Improving integral attacks against Rijndael-256 up to 9 rounds

Samuel Galice¹ M. Minier¹

¹Laboratoire CITI, INSA de Lyon, France

24th october 2007

• A Brief Outline of Rijndael-256

• Integral Properties

- The Original one
- The new one

• Attacking up to 9 rounds of Rijndael-256

- The 7 rounds attack
- The 8 rounds attack
- The 9 rounds attack

Conclusion

A brief outline of Rijndael-256

- ▶ Rijndael-256: parallel and byte oriented block cipher with 14 rounds
- ▶ Block length = 256 bits. Keylength = 128, 192 or 256 bits
- Current block at input of round $r = a 4 \times 8$ matrix of bytes:

$$\mathcal{A}^{(r)} = \begin{pmatrix} a_{0,0}^{(r)} & a_{0,1}^{(r)} & a_{0,2}^{(r)} & a_{0,3}^{(r)} & a_{0,4}^{(r)} & a_{0,5}^{(r)} & a_{0,6}^{(r)} & a_{0,7}^{(r)} \\ a_{1,0}^{(r)} & a_{1,1}^{(r)} & a_{1,2}^{(r)} & a_{1,3}^{(r)} & a_{1,4}^{(r)} & a_{1,5}^{(r)} & a_{1,6}^{(r)} & a_{1,7}^{(r)} \\ a_{2,0}^{(r)} & a_{2,1}^{(r)} & a_{2,2}^{(r)} & a_{2,3}^{(r)} & a_{2,4}^{(r)} & a_{2,5}^{(r)} & a_{2,6}^{(r)} & a_{2,7}^{(r)} \\ a_{3,0}^{(r)} & a_{3,1}^{(r)} & a_{3,2}^{(r)} & a_{3,3}^{(r)} & a_{3,4}^{(r)} & a_{3,5}^{(r)} & a_{3,6}^{(r)} & a_{3,7}^{(r)} \end{pmatrix}$$

The key schedule derives 15 256-bits round keys K₀ to K₁₄ from the master key K

The round function *F*

▶ The round function *F* repeats 13 times 4 mappings:

- SubBytes: applies on each byte a non linear S-box S
- **ShiftRows:** rotates on the left all the rows of the current matrix (0 for the first row, 1 for the second, 3 for the third and 4 for the fourth)
- **MixColumns:** Each column of the input matrix is multiplied by the MixColumns matrix *M*
- AddRoundKey: x-or between the block and the subkey K_r.

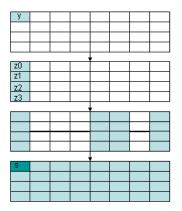
The round function *F*

▶ The round function *F* repeats 13 times 4 mappings:

- SubBytes: applies on each byte a non linear S-box S
- **ShiftRows:** rotates on the left all the rows of the current matrix (0 for the first row, 1 for the second, 3 for the third and 4 for the fourth)
- **MixColumns:** Each column of the input matrix is multiplied by the MixColumns matrix *M*
- AddRoundKey: x-or between the block and the subkey K_r.
- At the top, an initial key addition with K_0
- At the bottom, a final transformation = a round function without MixColumns.

The First integral property

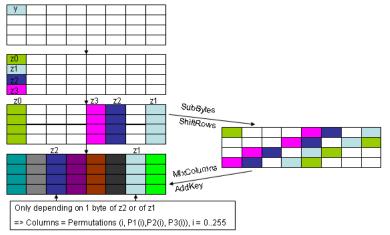
introduced in [Rijndael - 99], works on three rounds using one active byte:



•
$$\bigoplus_{y \in \{0..255\}} s = 0$$
, for all bytes.

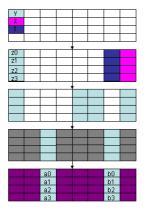
A three round property of Rijndael-256

A stronger property for Rijndael-256: for the 3d and the 7th columns after 3 rounds, the distribution is always a set of permutations (*i*, P1(*i*), P2(*i*), P3(*i*)) with *i* ∈ {0, · · · , 255}



How to use it ?

 On four rounds, by saturating more bytes to exploit the permutations at the end of the third round



▶ Then,
$$\forall i, \bigoplus_{y,z,t \in \{0..255\}} a_i = 0$$
 and $\bigoplus_{y,z,t \in \{0..255\}} b_i = 0$

The four rounds distinguisher

- Thus, you could use this equality to build a distinguisher between 4 Rijndael-256 rounds and a random permutation
 - testing if for a given *i*:

$$\bigoplus_{\substack{y,z,t\in\{0..255\}\\y,z,t\in\{0..255\}}} a_i = 0$$
(1)
or
$$\bigoplus_{y,z,t\in\{0..255\}} b_i = 0$$
(2)

• requiring $(256)^3$ plaintexts with three active bytes

The four rounds distinguisher

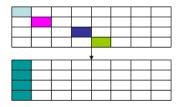
- Thus, you could use this equality to build a distinguisher between 4 Rijndael-256 rounds and a random permutation
 - testing if for a given *i*:

$$\bigoplus_{\substack{y,z,t\in\{0..255\}\\y,z,t\in\{0..255\}}} a_i = 0$$
(1)
or
$$\bigoplus_{\substack{y,z,t\in\{0..255\}}} b_i = 0$$
(2)

- requiring (256)³ plaintexts with three active bytes
- We perform some computer experiments which confirm the existence of such properties.

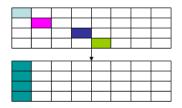
Extension by one round at the beginning

- as proposed in [Ferguson et al 00], extension of the previous 4 rounds distinguisher by one round at the beginning
 - $\bullet\,$ considering that we sum on all the 2^{32} plaintexts that represent 2^8 particular set with 3 active bytes



Extension by one round at the beginning

- as proposed in [Ferguson et al 00], extension of the previous 4 rounds distinguisher by one round at the beginning
 - $\bullet\,$ considering that we sum on all the 2^{32} plaintexts that represent 2^8 particular set with 3 active bytes



Thus you could attack 5 rounds of Rijndael-256 using 2³² plaintexts and testing if always the equality (2) occurs for a particular *i*.

Extension by two rounds at the end

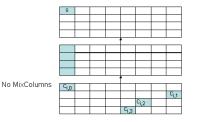
[Ferguson et al - 00]: extension of the 5 rounds distinguisher by adding two rounds at the end

Extension by two rounds at the end

[Ferguson et al - 00]: extension of the 5 rounds distinguisher by adding two rounds at the end

• s directly deduced from the bytes $(c_{i,0}, c_{i,1}, c_{i,2}, c_{i,3})$ by computing:

 $\bigoplus_{i} S^{-1} \left[S_0 \left[c_{i,0} \oplus k_0 \right] \oplus S_1 \left[c_{i,1} \oplus k_1 \right] \oplus S_2 \left[c_{i,2} \oplus k_2 \right] \oplus S_3 \left[c_{i,3} \oplus k_3 \right] \oplus k_4 \right]$ (3)

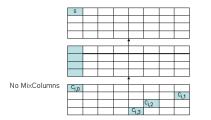


Extension by two rounds at the end

[Ferguson et al - 00]: extension of the 5 rounds distinguisher by adding two rounds at the end

• s directly deduced from the bytes ($c_{i,0}, c_{i,1}, c_{i,2}, c_{i,3}$) by computing:

$$\bigoplus_{i} S^{-1} \left[S_0 \left[c_{i,0} \oplus k_0 \right] \oplus S_1 \left[c_{i,1} \oplus k_1 \right] \oplus S_2 \left[c_{i,2} \oplus k_2 \right] \oplus S_3 \left[c_{i,3} \oplus k_3 \right] \oplus k_4 \right]$$
(3)



- Associate the partial sum to each ciphertext c:
 - $x_k := \sum_{j=0}^{k} S_j [c_j \oplus k_j]$ for k from 0 to 3
- ▶ Use $(c_0, c_1, c_2, c_3) \rightarrow (x_k, c_{k+1}, \cdots, c_3)$ to sequentially determine k_k
- Share the global computation in 4 steps

Using the two extensions, build a 7 rounds attack:

 $\bullet\,$ Cipher a set of 2^{32} plaintexts with 4 active bytes at good positions

Using the two extensions, build a 7 rounds attack:

- Cipher a set of 2³² plaintexts with 4 active bytes at good positions
- Decipher the two last rounds using the partial sum technique for four bytes of K_7 and one byte of K_6'

Using the two extensions, build a 7 rounds attack:

- Cipher a set of 2³² plaintexts with 4 active bytes at good positions
- Decipher the two last rounds using the partial sum technique for four bytes of K_7 and one byte of K_6'
- test if equality (2) occurs at the end of the 5th round

Using the two extensions, build a 7 rounds attack:

- Cipher a set of 2³² plaintexts with 4 active bytes at good positions
- Decipher the two last rounds using the partial sum technique for four bytes of K_7 and one byte of K_6'
- test if equality (2) occurs at the end of the 5th round

Total cost:

- $\bullet\,$ For a set of 2^{32} ciphertexts, cost of the four steps $\approx 2^{50}$ S-box lookups.
- Repeat the process with 6 different sets of 2³² ciphertexts to detect false alarms
- The total number of S-box lookups is $2^{52} \approx 2^{44}$ encryptions (considering that 2^8 S-box applications \approx one trial encryption).

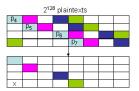
The herd techniques

▶ [Ferguson et al - 00]: extension by one more round at the top

The herd techniques

▶ [Ferguson et al - 00]: extension by one more round at the top

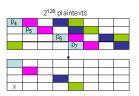
- Naively require 2¹²⁸ plaintexts: divide into 2⁹⁶ packs of 2³² sets with 4 active bytes but in this case wrong keys pass the test !
- Instead, use a particular byte x with a fixed value. Obtain a herd a set of 2^{120} possible encryptions composed of 2^{88} structures.
- Test equality (2) on a herd, only correct key !



The herd techniques

▶ [Ferguson et al - 00]: extension by one more round at the top

- Naively require 2¹²⁸ plaintexts: divide into 2⁹⁶ packs of 2³² sets with 4 active bytes but in this case wrong keys pass the test !
- Instead, use a particular byte x with a fixed value. Obtain a herd a set of 2^{120} possible encryptions composed of 2^{88} structures.
- Test equality (2) on a herd, only correct key !



- x depends on 4 plaintext bytes (p₄, · · · , p₇) and on 4 K₀ bytes
- Share the key exhaustive search on the 4 K₀ bytes in a 3-phase attack
 - First phase: using 2⁶⁴ counters my
 - 2nd phase: 2³² counters n_z
 - 3d phase: filter information for key guesses

the attack:

• First phase: Increment m_y at bit level according the 64-bit value $y = (c_0, \dots, c_3, p_4, \dots, p_7)$

► the attack:

- First phase: Increment m_y at bit level according the 64-bit value $y = (c_0, \dots, c_3, p_4, \dots, p_7)$
- 2nd phase: Guess the 4 K₀ bytes, compute x, share the counters into herds, select a single herd, update n_z by adding z = (c₀, ···, c₃) for each y that is in the good herd

the attack:

- First phase: Increment m_y at bit level according the 64-bit value $y = (c_0, \dots, c_3, p_4, \dots, p_7)$
- 2nd phase: Guess the 4 K_0 bytes, compute x, share the counters into herds, select a single herd, update n_z by adding $z = (c_0, \dots, c_3)$ for each y that is in the good herd
- **3d phase:** guess the five key bytes of K_7 and of K'_6 on the two last rounds to decrypt each z to a single byte a^6 , sum this byte over all the 2^{32} values of z (with multiplicities) and check for zero. Repeat it for each guess of the four K_0 bytes

the attack:

- First phase: Increment m_y at bit level according the 64-bit value $y = (c_0, \dots, c_3, p_4, \dots, p_7)$
- 2nd phase: Guess the 4 K_0 bytes, compute x, share the counters into herds, select a single herd, update n_z by adding $z = (c_0, \dots, c_3)$ for each y that is in the good herd
- **3d phase:** guess the five key bytes of K_7 and of K_6' on the two last rounds to decrypt each z to a single byte a^6 , sum this byte over all the 2^{32} values of z (with multiplicities) and check for zero. Repeat it for each guess of the four K_0 bytes
- A trick: The 4 plaintext bytes (p_4, \dots, p_7) and the four K_0 bytes provide four bytes. => Create 2^{24} smaller herds with 2^{104} elements by fixing three more bytes. => Reduce to $2^{128} 2^{119}$ plaintexts

the attack:

- First phase: Increment m_y at bit level according the 64-bit value $y = (c_0, \dots, c_3, p_4, \dots, p_7)$
- 2nd phase: Guess the 4 K_0 bytes, compute x, share the counters into herds, select a single herd, update n_z by adding $z = (c_0, \dots, c_3)$ for each y that is in the good herd
- **3d phase:** guess the five key bytes of K_7 and of K_6' on the two last rounds to decrypt each z to a single byte a^6 , sum this byte over all the 2^{32} values of z (with multiplicities) and check for zero. Repeat it for each guess of the four K_0 bytes
- A trick: The 4 plaintext bytes (p_4, \dots, p_7) and the four K_0 bytes provide four bytes. => Create 2^{24} smaller herds with 2^{104} elements by fixing three more bytes. => Reduce to $2^{128} 2^{119}$ plaintexts
- ► Total cost: 2¹²⁸ 2¹¹⁹ trial encryptions + 2¹²⁰ trial encryptions for the attack itself

The 9 rounds attack [Ferguson et al - 00] (1/2)

- ► Add one more round at the end: using partial sum techniques + exhaustive search of the 16 bytes of K₉
- ▶ Need to guess four K_0 bytes + 21 subkey bytes (16 bytes of K_9 , 4 bytes of K_8 and one byte of K'_7) to add three rounds at the end of the 5 rounds distinguisher.

The 9 rounds attack [Ferguson et al - 00] (1/2)

- ► Add one more round at the end: using partial sum techniques + exhaustive search of the 16 bytes of K₉
- ▶ Need to guess four K_0 bytes + 21 subkey bytes (16 bytes of K_9 , 4 bytes of K_8 and one byte of K'_7) to add three rounds at the end of the 5 rounds distinguisher.
- Then the attack works as follows:
 - $\bullet\,$ construct 2^{23} undamaged herds of 2^{104} elements using $2^{128}-2^{119}\,$ plaintexts
 - guess the four key bytes of K_0 to determine a particular herd
 - apply the partial sum technique to this set and obtain a single byte of $A^{(7)}$ depending on 16 bytes of the ciphertext and 21 subkey bytes
 - Use the fact that summing the 2^{104} values on a single byte of $A^{(7)}$ will yield zero (from equality (2)) for the good key

The 9 rounds attack [Ferguson et al - 00] (2/2)

Total cost:

- required storage is about 2¹⁰⁴ bits
- Total complexity about $2^{32} \cdot 2^{170} = 2^{202}$ trial encryptions for one herd and a 256-bit key.
- We need to test four herds before discarding the first bad keys and at least 26 herds to get exactly the good key (with a decreasing complexity).
- Total complexity $\approx 2^{204}$ trial encryptions.

The 9 rounds attack [Ferguson et al - 00] (2/2)

Total cost:

- required storage is about 2¹⁰⁴ bits
- Total complexity about $2^{32} \cdot 2^{170} = 2^{202}$ trial encryptions for one herd and a 256-bit key.
- We need to test four herds before discarding the first bad keys and at least 26 herds to get exactly the good key (with a decreasing complexity).
- Total complexity $\approx 2^{204}$ trial encryptions.
- In the case of a 192-bit key, weakness of the key-schedule [Lucks 00], we preserve 2 bytes of K_9 determined by the 14 others. Total complexity $\approx 2^{204-16} = 2^{188}$ trial encryptions

Conclusion

- New particular integral property on 4 rounds of Rijndael-256
- ▶ leads to the best known attack against a 9 rounds version of Rijndael-256 requiring for a 192-bit keys 2^{188} trial encryptions with $2^{128} 2^{119}$ plaintexts.

Conclusion

- New particular integral property on 4 rounds of Rijndael-256
- ▶ leads to the best known attack against a 9 rounds version of Rijndael-256 requiring for a 192-bit keys 2^{188} trial encryptions with $2^{128} 2^{119}$ plaintexts.
- No way to extend related key rectangle attacks against Rijndael-256: the number of 32-bit key words that must be generated to construct 256-bit subkeys is higher: we do not find a key pattern that sufficiently preserves an integral property.

Comparative Table

Cipher	nb	Key	Data	Time	source
	rounds	size		Complexity	
AES	6	(all)	2 ³² CP	2 ⁷²	[DR98] (Integral)
	7	(all)	2 ¹²⁸ – 2 ¹¹⁹ CP	2 ¹²⁰	[Ferg.] (Part. Sum)
	8	(192)	2 ¹²⁸ – 2 ¹¹⁹ CP	2 ¹⁸⁸	[Ferg.] (Part. Sum)
	8	(256)	2 ¹²⁸ – 2 ¹¹⁹ CP	2 ²⁰⁴	[Ferg.] (Part. Sum)
	9	(256)	2 ⁸⁵ RK-CP	2 ²²⁴	[Ferg.] (Related-key)
	9	(192)	2 ⁸⁶ RK-CP	2 ¹²⁵	[BihamDK05] Related-key Rectangle
	10	(256)	2 ^{114.9} RK-CP	2 ^{171.8}	[BihamDK05] Related-key Rectangle
Rijndael-192	6	(all)	2 ³² CP	2 ⁷²	[DR98] (Integral)
	7	(all)	2 ¹²⁸ – 2 ¹¹⁹ CP	$2^{128} - 2^{119}$	[Ferg.] (Part. Sum)
	8	(192)	2 ¹²⁸ – 2 ¹¹⁹ CP	2 ¹⁸⁸	[Ferg.] (Part. Sum)
	8	(256)	2 ¹²⁸ – 2 ¹¹⁹ CP	2 ²⁰⁴	[Ferg.] (Part. Sum)
Rijndael-256	6	(all)	2 ³² CP	2 ⁷²	[DR98] (Integral)
	7	(all)	2 ¹²⁸ – 2 ¹¹⁹ CP	$2^{128} - 2^{119}$	[Ferg.] (Part. Sum)
	8	(all)	$2^{128} - 2^{119}$ CP	$2^{128} - 2^{119}$	this paper
	9	(192)	$2^{128} - 2^{119}$ CP	2 ¹⁸⁸	this paper
	9	(256)	2 ¹²⁸ - 2 ¹¹⁹ CP	2 ²⁰⁴	this paper

Table: Summary of Attacks on Rijndael-*b* - CP: Chosen plaintexts, RK: Related-key