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Abstract. Let N = pq be an RSA modulus, i.e. the product of two large
unknown primes of equal bit-size. In the X9.31-1997 standard for public
key cryptography, Section 4.1.2, there are a number of recommendations
for the generation of the primes of an RSA modulus. Among them, the
ratio of the primes shall not be close to the ratio of small integers. In
this paper, we show that if the public exponent e satisfies an equation
eX − (N − (ap + bq))Y = Z with suitably small integers X, Y , Z, where
a
b

is an unknown convergent of the continued fraction expansion of q
p
,

then N can be factored efficiently. In addition, we show that the number

of such exponents is at least N
3
4−ε where ε is arbitrarily small for large

N .

Keywords: RSA, Cryptanalysis, Factorization, Coppersmith’s Method, Con-
tinued Fraction

1 Introduction

The RSA public-key cryptosystem [15] was invented by Rivest, Shamir, and
Adleman in 1978. Since then, the RSA system has been the most widely accepted
public key cryptosystem. In the RSA cryptosystem, the modulus N = pq is
a product of two primes of equal bit-size. Let e be an integer coprime with
φ(N) = (p− 1)(q − 1), the Euler function of N . Let d be the integer solution of
the equation ed ≡ 1 (mod φ(N)) with d < φ(N). We call e the public exponent
and d the private exponent. The pair (N, e) is called the public key and the pair
(N, d) is the corresponding private key.

RSA is computationally expensive as it requires exponentiations modulo the
large RSA modulus N . For efficient modular exponentiation in the decryp-
tion/signing phase, one may be tempted to choose a small d. Unfortunately,
Wiener [17] showed in 1990 that using continued fractions, one can efficiently
recover the secret exponent d from the public key (N, e) as long as d < 1

3N
1
4 .

Wiener’s attack is based on solving the equation ex−φ(N)y = 1 where x < 1
3N

1
4 .

Since then, attacking RSA using information encoded in the public key (N, e)
has been a stimulating area of research.

http://www.math.unicaen.fr/~nitaj
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Based on the lattice basis reduction, Boneh and Durfee [2] proposed in 1999
a new attack on the use of short secret exponent d, namely, they improved the
bound to d < N0.292.

In 2004, Blömer and May [1] showed that N can be factored in polynomial
time for every public key (N, e) satisfying an equation ex−(N +1−(p+q))k = y,

with x < 1
3N

1
4 and |y| < N− 3

4 ex.
Another attack using information encoded in (N, e) was recently proposed

by Nitaj in [13]. The idea of [13] is based on solving the equation satisfied by
the public exponent e. Suppose e satisfies an equation eX − (p−u)(q− v)Y = 1
with 1 ≤ Y ≤ X < 2−

1
4 N

1
4 , |u| < N

1
4 and v =

[
− qu

p−u

]
. If the prime factors of

p− u or q − v are less than 1050, then N can be factored efficiently.
In this paper, we propose new attacks on RSA. Let N = pq be an RSA

modulus with q < p < 2q. Let a
b be an unknown convergent of the continued

fraction expansion of q
p . Define α such that ap + bq = N

1
2+α with 0 < α < 1

2 .
We focus on the class of the public exponents satisfying an equation

eX − (N − (ap + bq))Y = Z,

with small parameters X, Y , Z satisfying

1 ≤ Y ≤ X <
1
2
N

1
4−

α
2 , gcd(X, Y ) = 1,

and Z depends on the size of |ap − bq|. We present three attacks according to
the size of the difference |ap − bq|. The first attack concerns small difference,
i.e. |ap − bq| < (abN)

1
4 , the second attack will work for medium difference, i.e.

(abN)
1
4 < |ap − bq| < aN

1
4 , and the third attack concerns large difference, i.e.

|ap − bq| > aN
1
4 . The first attack always lead to the factorization of N . The

second and the third attacks work if, in addition, b ≤ 1052. This corresponds to
the current limit of the Elliptic Curve Method [8] to find large factors of integers.

The attacks combine techniques from the theory of continued fractions, Cop-
persmith’s method [5] for finding small roots of bivariate polynomial equations
and the Elliptic Curve Method [8] for Integer Factorization. We also show that
the set of exponents e for which our approach works is at least N

3
4−ε where ε is

a small positive constant depending only on N .
Our approach is more efficient if q

p is close to a
b with small integers a and

b. This is a step in the direction of the recommendations of the X9.31-1997
standard for public key cryptography (Section 4.1.2) which requires that the
ratio of the primes shall not be close to the ratio of small integers. It is important
to notice that, since q < p < 2q, then 0

1 and 1
1 are among the convergents of the

continued fraction expansion of q
p (see Section 2). For a = 0, b = 1, the equation

eX − (N − (ap + bq))Y = Z becomes

eX − q(p− 1)Y = Z.

and was studied by Nitaj [12] with suitably small parameters X, Y , Z. Conse-
quently, in this paper, we focus on the convergents a

b with a ≥ 1. For a = b = 1,
our third attack applies and matches the attack of Blömer and May [1].
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The rest of the paper is organized as follows. In Section 2 we give a brief intro-
duction to continued fractions, Coppersmith’s lattice-based method for finding
small roots of polynomials [5] and the Elliptic Curve Method of Factorization.
In Section 3 we study the properties of the convergents of the continued fraction
expansion of the ratio of the primes of N = pq. In Section 4 we present the new
attacks. In Section 5, we give an estimate for the size of the set of the public
exponents for which our attacks work. Section 6 concludes the paper.

2 Preliminaries on Continued Fractions, Coppersmith’s
Method and The Elliptic Curve Method (ECM)

We first introduce some notation. The integer closest to x is denoted [x] and the
largest integer less than or equal to x is denoted bxc.

2.1 Continued Fractions and the Euclidean Algorithm

We briefly recall some basic definitions and facts that we use about continued
fractions and the Euclidean algorithm, which can be found in [6].

The process of finding the continued fraction expansion of a rational number
q
p involves the same series of long divisions that are used in the application of
the Euclidean algorithm to the pair of integers (q, p). Starting with r−2 = q and
r−1 = p, define the recursions

ai =
⌊

ri−2

ri−1

⌋
, ri = ri−2 − airi−1, i ≥ 0, (1)

where ai is the integer quotient bri−2/ri−1c and ri is the integer remainder that
satisfies 0 ≤ ri < ri−1. The Euclidean algorithm terminates with a series of
remainders satisfying

0 = rm < rm−1 < · · · < r2 < r1 < r0 < r−1 = p.

The continued fraction expansion of q
p is then

q

p
= a0 +

1

a1 +
1

a2 +
1

· · · +
1

am

,

or alternatively, q
p = [a0, a1, · · · , am]. The rational number [a0, a1, · · · , ai] with

0 ≤ i ≤ m is called the i-th convergent of q
p and satisfies

[a0, a1, · · · , ai] =
pi

qi
,
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where the integers pi and qi are coprime positive integers. Note that the integers
pi and qi are also defined by the double recursions

p−2 = 0, p−1 = 1, pi = aipi−1 + pi−2, i ≥ 0, (2)
q−2 = 1, q−1 = 0, qi = aiqi−1 + qi−2, i ≥ 0. (3)

Since q < p < 2q, we have q
p < 1 and taking i = 0 in (1), (2) and (3), we get

a0 =
⌊

r−2

r−1

⌋
=
⌊

q

p

⌋
= 0, r0 = q, p0 = 0, q0 = 1.

Similarly, we have 1 < p
q < 2 and taking i = 1 in (1), (2) and (3), we get

a1 =
⌊

r−1

r0

⌋
=
⌊

p

q

⌋
= 1, p1 = 1, q1 = 1.

From this we deduce that the first convergents of the continued fraction expan-
sion of q

p are 0
1 and 1

1 .

Proposition 1. Let q
p = [a0, a1, · · · , am] be a continued fraction. For 0 ≤ i <

m, we have ∣∣∣∣qp − pi

qi

∣∣∣∣ < 1
q2
i

.

We terminate with a famous result on good rational approximations.

Theorem 1. Let q
p = [a0, a1, · · · , am]. If a and b are coprime positive integers

such that b < p and ∣∣∣∣qp − a

b

∣∣∣∣ < 1
2b2

,

then a = pi and b = qi for some i with 0 ≤ i ≤ m.

2.2 Coppersmith’s Method

At Eurocrypt’96, Coppersmith [5] introduced two lattice reduction based tech-
niques to find small roots of polynomial diophantine equations. The first tech-
nique works for modular univariate polynomials, the second for bivariate integer
polynomial equations. Since then, Coppersmith’s techniques have been used in a
huge variety of cryptanalytic applications. Coppersmith illustrated his technique
for solving bivariate integer polynomial equations with the problem of finding
the factors of n = xy if we are given the high order 1

4 log2 n bits of y.

Theorem 2. Let n = xy be the product of two unknown integers such that
x < y < 2x. Given an approximation of y with additive error at most n

1
4 , then

x and y can be found in polynomial time.
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2.3 The Elliptic Curve Method of Factorization

The difficulty of factoring a large number is an element of the security of the RSA
system. In the recent years, the limits of the best factorization algorithms have
been extended greatly. There are two classes of algorithms for finding a nontrivial
factor p of a composite integer n. The algorithms in which the run time depends
on the size of n: Lehmans algorithm [7], the Continued Fraction algorithm [11],
the Multiple Polynomial Quadratic Sieve algorithm [16], the Number Field Sieve
[9]. And the algorithms in which the run time depends on the size of p: Trial
Division, Pollard’s “rho” algorithm [14], Lenstra’s Elliptic Curve Method [8].

The Elliptic Curve Method (ECM for short) was originally proposed by H.W.
Lenstra [8] and subsequently extended by Brent [3], [4], and Montgomery [10].
The original part of the algorithm proposed by Lenstra is typically referred to
as Phase 1, and the extension by Brent and Montgomery is called Phase 2. ECM
is suited to find small factors p of large numbers n and has complexity

O
(
exp

{
c
√

log p log log p
}

M(n)
)

,

where c > 0 and M(n) denotes the cost of multiplication (mod n). R. Brent [4]
extrapolated that the Elliptic Curve Method record will be a D-digit factor in
year Y (D) = 9.3

√
D + 1932.3. According to this formula, Y (50) ≈ 1998 and

Y (67) ≈ 2008. A table of the largest factors found using the ECM is maintained
by Zimmermann [18]. The largest prime factor found using the ECM had 67
decimal digits and was found by B. Dodson on August 24, 2006.

3 Useful Lemmas and Properties

First we recall a very useful lemma (see [13]).

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2 N

1
2 < q < N

1
2 < p < 2

1
2 N

1
2 .

The following lemma shows that a and b are of the same bit-size.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. If a
b is a convergent

of q
p with a ≥ 1, then a ≤ b ≤ 2a.

Proof. If b = 1, then a = 1 and the inequalities a ≤ b ≤ 2a are satisfied. Next,
suppose b ≥ 2. Observe that if a

b is a convergent of q
p then by Proposition 1 we

have |ap− bq| ≤ p
b ≤

p
2 . Isolating bq and dividing by q, we get

a
p

q
− p

2q
≤ b ≤ a

p

q
+

p

2q
.

Combining this with 1 < p
q < 2, we get

a− p

2q
< a

p

q
− p

2q
≤ b ≤ a

p

q
+

p

2q
< 2a +

p

2q
.

Since p < 2q, then 0 < p
2q < 1. Hence a ≤ b ≤ 2a which completes the proof. ut
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The following lemma plays an important role in this paper. Recall that the
integer closest to x is denoted [x].

Lemma 3. Let N = pq be an RSA modulus with q < p < 2q and a
b a convergent

of the continued fraction expansion of q
p with a ≥ 1. Let ap + bq = N

1
2+α with

α < 1
2 . If |ap + bq −M | < 1

2N
1
2−α, then

ab =
[
M2

4N

]
.

Proof. Set M = ap + bq + x. Using (ap− bq)2 = (ap + bq)2− 4abN , we get, after
rearrangement,

M2 − 4abN = (ap + bq + x)2 − 4abN = (ap− bq)2 + 2(ap + bq)x + x2. (4)

Consider the term (ap− bq)2 on the right side of (4). If b = 1, then by Lemma 2,
a = 1. Hence, since q < p < 2q, we have |ap− bq| = |p− q| = p− q < p

2 . If b ≥ 2,
then by Proposition 1, we have |ap − bq| < p

b ≤
p
2 . Combining with Lemma 1,

we get in both cases

(ap− bq)2 <
(p

2

)2

<

(
2

1
2 N

1
2

2

)2

=
N

2
.

Hence, using |x| < 1
2N

1
2−α, the right side of (4) becomes∣∣(ap− bq)2 + 2(ap + bq)x + x2

∣∣ ≤ (ap− bq)2 + 2(ap + bq)|x|+ x2

<
N

2
+ 2N

1
2+α · 1

2
N

1
2−α +

1
4
N1−2α

=
(

1
2

+ 1 +
1
4
N−2α

)
N

< 2N,

where we used α > 0. Plugging this in (4) and dividing by 4N , we get∣∣∣∣M2

4N
− ab

∣∣∣∣ =
∣∣M2 − 4abN

∣∣
4N

=

∣∣(ap− bq)2 + 2(ap + bq)x + x2
∣∣

4N
<

2N

4N
=

1
2
.

It follows that ab =
[

M2

4N

]
which terminates the proof. ut

The following lemma indicates that ap and bq are of the same bit-size.

Lemma 4. Let N = pq be an RSA modulus with q < p < 2q and a
b a convergent

of the continued fraction expansion of q
p with a ≥ 1. Then

ap < bq < 2ap or bq < ap < 2bq

Proof. First, assume ap < bq. By Lemma 2, we have b ≤ 2a. Combining this
with q < p, we get bq < 2ap, and consequently ap < bq < 2ap.

Next, assume bq < ap. By Lemma 2, we have a ≤ b. Combining this with
p < 2q, we get ap < 2bq and finally bq < ap < 2bq. This terminates the proof. ut
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4 The New Attacks on RSA

In this section, we show how to factor the RSA modulus N if (N, e) is a public
key satisfying an equation eX− (N − (ap+bq))Y = Z with small parameters X,
Y and Z where a

b is an unknown convergent of q
p with a ≥ 1. We shall consider

separately the cases when the difference |ap−bq| is small, i.e. |ap−bq| < (abN)
1
4 ,

medium, i.e. (abN)
1
4 < |ap − bq| < aN

1
4 , and large, i.e. |ap − bq| > aN

1
4 . This

corresponds approximately to b > 2
1
2 N

1
6 , 2

1
2 N

1
6 > b > 2

1
4 N

1
8 and b < 2

1
4 N

1
8

respectively.
First we present a result based on continued fractions.

Lemma 5. Let N = pq be an RSA modulus with q < p < 2q. Let a, b be
coprime positive integers such that ap+bq = N

1
2+α with α < 1

2 . Let e be a public
exponent satisfying the equation eX−(N−(ap+bq))Y = Z with gcd(X, Y ) = 1.
If |Z| < N

1
2+αX and 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 , then Y

X is a convergent of e
N .

Proof. Set ap + bq = N
1
2+α with α < 1

2 . Rewrite eX − (N − ap − bq)Y = Z

as eX − NY = Z − (ap + bq)Y . Now suppose |Z| < N
1
2+αX, 1 ≤ Y ≤ X and

gcd(X, Y ) = 1. Then ∣∣∣∣ e

N
− Y

X

∣∣∣∣ = |eX −NY |
NX

=
|Z − (ap + bq)Y |

NX

≤ |Z|
NX

+
(ap + bq)Y

NX

<
N

1
2+α

N
+

N
1
2+α

N

= 2N− 1
2+α.

Since X < 1
2N

1
4−

α
2 , then 2N− 1

2+α < 1
2X2 . Hence, by Theorem 1, Y

X is one of
the convergents of the continued fraction expansion of e

N . ut

4.1 An Attack for Small Difference |ap − bq|

We now present the first attack.

Theorem 3. Let N = pq be an RSA modulus with unknown factors p, q such
that q < p < 2q. Let a

b be an unknown convergent of the continued fraction
expansion of q

p with a ≥ 1 and |ap − bq| < (abN)
1
4 . Let e be a public exponent

satisfying an equation eX − (N − ap − bq)Y = Z with gcd(X, Y ) = 1. Set
ap + bq = N

1
2+α with 0 < α < 1

2 . If 1 ≤ Y ≤ X < 1
2N

1
4−

α
2 and |Z| <

inf
(
(abN)

1
4 , 1

2N
1
2−α

)
Y , then N can be factored in polynomial time.
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Proof. Assume |Z| < inf
(
(abN)

1
4 , 1

2N
1
2−α

)
Y , 1 ≤ Y ≤ X with gcd(X, Y ) = 1.

Then

|Z| < inf
(

(abN)
1
4 ,

1
2
N

1
2−α

)
X ≤ 1

2
N

1
2−αX < N

1
2+αX.

Hence by Lemma 5, Y
X is one of the convergents of e

N . Set M = N− eX
Y . Starting

with the equation eX − (N − (ap + bq))Y = Z, we get

|ap + bq −M | = |Z|
Y

< inf
(

(abN)
1
4 ,

1
2
N

1
2−α

)
<

1
2
N

1
2−α.

Hence, by Lemma 3, we find ab =
[

M2

4N

]
. On the other hand, we have

|ap + bq −M | < inf
(

(abN)
1
4 ,

1
2
N

1
2−α

)
< (abN)

1
4 .

Moreover, if |ap− bq| < (abN)
1
4 , then∣∣∣∣ap− M

2

∣∣∣∣ ≤ 1
2
|ap + bq −M |+ 1

2
|ap− bq| < 1

2
(abN)

1
4 +

1
2
(abN)

1
4 = (abN)

1
4 .

It follows that the term M
2 is an approximation of the factor ap of n = abN with

additive error at most n
1
4 . In addition, by Lemma 4, the factors ap and bq of n

are of the same bit-size. Hence, using Theorem 2 with n and M
2 , we find ap, and

since a < q, we get p = gcd(N, ap) which terminates the proof. ut
Let us summarize the first factorization algorithm.

Algorithm 1 Small |ap− bq|
Input: a public key (N, e) satisfying N = pq, q < p < 2q and eX−(N−(ap+bq))Y = Z

for small parameters X, Y , Z where a
b

is an unknown convergent of q
p

with a ≥ 1.
Output: the prime factors p and q.
1: Compute the continued fraction expansion of e

N
.

2: For every convergent Y
X

of e
N

with X < 1
2
N

1
4 :

3: Compute M = N − eX
Y

and N0 =
[

M2

4N

]
.

4: Apply Coppersmith’s algorithm (Theorem 2) with n = N0N and M
2

as an approx-
imation of y.

5: Compute g = gcd(y, N). If 1 < g < N , then stop.

4.2 An Attack for Medium Difference |ap − bq|
Here we present the second attack. It is based on the Elliptic Curve Method
(ECM) which can find factors of about 52-digits. Assuming the efficiency of
ECM, every step in this attack can be done in polynomial time and the number
of convergents is bounded by O(log N). To express this fact, the term efficient
is used.
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Theorem 4. Let N = pq be an RSA modulus with unknown factors p, q such
that q < p < 2q. Let a

b be an unknown convergent of the continued fraction
expansion of q

p such that a ≥ 1, (abN)
1
4 < |ap − bq| < aN

1
4 and b ≤ 1052. Let

e be a public exponent satisfying an equation eX − (N − ap − bq)Y = Z with
gcd(X, Y ) = 1. Set M = N − eX

Y and ap + bq = N
1
2+α with 0 < α < 1

2 . If

1 ≤ Y ≤ X < 1
2N

1
4−

α
2 and |Z| < min

(
aN

1
4 , 1

2N
1
2−α

)
Y , then, under ECM, N

can be factored efficiently.

Proof. Assume |Z| < min
(
aN

1
4 , 1

2N
1
2−α

)
Y , 1 ≤ Y ≤ X and gcd(X, Y ) = 1.

Then

|Z| < min
(

aN
1
4 ,

1
2
N

1
2−α

)
X ≤ 1

2
N

1
2−αX < N

1
2+αX.

It follows, by Lemma 5, that Y
X is among the convergents of e

N .
Next, set M = N − eX

Y . Using the equation eX − (N − (ap + bq))Y = Z, we get

|ap + bq −M | = |Z|
Y

< min
(

aN
1
4 ,

1
2
N

1
2−α

)
≤ 1

2
N

1
2−α.

Hence, by Lemma 3, we find ab =
[

M2

4N

]
and by Lemma 2, we know that a and

b are of equal bit-size. Hence, applying the Elliptic Curve Method with
[

M2

4N

]
,

we can efficiently find a and b assuming b ≤ 1052.
From |ap + bq −M | < aN

1
4 , we get∣∣∣∣p +

bq

a
− M

a

∣∣∣∣ < aN
1
4

a
= N

1
4 . (5)

On the other hand, by assumption, |ap− bq| < aN
1
4 . Then

∣∣∣p− bq
a

∣∣∣ < N
1
4 , and

combining with (5), we get∣∣∣∣p− M

2a

∣∣∣∣ = ∣∣∣∣12
(

p +
bq

a
− M

a

)
+

1
2

(
p− bq

a

)∣∣∣∣
≤ 1

2

∣∣∣∣p +
bq

a
− M

a

∣∣∣∣+ 1
2

∣∣∣∣p− bq

a

∣∣∣∣
<

1
2
N

1
4 +

1
2
N

1
4

= N
1
4 .

This implies that M
2a is an approximation of p with additive error at most N

1
4 .

Then, using Theorem 2, this gives p which terminates the proof. ut

Here we summarize the second factorization algorithm.
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Algorithm 2 Medium |ap− bq|
Input: a public key (N, e) satisfying N = pq, q < p < 2q and eX−(N−(ap+bq))Y = Z

for small parameters X, Y , Z where a
b

is an unknown convergent of q
p

with a ≥ 1.
Output: the prime factors p and q.
1: Compute the continued fraction expansion of e

N
.

2: For every convergent Y
X

of e
N

with X < 1
2
N

1
4 :

3: Compute M = N − eX
Y

and N0 =
[

M2

4N

]
.

4: if N0 < 10104 then
5: Apply ECM to find a and b such that N0 = ab and a ≤ b ≤ 2a.
6: Apply Coppersmith’s algorithm (Theorem 2) with n = N and M

2a
as an approx-

imation of y. If Coppersmith’s algorithm outputs the factors p and q of N , then
stop.

7: end if

4.3 An Attack for Large Difference |ap − bq|

Here we present the last attack. We suppose |ap− bq| > aN
1
4 so that the Small

and the Medium difference attacks should not succeed. This attack depends on
the efficiency of the Elliptic Curve Method (ECM) to find factors up to 1052.
Assuming the efficiency of ECM, the term efficient is also used to express the
fact that every step in this attack can be done in polynomial time.

Theorem 5. Let N = pq be an RSA modulus with unknown factors p, q such
that q < p < 2q. Let a

b be an unknown convergent of the continued fraction
expansion of q

p such that a ≥ 1 and b ≤ 1052. Let e be a public exponent satisfying
an equation eX − (N − (ap + bq))Y = Z with gcd(X, Y ) = 1. Let M = N − eX

Y .
Set D =

√
|M2 − 4abN | and ap + bq = N

1
2+α with 0 < α < 1

2 . If 1 ≤ Y ≤ X <
1
2N

1
4−

α
2 and |Z| < 1

3a|ap − bq|N− 1
4−αY then, under ECM, N can be factored

efficiently.

Proof. Combining Proposition 1 and Lemma 1, we have

|ap− bq| < p

b
<

2
1
2 N

1
2

b
.

Hence, since a ≤ b, this gives

1
3
a|ap− bq|N− 1

4−α <
1
3
a · 2

1
2 N

1
2

b
·N− 1

4−α ≤ 2
1
2

3
N

1
4−α. (6)

Now, suppose |Z| < 1
3a|ap− bq|N− 1

4−αY , 1 ≤ Y ≤ X and gcd(X, Y ) = 1. Then
using (6), we get

|Z| < 2
1
2

3
N

1
4−αX < N

1
2+αX.
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Consequently, by Lemma 5, Y
X is a convergent of e

N . Next, set M = N − eX
Y .

Using the equation eX − (N − ap− bq)Y = Z, we get

|ap + bq −M | = |Z|
Y

<
1
3
a|ap− bq|N− 1

4−α. (7)

Then using (6), we get

|ap + bq −M | < 2
1
2

3
N

1
4−α <

1
2
N

1
2−α.

Hence, by Lemma 3, ab =
[

M2

4N

]
and by Lemma 2, we know that a and b are of

the same bit-size. Hence, if b ≤ 1052, then applying the Elliptic Curve Method
with

[
M2

4N

]
, we can find a and b.

Next, using |ap− bq| < 2N
1
2 , we can rewrite (7) as

|ap + bq −M | < 1
3
a · 2N

1
2 ·N− 1

4−α =
2
3
aN

1
4−α < aN

1
4 . (8)

Now, let D =
√
|M2 − 4abN |. Then∣∣|ap− bq|2 −D2

∣∣ = ∣∣|ap− bq|2 −
∣∣M2 − 4abN

∣∣∣∣
≤
∣∣(ap− bq)2 −M2 + 4abN

∣∣
=
∣∣(ap + bq)2 −M2

∣∣ .
From this we deduce∣∣|ap− bq| −D

∣∣ ≤ |ap + bq −M ||ap + bq + M |
|ap− bq|+ D

.

Next, by (8), we have |ap + bq −M | < aN
1
4 . Then M < ap + bq + aN

1
4 and

ap + bq + M < 2(ap + bq) + aN
1
4 < 3(ap + bq) = 3N

1
2+α.

Combining with (7), this leads to

∣∣|ap− bq| −D
∣∣ < 3 · 1

3a|ap− bq|N− 1
4−αN

1
2+α

|ap− bq|
= aN

1
4 .

If ap− bq > 0, then combining with (8), we get

|2ap−M −D| =
∣∣ap + bq −M + |ap− bq| −D

∣∣
≤
∣∣ap + bq −M

∣∣+ ∣∣|ap− bq| −D
∣∣

< 2aN
1
4 .

Dividing by 2a, we find that M+D
2a is an approximation of p with additive error

at most N
1
4 .
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If ap− bq < 0, then combining with (8), we get

|2ap−M + D| = |ap + bq −M − (bq − ap−D)|
< |ap + bq −M |+

∣∣|ap− bq| −D
∣∣

< 2aN
1
4 .

Dividing again by 2a, we find that M−D
2a is an approximation of p with additive

error at most N
1
4 . We can then apply Theorem 2 to the values M±D

2a . The correct
term will lead to the factorization of N . ut

Now we summarize the third factorization algorithm.

Algorithm 3 Large |ap− bq|
Input: a public key (N, e) satisfying N = pq, q < p < 2q and eX−(N−(ap+bq))Y = Z

for small parameters X, Y , Z where a
b

is an unknown convergent of q
p

with a ≥ 1.
Output: the prime factors p and q.
1: Compute the continued fraction expansion of e

N
.

2: For every convergent Y
X

of e
N

with X < 1
2
N

1
4 :

3: Compute M = N − eX
Y

and N0 =
[

M2

4N

]
.

4: if N0 < 10104 then
5: Apply ECM to find a and b such that N0 = ab and a ≤ b ≤ 2a.
6: Compute D =

√
|M2 − 4N0N |.

7: Compute m1 = M+D
2a

and m2 = M−D
2a

.
8: Apply Coppersmith’s algorithm (Theorem 2) with n = N and m1 and m2 as

approximations of y. If Coppersmith’s algorithm outputs the factors p and q,
then stop.

9: end if

5 Estimation of the Public Exponents for which the
Attacks Apply

In this Section, we will study the size of the class of the public keys for which
our attacks can be applied. Let a

b be a convergent of q
p with a ≥ 1. Define α by

ap + bq = N
1
2+α with 0 < α < 1

2 and let

P(a, b) =
{

(X, Y, z)
∣∣ 1 ≤ Y ≤ X <

1
2
N

1
4−

α
2 , gcd(X, Y ) = 1, |z| < N

1
4−

α
2

}
,

be the set of the parameters and

E(a, b) =
{

e
∣∣ e =

⌊
(N − (ap + bq))

Y

X

⌋
+ z, (X, Y, z) ∈ P(a, b)

}
,
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the set of the exponents. We will show that much of these exponents are vul-
nerable to our attacks. To find a lower bound for the size of the sets E(a, b),
we show that different convergents a

b of q
p and different parameters in the set

P(a, b) define different exponents in the sets E(a, b).
First, we show that our attacks will work for the exponents in E(a, b): given

an exponent in E(a, b), it is possible to find the factorization of N according to
Theorem 3, Theorem 4 or Theorem 5. First, we start with a result for small
difference |ap− bq|.
Corollary 1. Let N = pq be an RSA modulus with q < p < 2q. Let a

b be an
unknown convergent of q

p with a ≥ 1 and |ap − bq| < (abN)
1
4 . Let X, Y be

unknown coprime positive integers with 1 ≤ Y ≤ X < 1
2N

1
4−

α
2 where ap + bq =

N
1
2+α and 0 < α < 1

2 . If e =
⌊
(N − (ap + bq)) Y

X

⌋
+ z is a public exponent with

|z| < inf
(

(abN)
1
4

Y

X
,N

1
4−

α
2

)
,

then N can be factored in polynomial time.

Proof. Set e0 =
⌊
(N − (ap + bq)) Y

X

⌋
, e = e0 + z, Z = eX − (N − (ap + bq))Y .

We want to show that the conditions of Theorem 3 are satisfied. Assume that
|z| < inf

(
(abN)

1
4 Y

X , N
1
4−

α
2

)
. Then, since∣∣∣∣(N − (ap + bq))

Y

X
− e0

∣∣∣∣ < 1,

we get

|Z| = |eX − (N − (ap + bq))Y | = |(e0 + z)X − (N − (ap + bq))Y |
≤ |e0X − (N − (ap + bq))Y |+ |z|X
< (1 + |z|)X.

Observe that (1 + |z|)X < (abN)
1
4 Y and, assuming X < 1

2N
1
4−

α
2 , we find

(1 + |z|)X < N
1
4−

α
2 · 1

2
N

1
4−

α
2 ≤ 1

2
N

1
2−αY.

From this, we deduce |Z| < inf
(
(abN)

1
4 , 1

2N
1
2−α

)
Y. It follows that the condi-

tions of Theorem 3 are fulfilled which leads to the factorization of N . ut
Next, we give a result for medium difference |ap− bq|.
Corollary 2. Let N = pq be an RSA modulus with q < p < 2q. Let a

b be an
unknown convergent of q

p with a ≥ 1, b ≤ 1052 and (abN)
1
4 < |ap− bq| < aN

1
4 .

Let X, Y be unknown coprime positive integers with 1 ≤ Y ≤ X < 1
2N

1
4−

α
2

where ap + bq = N
1
2+α and 0 < α < 1

2 . If e =
⌊
(N − (ap + bq)) Y

X

⌋
+ z is a

public exponent with

|z| < inf
(

aN
1
4

Y

X
,N

1
4−

α
2

)
,

then, under ECM, N can be factored efficiently.
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Proof. The proof is similar to that of Corollary 1 and the parameters satisfy the
condition of Theorem 4. ut

Finally, we give a result which concerns large difference |ap− bq|.

Corollary 3. Let N = pq be an RSA modulus with q < p < 2q. Let a
b be an

unknown convergent of q
p with a ≥ 1, b ≤ 1052 and |ap − bq| > aN

1
4 . Let X,

Y be unknown coprime positive integers with 1 ≤ Y ≤ X < 1
2N

1
4−

α
2 where

ap + bq = N
1
2+α and 0 < α < 1

2 . If e =
⌊
(N − (ap + bq)) Y

X

⌋
+ z is a public

exponent with

|z| < min
(

1
3
a|ap− bq|N− 1

4−α Y

X
,N

1
4−

α
2

)
,

then, under ECM, N can be factored efficiently.

Proof. Let Z = eX − (N − (ap + bq))Y , e =
⌊
(N − (ap + bq)) Y

X

⌋
+ z with

|z| < min
(

1
3a|ap− bq|N− 1

4−α Y
X , N

1
4−

α
2

)
and 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 . Using the

same arguments as in the proof of Corollary 1, we get

|Z| < (1 + |z|)X <
1
3
a|ap− bq|N− 1

4−αY.

It follows that all the conditions of Theorem 5 are fulfilled which leads to the
factorization of N . ut

The following result shows that distinct parameters from P(a, b) define different
exponents in E(a, b).

Lemma 6. Let N = pq be an RSA modulus with q < p < 2q. Let a
b be a

convergent of q
p with a ≥ 1 and ap + bq = N

1
2+α. Let (X, Y, z), (X ′, Y ′, z′) ∈

P(a, b). Let

e =
⌊
(N − (ap + bq))

Y

X

⌋
+ z, e′ =

⌊
(N − (ap + bq))

Y ′

X ′

⌋
+ z′.

If e = e′ then X = X ′, Y = Y ′ and z = z′.

Proof. Let e0 =
⌊
(N − (ap + bq)) Y

X

⌋
, e′0 =

⌊
(N − (ap + bq)) Y ′

X′

⌋
. If e = e0 + z

and e′ = e′0 + z′ then∣∣∣∣(N − (ap + bq))
(

Y ′

X ′ −
Y

X

)
− e′ + e

∣∣∣∣
≤
∣∣∣∣(N − (ap + bq))

Y ′

X ′ − e′0 − z′
∣∣∣∣+ ∣∣∣∣(N − (ap + bq))

Y

X
− e0 − z

∣∣∣∣
≤
∣∣∣∣(N − (ap + bq))

Y ′

X ′ − e′0

∣∣∣∣+ |z′|+
∣∣∣∣(N − (ap + bq))

Y

X
− e0

∣∣∣∣+ |z|

< 2 + |z|+ |z′|.
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Suppose e = e′. Then, multiplying by XX ′, we get

(N − (ap + bq)) |Y ′X − Y X ′| < (2 + |z|+ |z′|)XX ′. (9)

We want to compare the sides of (9). Assume that X, X ′ < 1
2N

1
4−

α
2 and |z|, |z′| <

N
1
4−

α
2 . Then

(2 + |z|+ |z′|)XX ′ < 2N
1
4−

α
2 · 1

4
N

1
2−α =

1
2
N

3
4−

3α
2 .

On the other hand, we have

N − (ap + bq) = N −N
1
2+α = N

3
4−

3α
2

(
N

1
4+ 3α

2 −N− 1
4+ 5α

2

)
.

Since 0 < α < 1
2 , then 1

4 + 3α
2 > − 1

4 + 5α
2 and N

1
4+ 3α

2 > N− 1
4+ 5α

2 + 1. Hence
N − (ap + bq) > N

3
4−

3α
2 . From our comparison of the sides of (9), we conclude

that Y ′X−Y X ′ = 0. Since gcd(X, Y ) = 1 and gcd(X ′, Y ′) = 1, we find X = X ′

and Y = Y ′ and consequently z = z′. This terminates the proof. ut

Finally, the following result shows that different convergents of q
p lead to different

exponents in E(a, b).

Lemma 7. Let N = pq be an RSA modulus with q < p < 2q. Let a
b and a′

b′ be
convergents of q

p with a ≥ 1, a′ ≥ 1, ap + bq = N
1
2+α and a′p + b′q = N

1
2+α′

.
Let (X, Y, z) ∈ P(a, b) and (X ′, Y ′, z′) ∈ P(a′, b′). Let

e =
⌊
(N − (ap + bq))

Y

X

⌋
+ z, e′ =

⌊
(N − (a′p + b′q))

Y ′

X ′

⌋
+ z′.

If e = e′ then X = X ′, Y = Y ′, a = a′, b = b′ and z = z′.

Proof. Assume for contradiction that a 6= a′, a < a′ say. Then b < b′. Hence
ap + bq < a′p + b′q and α < α′. Combining with Lemma 1, we get

N − (ap + bq)− (N − (a′p + b′q)) = (a′ − a)p + (b′ − b)q > p + q > p > N
1
2 ,

which leads to

N − (ap + bq) > N − (a′p + b′q) + N
1
2 (10)

Now, set e =
⌊
(N − (ap + bq)) Y

X

⌋
+ z, e′ =

⌊
(N − (a′p + b′q)) Y ′

X′

⌋
+ z′ and

assume e = e′. Then, since |z| < N
1
4−

α
2 and |z′| < N

1
4−

α′
2 < N

1
4−

α
2 , we get∣∣∣∣(N − (a′p + b′q))

Y ′

X ′ − (N − (ap + bq))
Y

X

∣∣∣∣ < 2 + |z|+ |z′| < 2N
1
4−

α
2 . (11)



16 Abderrahmane Nitaj

On the other hand, we know that Y
X and Y ′

X′ are convergents of the continued
fraction expansion of e

N . Hence Y
X ≈ Y ′

X′ and, combining (10) with X < 1
2N

1
4−

α
2 ,

we get

(N − (ap + bq))
Y

X
> (N − (a′p + b′q))

Y

X
+ N

1
2

Y

X

> (N − (a′p + b′q))
Y

X
+ N

1
2 · 1

1
2N

1
4−

α
2

≈ (N − (a′p + b′q))
Y ′

X ′ + 2N
1
4+ α

2

It follows that∣∣∣∣(N − (a′p + b′q))
Y ′

X ′ − (N − (ap + bq))
Y

X

∣∣∣∣ > 2N
1
4+ α

2 .

Comparing with (11), we get a contradiction. Hence a = a′ and b = b′. Now,
we have

⌊
(N − (ap + bq)) Y

X

⌋
+ z =

⌊
(N − (ap + bq)) Y ′

X′

⌋
+ z′. By Lemma 6, we

conclude that X = X ′, Y = Y ′ and z = z′. This terminates the proof. ut

Let us now prove a lower bound for the size of the number of the exponents e that
are vulnerable to our approach. Note that we do not require gcd(e, φ(N)) = 1
as usual.

Theorem 6. Let N = pq be an RSA modulus with q < p < 2q. Then the number
of the exponents e ∈ E(a, b) that are vulnerable to the attacks for some convergent
a
b 6=

0
1 of q

p is at least N
3
4−ε where ε is arbitrarily small for suitably large N .

Proof. We focus on E(1, 1) since the total number of exponents is much higher.
Let α0 such that p + q = N

1
2+α0 . Since q < p, then 2q < p + q < 2p and by

Lemma 1, we get 2
1
2 N

1
2 < N

1
2+α0 < 2

3
2 N

1
2 . From this we deduce α0 ≈ 0. On

the other hand, by Corollary 3, we need

|z| < min
(

1
3
|p− q|N− 1

4−α0
Y

X
,N

1
4−

α0
2

)
,

where 1 ≤ Y ≤ X < 1
2N

1
4−

α0
2 and gcd(X, Y ) = 1. Observe that for the normal

RSA, we have p− q > cN
1
2 with a constant c > 0. So let

|z| < min
(

c

3
N

1
4−α0

Y

X
,N

1
4−

α0
2

)
,

and put

X0 =
⌊

1
2
N

1
4−

α0
2

⌋
.

We want to estimate

#E(1, 1) =
X0∑

X=1

X−1∑
Y =1

gcd(X,Y )=1

|z|.
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Taking |z| < c
3N

1
4−α0 Y

X , we get

#E(1, 1) =
c

3
N

1
4−α0

X0∑
X=1

X−1∑
Y =1

gcd(X,Y )=1

Y

X
=

c

6
N

1
4−α0

X0∑
X=1

φ(X), (12)

where we used the well known identity
X−1∑
Y =1

gcd(X,Y )=1

Y =
1
2
Xφ(X).

Similarly, taking |z| < N
1
4−

α0
2 , we get

#E(1, 1) = N
1
4−

α0
2

X0∑
X=1

X−1∑
Y =1

gcd(X,Y )=1

1 = N
1
4−

α0
2

X0∑
X=1

φ(X). (13)

We can rewrite (12) and (13) in a single expression

#E(1, 1) = N
1
4−ε0

X0∑
X=1

φ(X),

for a suitable ε0 > 0. It is well known (see Theorem 328 of [6]), that

φ(X) >
CX

log log X
,

where C is a positive constant. Since X < N , then φ(X) > XN−ε1 for a small
positive constant ε1. From this, we deduce

#E(1, 1) > N
1
4−ε0−ε1

X0∑
X=1

X > N
1
4−ε0−ε1

X2
0

2
>

1
8
N

3
4−α0−ε0−ε1 ,

where we used X0 ≈ 1
2N

1
4−

α0
2 . We get finally #E(1, 1) > N

3
4−ε, with a constant

ε ≈ α0 + ε0 + ε1 depending only on N . This terminates the proof. ut

6 Conclusion

In this paper, we showed how to perform three attacks on RSA using the ratio
of the primes. The attacks apply when the public key (N, e) satisfies an equation
eX − (N − (ap + bq))Y = Z with suitably small parameters X, Y and Z where
a
b is an unknown convergent of q

p with a ≥ 1. The attacks combine a variety of
techniques, including continued fractions, Coppersmith’s lattice based method
and H.W. Lenstra’s Elliptic Curve Method for Factoring (ECM). Our results
illustrate once again the fact that we should be very cautious when using RSA
with specific exponents. Moreover, we showed that the number of such exponents
is at least N

3
4−ε. Using the notion of weak keys, as defined by Blömer and

May [1], the results of this paper show that this set of RSA public keys is a class
of weak keys.
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