p− 1)(q + 1)Y = 1,

a variant of Wiener’s attack enables us to compute p and q without assuming
any additional condition on the prime divisors of p− 1 nor q + 1.

Our new method works as follows: We use the Continued Fraction Algorithm
(see e.g. [11], p. 134) to find the unknowns X and Y among the convergents of
e
N . Then we use Lenstra’s Elliptic Curve Factorization Method (ECM) [14] to
partially factor eX−1

Y . Afterwards, we use an integer relation detection algorithm
(notably LLL [15] or PSLQ [7]) to find the divisors of the Becm-smooth part of
eX−1
Y in a short interval. Finally, we show that a method due to Coppersmith [6]

can be applied. Moreover, we show that the number of keys (N, e) for which our
method works is at least N

1
2−ε.

Organization of the paper. Section 2 presents well known results from number
theory that we use. After presenting some useful lemmas in Section 3, and some
properties of ψ in Section 4, we present our attack in Section 5 and in Section
6, we show that the number of keys (N, e) for which our method works is lower
bounded by N

1
2−ε. We briefly conclude the paper in Section 7.
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2 Preliminaries

2.1 Continued fractions and Wiener’s attack

The continued fraction expansion of a real number ξ is an expression of the form

ξ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

where a0 ∈ ZZ and ai ∈ IN−{0} for i ≥ 1. The numbers a0, a1, a2, · · · are called
the partial quotients. As usual, we adopt the notation ξ = [a0, a1, a2, · · · ]. For
i ≥ 0, the rationals ri

si
= [a0, a1, a2, · · · , ai] are called the convergents of the

continued fraction expansion of ξ. If ξ = a
b is rational with gcd(a, b) = 1, then

the continued fraction expansion is finite and the Continued Fraction Algorithm
(see [11], p. 134) finds the convergents in time O((log b)2). We recall a result on
diophantine approximations (see Theorem 184 of [11]).

Theorem 1. Suppose gcd(a, b) = gcd(x, y) = 1 and∣∣∣∣ab − x

y

∣∣∣∣ < 1
2y2

.

Then x
y is one of the convergents of the continued fraction expansion of a

b .

Let us recall Wiener’s famous attack on RSA with N = pq and q < p < 2q.
The idea behind Wiener’s attack on RSA [22] with small secret exponent d is that
for d < 1

3N
1/4, the fraction e/N is an approximation to k/d and hence, using

Theorem 1, k/d can be found from the convergents of the continued fraction
expansion of e/N . Wiener’s attack works as follows. Since ed− kφ(N) = 1 with
φ(N) = N − (p+ q − 1) and p+ q − 1 < 3

√
N then kN − ed = k(p+ q − 1)− 1.

Therefore, ∣∣∣∣kd − e

N

∣∣∣∣ =
|k(p+ q − 1)− 1|

Nd
<

3k
√
N

Nd
.

Now, assume that d < 1
3N

1/4. Since kφ(N) = ed − 1 < ed and e < φ(N), then
k < d < 1

3N
1/4. Hence∣∣∣∣kd − e

N

∣∣∣∣ < N3/4

Nd
=

1
dN1/4

<
1

2d2
.

From Theorem 1, we know that k/d is one of the convergents of the continued
fraction expansion of e/N .
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2.2 Coppersmith’s method

The problem of finding small modular roots of a univariate polynomial has been
extensively studied by Coppersmith [6], Howgrave-Graham [13], May [17] and
others. Let f(x) be a monic univariate polynomial with integer coefficients of
degree δ. Let N be an integer of unknown factorization and B = N1/δ. The
problem is to find all integers x0 such that |x0| < B and f(x0) ≡ 0 (mod N). In
1997, Coppersmith presented a deterministic algorithm using

(
2δ logN

)O(1) bit
operations to solve this problem. The algorithm uses lattice reduction techniques,
and as an application, the following theorem was proved (see also [17], Theorem
11).

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Given an
approximation p̃ of p with |p − p̃| < N

1
4 , N can be factored in time polynomial

in logN .

2.3 Smooth numbers

A few words about notation: let f and g be functions of x. The notation f � g
denotes that f(x)/g(x) is bounded above and below by positive numbers for large
values of x. The notation f = O(g) denotes that ∃c such that f(x) ≤ cg(x). The
notation f ∼ g denotes that limx→∞

f(x)
g(x) = 1.

Let y be a positive constant. A positive number n is y-smooth if all prime
factors of n are less than y. As usual, we use the notation Ψ(x, y) for the counting
function of the y-smooth numbers in the interval [1, x], that is,

Ψ(x, y) = # {n : 1 ≤ n ≤ x, n is y-smooth} .

The ratio Ψ(x, y)/[x] may be interpreted as the probability that a randomly
chosen number n in the interval [1, x] has all its prime factors less than y. The
function Ψ(x, y) plays a central role in the running times of many integer fac-
toring and discrete logarithm algorithms, including the Elliptic Curve Method
(ECM) [14] and the number field sieve method (NFS) [16]. Let ρ(u) be the
Dickman-de Bruijn function (see [9]). In 1986, Hildebrand [12] showed that

Ψ(x, y) = xρ(u)
{

1 +O

(
log(u+ 1)

log y

)}
where x = yu (2)

holds uniformly in the range y > exp
{
(log log x)5/3+ε

}
. Studying the distribu-

tion in short intervals of integers without large prime factors, Friedlander and
Granville [8] showed that

Ψ(x+ z, y)− Ψ(x, y) ≥ c
z

x
Ψ(x, y), (3)

in the range x ≥ z ≥ x
1
2+δ, x ≥ y ≥ x1/γ and x is sufficiently large where δ and

γ are positive constants and c = c(δ, γ) > 0.



Another Generalization of Wiener’s Attack on RSA 5

In order to study the distribution of divisors of a positive integer n, Hall and
Tenenbaum [10] studied the counting function

U(n, α) = #
{

(d, d′) : d|n, d′|n, gcd(d, d′) = 1,
∣∣∣∣log

d

d′

∣∣∣∣ < (log n)α
}
, (4)

where α is a real number. They proved that for any fixed α < 1 and almost all
n,

U(n, α) ≤ (log n)log 3−1+α+o(1), (5)

where the o(1) term tends to 0 as n tends to +∞.

2.4 ECM

The Elliptic Curve Method (ECM) was originally proposed by H.W. Lenstra [14]
in 1984 and then extended by Brent [4] and Montgomery [18]. It is suited to find
small prime factors of large numbers. The original part of the algorithm proposed
by Lenstra is referred to as Phase 1, and the extension by Brent and Montgomery
is called Phase 2. ECM relies on Hasse’s theorem: if p is a prime factor of a large
number M , then an elliptic curve over ZZ/pZZ has group order p + 1 − t with
|t| < 2

√
p, where t depends on the curve. If p + 1 − t is a smooth number,

then ECM will probably succeed and reveal the unknown factor p. ECM is a
sub-exponential factoring algorithm, with expected run time of

O
(
exp

{√
(2 + o(1)) log p log log p

}
Mult(M)

)
where the o(1) term tends to 0 as p tends to +∞ and Mult(M) denotes the
cost of multiplication mod M . The largest factor known to have been found by
ECM is a 67-digit factor of the number 10381 + 1, found by B. Dodson with
P. Zimmerman’s GMP-ECM program in August 2006 (see [23]). According to
Brent’s formula [5]

√
D = (Y − 1932.3)/9.3 where D is the number of decimal

digits in the largest factor found by ECM up to a given date Y , a 70-digit factor
could be found by ECM around 2010.

In Table 1, we give the running times obtained on a Intel(R) Pentium(R) 4
CPU 3.00 GHz to factor an RSA modulus N = pq of size 2n bits with q < p < 2q
with ECM, using the algebra system Pari-GP[19].

Table 1. Running times for factoring N = pq with q < p < 2q

n = Number of bits of q 60 70 80 90 100 110 120 130

T = Time in seconds 0.282 0.844 3.266 13.453 57.500 194.578 921.453 3375.719
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Extrapolating Table 1, we find the formula

log T = 2.609
√
n− 21.914 or equivalently T = exp

{
2.609

√
n− 21.914

}
,

where T denotes the running time to factor an RSA modulus N = pq with 2n
bits. Extrapolating, we can extract a prime factor of 50 digits (≈ 166 bits) in 1
day, 9 hours and 31 minutes. Throughout this paper, we then assume that ECM
is efficient to extract prime factors up to the bound Becm = 1050.

3 Useful lemmas

In this section we prove three useful lemmas. We begin with a simple lemma
fixing the sizes of the prime factors of the RSA modulus.
Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2N

1
2 < q < N

1
2 < p <

√
2N

1
2 .

Proof. Assume q < p < 2q. Multiplying by p, we get N < p2 < 2N or equiv-
alently N

1
2 < p <

√
2N

1
2 . Since q = N

p , we obtain 2−
1
2N

1
2 < q < N

1
2 and the

lemma follows. ut
Our second lemma is a consequence of Theorem 2 and Lemma 1.
Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Suppose |u| < N

1
4 .

If p − u < N
1
2 or p − u >

√
2N

1
2 , then the factorization of N can be found in

polynomial time.

Proof. Assume q < p < 2q and |u| < N
1
4 . If p − u < N

1
2 , then p < N

1
2 + u <

N
1
2 +N

1
4 . Combining this with Lemma 1, we obtain

N
1
2 < p < N

1
2 +N

1
4 .

It follows that p̃ = N
1
2 is an approximation of p with 0 < p − p̃ < N

1
4 . By

Theorem 2, we deduce that the factorization of N can be found in polynomial
time.

Similarly, if p − u >
√

2N
1
2 , then p >

√
2N

1
2 + u >

√
2N

1
2 −N

1
4 and using

Lemma 1, we get √
2N

1
2 > p >

√
2N

1
2 −N

1
4 .

It follows that p̃ =
√

2N
1
2 satisfies 0 > p− p̃ > −N 1

4 . Again, by Theorem 2, we
conclude that the factorization of N can be found in polynomial time. ut
Our third lemma is a consequence of the Fermat Factoring Method (see e.g. [21]).
We show here that it is an easy consequence of Theorem 2 and Lemma 1.
Lemma 3. Let N = pq be an RSA modulus with q < p < 2q. If p − q < N

1
4 ,

then the factorization of N can be found in polynomial time.

Proof. Assume q < p < 2q and p− q < N
1
4 . Combining with Lemma 1, we get

N
1
2 < p < q +N

1
4 < N

1
2 +N

1
4 .

It follows that p̃ = N
1
2 is an approximation of p with 0 < p − p̃ < N

1
4 . By

Theorem 2, we conclude that the factorization of N can be found in polynomial
time. ut



Another Generalization of Wiener’s Attack on RSA 7

4 Properties of ψ(u, v)

Let N = pq be an RSA modulus with q < p < 2q. The principal object of
investigation of this section is the polynomial ψ(u, v) = (p − u)(q − v) when p
and q are fixed.

Lemma 4. Let u be an integer with |u| < N
1
4 . Put v =

[
− qu
p−u

]
. Then

|ψ(u, v)−N | < 2−
1
2N

1
2 .

Proof. Since v is the nearest integral value to − qu
p−u , then

−1
2
≤ − qu

p− u
− v <

1
2
.

Hence
q +

qu

p− u
− 1

2
≤ q − v < q +

qu

p− u
+

1
2
.

Multiplying by p− u, we get

N − 1
2
(p− u) ≤ (p− u)(q − v) < N +

1
2
(p− u).

It follows that
|(p− u)(q − v)−N | ≤ 1

2
(p− u).

Since |u| < N
1
4 , then by Lemma 2, we can assume p−u <

√
2N

1
2 and we obtain

|(p− u)(q − v)−N | ≤ 2−
1
2N

1
2 .

This completes the proof. ut

Lemma 5. Let u be an integer with |u| < N
1
4 . Set v =

[
− qu
p−u

]
. Then |v| ≤ |u|.

Proof. Assume q < p < 2q and |u| < N
1
4 . By Lemma 3, we can assume that

p− q > N
1
4 . Then

u < N
1
4 < p− q,

and q < p− u. Hence

|v| =
[
q|u|
p− u

]
≤ q|u|
p− u

+
1
2
< |u|+ 1

2
.

Since u and v are integers, then |v| ≤ |u| and the lemma follows. ut

Lemma 6. Let u, u′, be integers with |u|, |u′| < N
1
4 . Define

v =
[
− qu

p− u

]
and v′ =

[
− qu′

p− u′

]
.

If v = v′, then |u′ − u| ≤ 1.
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Proof. Suppose v′ = v. Then, from the definitions of v and v′, we obtain∣∣∣∣ qu′

p− u′
− qu

p− u

∣∣∣∣ < 1,

Transforming this, we get

|u′ − u| < (p− u)(p− u′)
N

.

By Lemma 3 we can assume that p− u <
√

2N
1
2 and p− u′ <

√
2N

1
2 . Then

|u′ − u| <

(√
2N

1
2

)2

N
= 2.

Since u and u′ are integers, the lemma follows. ut

Lemma 7. Let u, u′, be integers with |u|, |u′| < N
1
4 . Define

v =
[
− qu

p− u

]
and v′ =

[
− qu′

p− u′

]
.

If ψ(u, v) = ψ(u′, v′), then u = u′.

Proof. Assume that ψ(u, v) = ψ(u′, v′), that is (p−u)(q−v) = (p−u′)(q−v′). If
v = v′, then p−u = p−u′ and u = u′. Next, assume for contradiction that v 6= v′.
Without loss of generality, assume that u > u′. Put ψ = ψ(u, v) = ψ(u′, v′) and
let U(ψ, α) as defined by (4), i.e.

U(ψ, α) = #
{

(d, d′) : d|ψ, d′|ψ, gcd(d, d′) = 1,
∣∣∣∣log

d

d′

∣∣∣∣ < (logψ)α
}
.

Let g = gcd(p − u, p − u′), d = p−u
g and d′ = p−u′

g . Hence gcd(d, d′) = 1. We
have

d

d′
=

p− u

p− u′
= 1− u− u′

p− u′
.

By Lemma 2, we can assume that p− u > N
1
4 . For N > 28 we have

0 <
u− u′

p− u′
<

2N
1
4

N
1
2

= 2N− 1
4 <

1
2
.

Using that | log(1− x)| < 2x holds for 0 < x < 1
2 this yields∣∣∣∣log

d

d′

∣∣∣∣ =
∣∣∣∣log

(
1− u− u′

p− u′

)∣∣∣∣ < 2× u− u′

p− u′
< 2

√
2N− 1

4 = (logψ)α ,

where

α =
log

(
2
√

2N− 1
4

)
log(log(ψ))

.
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It follows that U(ψ, α) ≥ 1. On the other hand, we have

α =
log

(
2
√

2N− 1
4

)
log(log(ψ))

≤
log

(
2
√

2N− 1
4

)
log

(
log

(
N − 2−

1
2N

1
2

)) < 1− log 3,

where we used Lemma 4 in the medium step and N > 27 in the final step. Using
the bound (5), we have actually

U(ψ, α) ≤ (logψ)log 3−1+α+o(1) ≤ (logN)δ+o(1),

where δ = log 3− 1 + α < 0 and we deduce U(ψ, α) = 0, a contradiction. Hence
v = v′, u = u′ and the lemma follows. ut

Lemma 8. Let u, u′ be integers with |u|, |u′| < N
1
4 . Define

v =
[
− qu

p− u

]
and v′ =

[
− qu′

p− u′

]
.

Assume that ψ(u, v) < ψ(u′, v′). Let [a0, a1, a2, · · · ] be the continued fraction
expansion of ψ(u,v)

ψ(u′,v′) . Then a0 = 0, a1 = 1 and a2 > 2−
1
2N

1
2 − 1

2 .

Proof. Let us apply the continued fraction algorithm (see e.g. of [11], p. 134).
Assuming ψ(u, u) < ψ(u′, v′), we get

a0 =
⌊
ψ(u, v)
ψ(u′, v′)

⌋
= 0.

Next, we have

a1 =

 1
ψ(u,v)
ψ(u′,v′) − a0

 =
⌊
ψ(u′, v′)
ψ(u, v)

⌋
.

By Lemma 4, we have

0 < ψ(u′, v′)− ψ(u, v) ≤ |ψ(u, v)−N |+ |ψ(u′, v′)−N | <
√

2N
1
2 . (6)

Combining this with Lemma 4, we get

0 <
ψ(u′, v′)
ψ(u, v)

− 1 =
ψ(u′, v′)− ψ(u, v)

ψ(u, v)
<

√
2N

1
2

ψ(u, v)
<

√
2N

1
2

N − 2−
1
2N

1
2
< 1.

From this, we deduce a1 = 1. Finally, combining (6) and Lemma 4, we get

a2 =

 1
ψ(u′,v′)
ψ(u,v) − a1

 =
⌊

ψ(u, v)
ψ(u′, v′)− ψ(u, v)

⌋
>
N − 2−

1
2N

1
2

√
2N

1
2

= 2−
1
2N

1
2 − 1

2
.

This completes the proof. ut
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5 The new attack

In this section we state our new attack. Let N = pq be an RSA modulus with
q < p < 2p. Let e be a public exponent satisfying an equation eX−ψ(u, v)Y = 1
with integers X, Y , u, v such that

1 ≤ Y < X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,

and with the condition that all prime factors of p−u or q−v are ≤ Becm = 1050.
Our goal is to solve this equation. As in Wiener’s approach, we use the continued
fraction algorithm to recover the unknown values X and Y .

Theorem 3. Let N = pq be an RSA modulus with q < p < 2p. Suppose that
the public exponent e satisfies an equation eX − ψ(u, v)Y = 1 with

|u| < N
1
4 , v =

[
− qu

p− u

]
, 1 ≤ Y < X < 2−

1
4N

1
4 .

Then Y
X is one of the convergents of the continued fraction expansion of e

N .

Proof. Starting with the equation eX − ψ(u, v)Y = 1, we get

eX −NY = 1− (N − ψ(u, v))Y.

Together with Lemma 4, this implies∣∣∣∣ eN − Y

X

∣∣∣∣ =
|1− (N − ψ(u, v))Y |

NX

≤ 1 + |(N − ψ(u, v))|Y
NX

≤ 1 + 2−
1
2N

1
2Y

NX

≤ 2 +
√

2N
1
2 (X − 1)

2NX
.

Suppose we can upperbound the right-hand side term by 1
2X2 , that is

2 +
√

2N
1
2 (X − 1)

2NX
<

1
2X2

,

then, applying Theorem 1 the claim follows. Rearranging to isolate X, this leaves
us with the condition

√
2N

1
2X2 −

(√
2N

1
2 − 2

)
X −N < 0.

It is not hard to see that the condition is satisfied if X < 2−
1
4N

1
4 . This gives us

the theorem. ut
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Afterwards, we combine ECM, integer relation detection algorithms and Cop-
persmith’s method to factor N = pq.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2p. Let Becm be
the ECM-bound. Suppose that the public exponent e < N satisfies an equation
eX − ψ(u, v)Y = 1 with

|u| < N
1
4 , v =

[
− qu

p− u

]
, 1 ≤ Y < X < 2−

1
4N

1
4 .

If p− u or q − v is Becm-smooth, then we can efficiently factor N .

Proof. By Theorem 3 we know that X and Y can be found among the conver-
gents of the continued expansion of e

N . From X and Y , we get

ψ(u, v) = (p− u)(q − v) =
eX − 1
Y

.

Without loss of generality, suppose that p − u is Becm-smooth. Using ECM,
write eX−1

Y = M1M2 where M1 is Becm-smooth. Let ω(M1) denote the number
of distinct prime factors of M1. Then the prime factorization of M1 is of the
form

M1 =
ω(M1)∏
i=1

pai
i ,

where the ai ≥ 1 are integers and the pi are distinct primes ≤ Becm. Since p−u
is Becm-smooth, then p− u a divisor of M1, so that

p− u =
ω(M1)∏
i=1

pxi
i , (7)

where the xi are integers satisfying 0 ≤ xi ≤ a1. By Lemma 2, we can assume
that N

1
2 < p− u <

√
2N

1
2 . Combining this with (7) and taking logarithms, we

get

0 <
ω(M1)∑
i=1

xi log pi −
1
2

logN <
1
2

log 2. (8)

These inequalities are related to Baker’s famous theory of linear forms in log-
arithms [1] and can be formulated as a nearly closest lattice problem in the
1-norm. They can be solved using the LLL [15] or the PSLQ algorithm [7]. The
complexity of LLL and PSLQ depends on ω(M1). Since Hardy and Ramanujan
(see e.g.Theorem 431 of [11]), we know that, in average, ω(M1) ∼ log logM1 if
M1 is uniformly distributed. Since X < 2−

1
4N

1
4 , we have for e < N

M1 ≤
eX − 1
Y

<
eX

Y
≤ eX < N

5
4 ,
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This implies that the number of primes dividing M1 satisfies

ω(M1) ∼ log logM1 ∼ log logN.

Next, let us investigate the number of solutions of (8) which is related to the
number of divisors of M1. Let τ(M1) denote the number of positive divisors of
M1. The prime decomposition of M1 gives the exact value

τ(M1) =
ω(M1)∏
i=1

(1 + ai).

By Dirichlet’s Theorem, we know that if M1 is uniformly distributed, then the
average order of τ(M1) is logM1 (see Theorem 319 of [11]). It follows that the
average number of divisors of M1 is

τ(M1) ∼ log(M1) ∼ log(N).

This gives in average the number of solutions to the inequalities (8).
Next, let D be a divisor of M1 satisfying (8). If D is a good candidate for

p−u with |u| < N
1
4 , then applying Theorem 2, we get the desired factor p. This

concludes the theorem. ut

Notice that the running time is dominated by ECM since every step in our at-
tack can be done in polynomial time and the number of convergents and divisors
are bounded by O(logN).

6 The number of exponents for the new method

In this section, we estimate the number of exponents for which our method
works. Let N = pq be an RSA modulus with q < p < 2q. The principal object
of investigation of this section is the set

H(N) =
{
e : e < N, ∃u ∈ V (p), ∃X < 2−

1
4N

1
4 , e ≡ X−1 (mod ψ(u, v))

}
,

where

V (p) =
{
u : |u| < p

1
2 , p− u is Becm-smooth

}
, (9)

and v =
[
− qu
p−u

]
.

We will first show that every public exponent e ∈ H(N) is uniquely defined
by a tuple (u,X). We first deal with the situation when an exponent e is defined
by different tuples (u,X) and (u,X ′).

Lemma 9. Let N = pq be an RSA modulus with q < p < 2p. Let u, v, X,
X ′ be integers with 1 ≤ X,X ′ < 2−

1
4N

1
4 and gcd(XX ′, ψ(u, v)) = 1 where

v =
[
− qu
p−u

]
. Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u, v)).

If e = e′, then X = X ′.
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Proof. Since e ≡ X−1 (mod ψ(u, v)), there exists a positive integer Y such that
eX−ψ(u, v)Y = 1 with gcd(X,Y ) = 1. Similarly, e′ satisfies e′X ′−ψ(u, v)Y ′ = 1
with gcd(X ′, Y ′) = 1. Assume that that e = e′. Then

1 + ψ(u, v)Y
X

=
1 + ψ(u, v)Y ′

X ′ .

Combining this with Lemma 4, we get

|XY ′ −X ′Y | = |X ′ −X|
ψ(u, v)

<
2−

1
4N

1
4

N − 2−
1
2N

1
2
< 1.

Hence XY ′ = X ′Y and since gcd(X,Y ) = 1, we get X ′ = X and the lemma
follows. ut

Next, we deal with the situation when an exponent e is defined by different
tuples (u,X) and (u′, X ′) with u 6= u′ and v = v′.

Lemma 10. Let N = pq be an RSA modulus with q < p < 2p. Let u, u′ be
integers with |u|, |u′| < N

1
4 . Let X, X ′ be integers with 1 ≤ X,X ′ < 2−

1
4N

1
4 ,

gcd(X,ψ(u, v)) = 1, gcd(X ′, ψ(u′, v′)) = 1 where v =
[
− qu
p−u

]
and v′ =

[
− qu′

p−u′

]
.

Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u′, v′)).

If v = v′ and e = e′, then X = X ′ and u = u′.

Proof. As in the proof of Lemma 9, rewrite e and e′ as

e =
1 + ψ(u, v)Y

X
and e′ =

1 + ψ(u′, v′)Y ′

X ′ .

Suppose e = e′. Then

|ψ(u′, v′)XY ′ − ψ(u, v)X ′Y | = |X ′ −X|. (10)

Assuming v = v′ and using ψ(u, v) = (p− u)(q − v), ψ(u′, v′) = (p− u′)(q − v)
in (10), we get

(q − v) |(p− u′)XY ′ − (p− u)X ′Y | = |X ′ −X|.

By Lemma 2, we have q−v > 2−
1
2N

1
2 −N 1

4 > N
1
4 and since |X ′−X| < 2−

1
4N

1
4 ,

we get {
X ′ −X = 0,
(p− u′)XY ′ − (p− u)X ′Y = 0.

Hence X = X ′ and (p−u′)Y ′ = (p−u)Y . Suppose for contradiction that u′ 6= u.
Put g = gcd(p − u′, p − u). Then g divides (p − u) − (p − u′) = u′ − u. Since
v = v′, by Lemma 6 we have |u′ − u| ≤ 1, so g = 1. Hence gcd(p− u′, p− u) = 1
and p− u divides Y ′. Since p− u > N

1
2 and Y ′ < X ′ < 2−

1
4N

1
4 , this leads to a

contradiction, so we deduce that u′ = u. This terminates the proof. ut
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Using the methods used to prove Lemma 9 and Lemma 10 plus some additional
arguments, we shall prove the following stronger result.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2p. Let u, u′ be
integers with |u|, |u′| < N

1
4 . Let X, X ′ be integers with 1 ≤ X,X ′ < 2−

1
4N

1
4 ,

gcd(X,ψ(u, v)) = 1, gcd(X ′, ψ(u′, v′)) = 1 where v =
[
− qu
p−u

]
and v′ =

[
− qu′

p−u′

]
.

Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u′, v′)).

If e = e′, then u = u′, v = v′ and X = X ′.

Proof. Assume that e = e′. Then, as in the proof of Lemma 10, e and e′ sat-
isfy (10). We first take care of some easy cases.

If u = u′, then v = v′ and by Lemma 9, we get X = X ′.
If v = v′, then by Lemma 10, we get u = u′ and X = X ′.
Without loss of generality, suppose that ψ(u, v) < ψ(u′, v′). Transform-

ing (10), we get∣∣∣∣XY ′X ′Y
− ψ(u, v)
ψ(u′, v′)

∣∣∣∣ =
|X ′ −X|

X ′Y ψ(u′, v′)
≤ max(X ′, X)
X ′Y ψ(u′, v′)

<
1

2(X ′Y )2
,

where the final step is trivial since, for N ≥ 210

2 max(X ′, X)X ′Y < 2×
(
2−

1
4N

1
4

)3

< N − 2−
1
2N

1
2 < ψ(u′, v′).

Combined with Theorem 1, this implies that XY ′

X′Y is one of the convergents of
the continued fraction expansion of ψ(u,v)

ψ(u′,v′) . By Lemma 8, the first non trivial

convergents are 1
1 and a2

a2+1 where a2 > 2−
1
2N

1
2 − 1

2 . Observe that

a2 + 1 > 2−
1
2N

1
2 − 1

2
+ 1 = 2−

1
2N

1
2 +

1
2
> 2−

1
2N

1
2 =

(
2−

1
4N

1
4

)2

> X ′Y.

This implies that the only possibility for XY ′

X′Y to be a convergent of ψ(u,v)
ψ(u′,v′) is

1
1 . This gives XY ′ = X ′Y . Since gcd(X,Y ) = gcd(X ′, Y ′) = 1 then X = X ′

and Y = Y ′. Replacing in (10), we get ψ(u′, v′) = ψ(u, v) and by Lemma 7, we
deduce u = u′. This completes the proof. ut

We now determine the order of the cardinality of the set H(N). Recall that
the elements of H(N) are uniquely defined by the congruence

e ≡ X−1 (mod ψ(u, v)),

where |u| < N
1
4 , v =

[
− qu
p−u

]
, 1 ≤ X < 2−

1
4N

1
4 and gcd(X,ψ(u, v)) = 1. In

addition, p− u is Becm-smooth.
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Theorem 6. Let N = pq be an RSA modulus with q < p < 2p. We have

#H(N) ≥ N
1
2−ε,

where ε is a small positive constant.

Proof. Assume Becm < p− p
1
2 . Let us consider the set V (p) as defined by (9).

Put x = p− p
1
2 , z = 2p

1
2 and y = Becm. Define δ > 0 and γ > 0 such that

x
1
2+δ ≤ z, y = x1/γ .

Then x ≥ z ≥ x
1
2+δ, x ≥ y ≥ x1/γ and the conditions to apply (3) are fulfilled.

On the other hand, we have y > exp
{
(log log x)5/3+ε

}
for x < exp

{
107−ε} and

the condition to apply (2) is fulfilled. Combining (3) and (2), we get

#V (p) = Ψ(x+ z, y)− Ψ(x, y) ≥ c
z

x
Ψ(x, y) = czρ (γ)

{
1 +O

(
log (γ + 1)

log(y)

)}
,

where c = c(δ, γ) > 0 and ρ (γ) is the Dickman-de Bruijn ρ-function (see Table 2).
Hence

#V (p) ≥ cρ (γ) z = 2cρ (γ) p
1
2 .

Since trivially #V (p) < z = 2p
1
2 , we get #V (p) � p

1
2 . Combining this with

Table 2, we conclude that #V (p) is lower bounded as follows

#V (p) ≥ p
1
2−ε

′
= N

1
4−ε1 ,

with small constants ε′ > 0 and ε1 > 0.
Next, for every integer u with |u| < N

1
4 put

W (u) =
{
X : 1 ≤ X < 2−

1
4N

1
4 , (X,ψ(u, v)) = 1

}
,

where v =
[
− qu
p−u

]
. Setting m =

⌊
2−

1
4N

1
4

⌋
, we have

#W (u) =
m∑
X=1

(X,ψ(u,v))=1

1 =
∑

d|ψ(u,v)

µ(d)
⌊m
d

⌋
≥ m

∑
d|ψ(u,v)

µ(d)
d

=
mφ(ψ(u, v))
ψ(u, v)

where µ(.) is the Möbius function and φ(.) is the Euler totient function. We shall
need the well known result (see Theorem 328 of [11]),

φ(n)
n

≥ C

log log n
,

where C is a positive constant. Applying this with n = ψ(u, v) and using
Lemma 4, we get

#W (u) ≥ Cm

log logψ(u, v)
≥ 2−

1
4CN

1
4

log log
(
N + 2−

1
2N

1
2

) = N
1
4−ε2 ,
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with a small constant ε2 > 0.
It remains to show that #H(n) ≥ N

1
4−ε where ε is a positive constant.

Indeed, for every u ∈ V (p) there are at least N
1
4−ε2 integers X ∈W (u). Hence

#H(n) ≥ #V (p)#W (u) ≥ N
1
2−ε1−ε2 .

Setting ε = ε1 + ε2, this completes the proof of the theorem. ut

Table 2. Table of values of ρ (γ) with
(
p−√p

) 1
γ = Becm = 1050

Number of bits of p 256 512 1024 2048

γ =
log

(
p−√p

)
log Becm

≈ 1.5 3 6.25 12.50

ρ (γ) ≈(see[9]) 5.945× 10−1 4.861× 10−2 9.199× 10−6 1.993× 10−15

7 Conclusion

Wiener’s famous attack on RSA with d < 1
3N

0.25 shows that using the equation
ed − k(p − 1)(q − 1) = 1 and a small d makes RSA insecure. In this paper, we
performed a generalization of this attack. We showed that we can find any X
and Y with 1 ≤ Y < X < 2−0.25N0.25 from the continued fraction expansion of
e/N when they satisfy an equation

eX − Y (p− u)
(
q +

[
qu

p− u

])
= 1,

and if p − u or q + [qu/(p − u]) is smooth enough to factor, then p and q can
be found from X and Y . Our results illustrate that one should be very cautious
when choosing some class of RSA exponent. Note that our attack, as well as all
the attacks based on continued fractions do not apply to RSA with modulus N
and small public exponents as the popular values e = 3 or e = 216+1 because the
non-trivial convergents of e

N are large enough to use diophantine approximation
techniques, namely Theorem 1.

References

1. Baker, A.: Linear forms in the logarithms of algebraic numbers IV. Mathematika
15, 204–216, 1966.

2. Blömer, J., May, A.: A generalized Wiener attack on RSA. In Public Key Cryp-
tography - PKC 2004, volume 2947 of Lecture Notes in Computer Science, pp. 1-13.
Springer-Verlag, 2004.



Another Generalization of Wiener’s Attack on RSA 17

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292,
Advances in Cryptology Eurocrypt’99, Lecture Notes in Computer Science Vol. 1592,
Springer-Verlag, 1-11, 1999.

4. Brent, R.P.: Some integer factorization algorithms using elliptic curves, Australian
Computer Science Communications, vol. 8, 149-163, 1986.

5. Brent, R.P.: Recent progress and prospects for integer factorisation algorithms,
Springer-Verlag LNCS 1858, 3–22, 2000.

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, 10(4), 233-260, 1997.

7. Ferguson, H.R.P., Bailey, D.H.: A polynomial time, numerically stable integer rela-
tion algorithm. RNR Technical Report RNR-91-032, NASA Ames Research Center,
Moffett Field, CA. (December 1991)

8. Friedlander, J., Granville, A.: Smoothing “Smooth” Numbers, Philos. Trans. Roy.
Soc. London Ser. A 345, 339–347, 1993.

9. Granville, A.: Smooth numbers: computational number theory and beyond, Proc.
MSRI Conf. Algorithmic Number Theory: Lattices, Number Fields, Curves, and
Cryptography, Berkeley, 2000, J. Buhler and P. Stevenhagen, eds., Cambridge Uni-
versity Press.

10. Hall, R.R., Tenenbaum, G.: Divisors. Cambridge Tracts in Mathematics, 90, Cam-
bridge University Press, 1988.

11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, London, 1965.

12. Hildebrand, A.: On the number of positive integers ≤ x and free of prime factors
> y, J. Number Theory 22, 289–307, 1986.

13. Howgrave-Graham, N.A.: Finding small roots of univariate modular equations re-
visited. In Cryptography and Coding, LNCS 1355, pp. 131-142, Springer-Verlag, 1997.

14. Lenstra, H.W.: Factoring integers with elliptic curves, Annals of Mathematics, vol.
126, 649-673, 1987.

15. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational co-
efficients, Mathematische Annalen, Vol. 261, 513-534, 1982.

16. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve, Proc. 22nd Annual ACM Conference on Theory of Computing, pp. 564–572,
Baltimore, Maryland, 1990.

17. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods, Ph.D. thesis,
Paderborn, 2003,
http://www.informatik.tu-darmstadt.de/KP/publications/03/bp.ps

18. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation, vol. 48, 243-264, 1987.

19. PARI/GP, version 2.1.7, Bordeaux, 2007, http://pari.math.u-bordeaux.fr/
20. Rivest, R., Shamir A., Adleman, L.: A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems, Communications of the ACM, Vol. 21 (2), 120-126,
1978.

21. de Weger, B.: Cryptanalysis of RSA with small prime difference, Applicable Alge-
bra in Engineering, Communication and Computing,Vol. 13(1), 17-28, 2002.

22. Wiener, M.: Cryptanalysis of short RSA secret exponents, IEEE Transactions on
Information Theory, Vol. 36, 553-558, 1990.

23. Zimmerman, P.: The ECMNET Project,
http://www.loria.fr/~zimmerma/records/ecmnet.html


