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Threshold Cryptography

e Secret sharing: Two major schemes
— Shamir

— Blakley
and the rest, e.g., Asmuth-Bloom.

e Function sharing
— Traditionally based on Shamir.
— Occasionally on Blakley.
— Lately, solutions with CRT.



Secret Sharing Problem

How to share a sensitive secret d among n par-
ties s.t. only a certain number ¢ of them can
together construct the secret?

Applications:

— Storage of sensitive cryptographic keys
(e.g. root key in a PKI system)

— Command & control of nuclear weapons

E.g. An (n,n) secret sharing scheme:

To share an /-bit secret key d,

— generate random /¢-bit y;, 1 =1,...,n — 1,
—Yyn =dOYy10Y2d ... OyYp—1

— give y; to the ith user.

This scheme is perfect: A coalition of size
smaller than ¢t obtains no information.

Q: How to generalize to arbitrary (¢t,n)7?
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Function Sharing Problem

Combiner platform may not be trusted.
Users would rather not reveal their shares.

Can we share the function rather than the pri-
vate key, so that each user can compute and
reveal his partial result without revealing his
share?

E.g.: An (n,n) RSA signature sharing:

d=dy+ ...+ dn mod ¢(N)
where d;, 1 <n — 1, are randomly generated.

To compute signature w? mod N, the ith user
computes w% mod N.

T he partial results are combined as

dei mod N = w2i% mod N
;

wd mod N

Q: How to generalize to arbitrary (¢t,n)7?
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CRT Based Function Sharing
Asmuth-Bloom Secret Sharing

1. Choose integers mg <mi < ... < mp S.t.
— m, are relatively prime
— mqg > d IS a prime
— m; satisfy (for perfectness)

t t—1
2
H m; > Mg H Mp_i+1

2. Let M =[[}{_;m;. Compute

y = d -+ amg
where a is some random integer s.t. 0 <
y < M.

3. Share of the t" user is

y; = y mod m,.



CRT Based Function Sharing
Sharing RSA with Asmuth-Bloom

Let § be a coalition of size t. Let Mg =
[l;esm; and Mé,i = Mg\l{z.} (mod m;).

Secret construction is additive:

up = yiMs ;Mg\ i)

Yy = (Z uz) mod Mg
1€S
d = y mod mg

hence may be suitable to share RSA:
w? mod N = H wY%i mod N
1€S

Challenge: But how to include (mod Mg) in
the exponent?



CRT Based Function Sharing

The Correction Procedure

e In the RSA signature setting with the pub-
lic private key pair (e,d), the ith user con-
tributes

u; = yiMg ;Mg\ (5 mod Mg
s; = w’ mod N.

e When the combiner multiply the partial re-
sults he obtains an incomplete signature

5= ]] si mod N
1€S
— w¥TMs  mod N

for some § < t.



CRT Based Function Sharing

The Correction Procedure

e Then tries each 0 < j <t for

. 7
(5w IMs)e = (mod N)

and finds the jp satisfying the equality.

e [ he combiner computes the signature

s =sw IoMs  (mod N)



CRT Based Function Sharing
A CRT based FSS for RSA Signatures

. RSA setup with p=2p'4+ 1, g=2¢ + 1.

N =pq;, ed=1 (mod ¢(N)).

Use A-B to share d with a secret mg = ¢(N) = 4p/'¢’.
. To sign w, user 1 € S computes

u; = y;Ms ;Mg\ mod Ms,

s; = w* mod N.

. The incomplete signature s is
s = Hsi mod NN.
1€ES
. Let A =wMs mod N be the corrector. Try
. .7
(ZN) =35°(\°) =w (mod N) (1)
for 0 < j5 <t. Then the signature s is

s=3\ mod N

where ¢ is the j value satisfying (1).
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Robustness in CRT Based FSSs

e A FSS is robust if it can withstand active
participation of corrupted users in the func-
tion evaluation phase.

e [ he scheme needs to detect wrong partial
results.

1. Each participant creates a proof for the
partial result.

2. These proofs are verified by other par-
ticipants without knowing the correspond-
ing share.
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Robustness

Simple Interactive Proof of Two Discrete
LLogarithms are Equal

PROVER VERIFIER

(z,y) = (g%, h®)

(a,6) = (g7, h7) =
& c ER ZLq
z+— 1+ ac = g'z;amc
hz;byc

® Chaum and Pedersen, Wallet Databases with Ob-
servers, CRYPTO 92
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Robustnhess
for CRT based Threshold RSA Signatures

e In the setup phase

1. The dealer chooses m;s for Asmuth-Bloom
SSS such that p;, = 2m; 4+ 1 is a prime.

2. He broadcasts v; = gfi mod p; for each
user i where ordp,(g;) = m;.

e In the signing phase set

yZMé,zMS\{Z} mod MS mod N

- 5§ =W

M~ .
— ”U,’L- = V; Sst mod Di

— o' = wMs\(} mod N

and prove that the discrete logs of s;
and v/ w.r.t. the bases v’ and g; is equal.
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Robustnhess

for Other FSSs

A similar approach is used for the Paillier’s
decryption function.

For sharing ElGamal’s encryption function,
we need to modify the original scheme slightly.

The modulus p (N in RSA, N2 in Paillier)
is a prime and ¢(p) is public.

Solution: use a hidden order version of EI-
Gamal’'s encryption scheme. (Wei et. al.,
Cryptographic Primitives based on Groups of Hid-
den Order, TMMP, 2004)
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Conclusions

e Provably secure and practical robust CRT
based function sharing schemes exist.

e Not efficient than traditional Shamir based
solutions but comparable.

e \What about other enhancements or other
secret sharing schemes?
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Questions
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