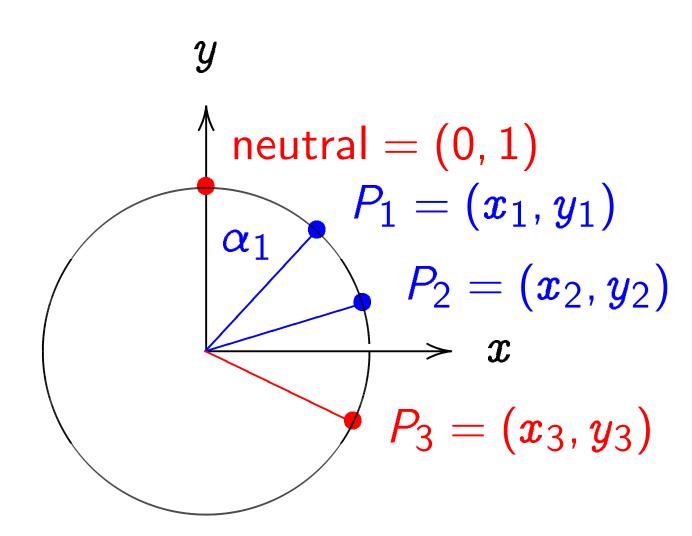
Twisted Edwards curves

D. J. Bernstein (uic.edu)
Peter Birkner (tue.nl)
Marc Joye (thomson.net)
Tanja Lange (tue.nl)
Christiane Peters (tue.nl)

Thanks to: NSF ITR–0716498 IST–2002–507932 ECRYPT INRIA Lorraine, LORIA

Today's speaker: DJB.

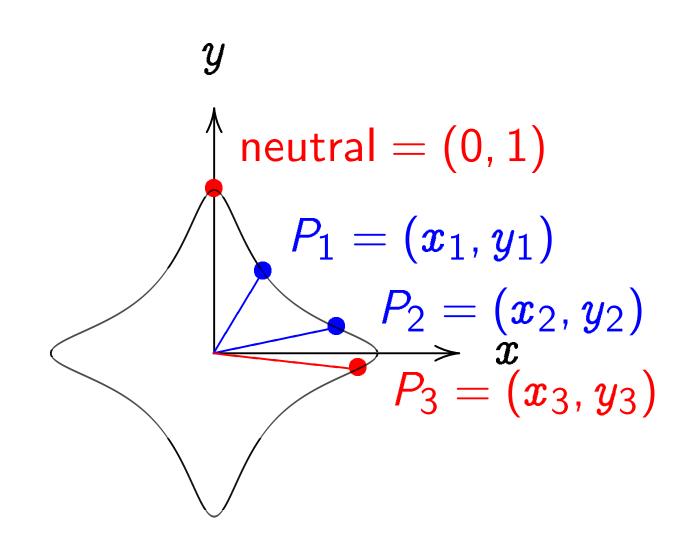
Addition on a clock



 $x^2 + y^2 = 1$, parametrized by $x = \sin lpha$, $y = \cos lpha$. Sum of (x_1, y_1) and (x_2, y_2) is $(x_1y_2 + y_1x_2, y_1y_2 - x_1x_2)$.

Fast but not elliptic; low security.

Addition on an Edwards curve

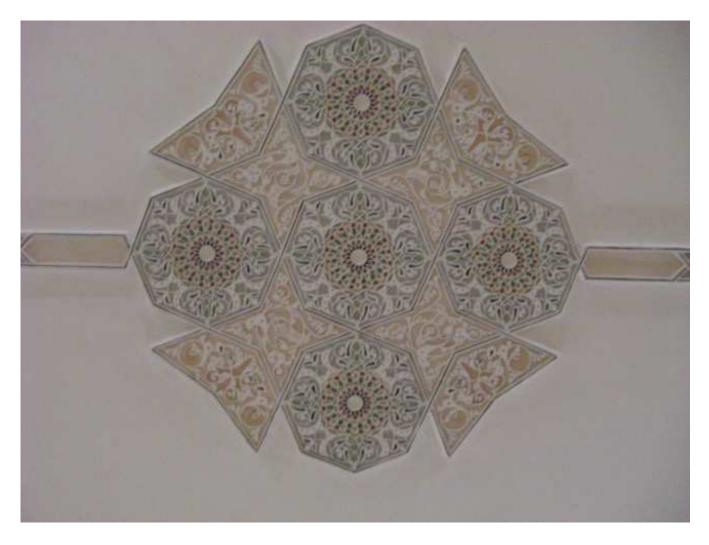


 $x^2 + y^2 = 1 - 30x^2y^2$. Sum of (x_1, y_1) and (x_2, y_2) is $((x_1y_2+y_1x_2)/(1-30x_1x_2y_1y_2),$ $(y_1y_2-x_1x_2)/(1+30x_1x_2y_1y_2)).$

New elliptic-curve speed records!

Edwards curves in Casablanca

Photographed 10 June 2008 in Casablanca mosque:



Montgomery curves

1987 Montgomery: Use curves $Bv^2 = u^3 + Au^2 + u$. $5\mathbf{M} + 4\mathbf{S} + 1\mathbf{A}$ for each bit of nto compute $n, P \mapsto nP$. Warning: $n, n', P, P' \mapsto nP + n'P'$ is harder.

Often used in ECC etc.

Example: 2005 Bernstein, "Curve25519: new Diffie-Hellman speed records." Very fast software for secure twist-secure Montgomery curve $v^2 = u^3 + 486662u^2 + u$ over \mathbf{F}_p where $p = 2^{255} - 19$.

Some statistics

Counting elliptic curves over \mathbf{F}_p if $p \equiv 1 \pmod{4}$:

- pprox 2p elliptic curves.
- $\approx 5p/6$ curves with order $\in 4\mathbf{Z}$.
- $\approx 5p/6$ Montgomery curves.
- $\approx 2p/3$ Edwards curves.
- $\approx p/2$ complete Edwards curves.
- $\approx p/24$ original Edwards curves.

(Many more statistics in paper: e.g., complete Edwards curves with group order 8 · odd.) Counting elliptic curves over \mathbf{F}_p if $p \equiv 3 \pmod{4}$:

- $\approx 2p$ elliptic curves.
- $\approx 5p/6$ curves with order $\in 4\mathbf{Z}$.
- $\approx 3p/4$ Montgomery curves.
- $\approx 3p/4$ Edwards curves.
- $\approx p/2$ complete Edwards curves.
- $\approx p/4$ original Edwards curves.

Can we achieve Edwards-like speeds for more curves?

Main results of this paper

1. Can add very quickly on twisted Edwards curves $ax^2 + y^2 = 1 + dx^2y^2$.

2. Some Edwards curves are sped up by twists.

3. All Montgomery curves can be written as twisted Edwards curves.

 Can use isogenies to achieve similar speeds for all curves where 4 divides group order.

5. Improving previous proofs: All curves with points of order 4 can be written as Edwards curves.

Twisted Edwards curves

This paper introduces curves $ax^2 + y^2 = 1 + dx^2y^2$ where $a \neq 0, \ d \neq 0, \ a \neq d, \ 2 \neq 0.$

Generalization of . . .

... "Edwards curves": a = 1. (see 2007 Bernstein–Lange)

... "complete Edwards curves": a = 1; d not a square. (see 2007 Bernstein–Lange)

... "original Edwards curves": a = 1; d = fourth power. (see 2007 Edwards) Sum of (x_1, y_1) and (x_2, y_2) on a twisted Edwards curve is $((x_1y_2+y_1x_2)/(1+dx_1x_2y_1y_2),$ $(y_1y_2-ax_1x_2)/(1-dx_1x_2y_1y_2)).$

Speed in projective coordinates: ADD 10M + 1S + 1A + 1D; i.e., 10 mults, 1 squaring, 1 mult by *a*, 1 mult by *d*. DBL 3M + 4S + 1A.

Speed in inverted coordinates: ADD $9\mathbf{M} + 1\mathbf{S} + 1\mathbf{A} + 1\mathbf{D}$. DBL $3\mathbf{M} + 4\mathbf{S} + 1\mathbf{A} + 1\mathbf{D}$.

(See paper for more options.)

Montgomery and twisted Edwards

 $Bv^2 = u^3 + Au^2 + u$

- is equivalent to
- a twisted Edwards curve.

Simple, fast computation: define a = (A+2)/B; d = (A-2)/B; x = u/v; y = (u-1)/(u+1). Then $ax^2 + y^2 = 1 + dx^2y^2$.

(What about divisions by 0? Easy to handle; see paper.)

So can use fast twisted-Edwards formulas to compute on any Montgomery curve. Often can translate to Edwards, avoiding twists. Example (2007 Bernstein–Lange): Curve25519 can be expressed as $x^2 + y^2 =$ $1 + (121665/121666)x^2y^2$.

However, in many cases, twists are faster! Example (this paper): Curve25519 can be expressed as $121666x^2 + y^2 = 1 + 121665x^2y^2$.

Mults by 121665 and 121666 are much faster than mult by 121665/121666 =

20800338683988658368647408995589388737092878452977063003340006470870624536394.

2×2 and twisted Edwards

All Montgomery curves over \mathbf{F}_p have group order $\in 4\mathbf{Z}$.

Can a curve with order ∈ 4**Z** be written as a Montgomery curve? Not necessarily!

Can nevertheless achieve twisted-Edwards speeds for all curves with order $\in 4\mathbb{Z}$.

Central idea: The missing curves are 2-isogenous to twisted Edwards curves. The missing curves can be written in the form $v^2 = u^3 - (a + d)u^2 + (ad)u$. Starting from (u, v) define $x = 2v/(ad - u^2)$. u =

$$(v^2 - (a - d)u^2)/(v^2 + (a - d)u^2).$$

Then $ax^2 + y^2 = 1 + dx^2y^2.$

Compatible with addition. Also, can work backwards from (x, y) to 2(u, v).

So can compute 2n(u, v), 2n(u, v) + 2n'(u', v'), etc. via n(x, y), n(x, y) + n'(x', y'), etc.

Recent news

Bernstein-Lange: http://hyperelliptic.org/EFD.

B.–L.–Rezaeian Farashahi, CHES 2008, "Binary Edwards curves": Edwards-like curve shape for all ordinary elliptic curves over fields \mathbf{F}_{2^n} if $n \geq 3$.

B.-Birkner-L.-Peters,

"ECM using Edwards curves": Better curves for ECM; and twisted-Edwards ECM software, faster than state-of-the-art GMP-ECM Montgomery software.