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? Introduction

In 1996, W. Aiello and R. Venkatesan have shown how to construct

pseudo-random functions of 2n bits → 2n bits from pseudo-

random functions of n bits → n bits.

They claimed that their construction, called “Benes”, reaches

the optimal bound (m � 2n) of security against adversaries with

unlimited computing power but limited by m queries in an Adap-

tive Chosen Plaintext Attack (CPA-2).

However a complete proof of this result is not given in their

paper since one of their assertions is wrong.
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In this conference (Africacrypt 2008), I will present a complete

proof of this result : we have indeed security for Benes when

m � 2n.(12 years to fix the proof !).

Remark : At ICISC’05, Jacques Patarin and Audrey Montreuil

had only partially fixed this problem since for all ε > 0, they have

proved security when m � f(ε) ·2n−ε, where f is a function such

that limε→0 f(ε) = +∞

4



? Butterfly transformation

The fk are randomly chosen in Fn, the set of all functions of n

bits to n bits.

Xi = f1(Li)⊕ f2(Ri)

Yi = f3(Li)⊕ f4(Ri)
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? Benes transformation
(back-to-back Butterfly)

Si = f5(f1(Li)⊕ f2(Ri))⊕ f6(f3(Li)⊕ f4(Ri))

Ti = f7(f1(Li)⊕ f2(Ri))⊕ f8(f3(Li)⊕ f4(Ri))
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Definition

We will say that we have “a circle in X, Y of length k” if we

have k pairwise distinct indices such that Xi1 = Xi2, Yi2 = Yi3,

Xi3 = Xi4,. . ., Xik−1
= Xik, Yik = Yi1.

We will say that we have “a circle in X, Y ” if there is an even

integer k, k ≥ 2, such that we have a circle in X, Y of length k.

Example : A circle in X, Y of length 4
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? A problem in the proof of Aiello and
Venkatesan

Let [L1, R1], [L2, R2], [L3, R3] and [L4, R4] be four chosen inputs
such that :L1 = L2, R2 = R3, L3 = L4, R4 = R1 (and R1 6= R2
and L1 6= L3). Here we have “a circle in L, R” of length 4.

Let p be the probability for these inputs to produce “a circle
in X, Y ” after a Butterfly. In the paper of Aiello and Venkatesan,
it is claimed that p ≤ 1

24n. However we will see that p ≥ 1
22n.
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With L1 = L2, R2 = R3, L3 = L4 and R4 = R1, we have :
X1 = f1(L1)⊕ f2(R1)
X2 = f1(L2)⊕ f2(R2) = f1(L1)⊕ f2(R2)
X3 = f1(L3)⊕ f2(R3) = f1(L3)⊕ f2(R2)
X4 = f1(L4)⊕ f2(R4) = f1(L3)⊕ f2(R1)

Y1 = f3(L1)⊕ f4(R1)
Y2 = f3(L2)⊕ f4(R2) = f3(L1)⊕ f4(R2)
Y3 = f3(L3)⊕ f4(R3) = f3(L3)⊕ f4(R2)
Y4 = f3(L4)⊕ f4(R4) = f3(L3)⊕ f4(R1)

We will get the circle

X1 = X2, Y2 = Y3, X3 = X4 and Y4 = Y1

if and only if

f2(R1) = f2(R2) and f3(L1) = f3(L3)

and the probability for this is exactly 1
22n (since R1 6= R2 and

L1 6= L3).
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Conclusion The probability p to have a circle in X, Y of length

4 is ≥ 1
22n, so it is not ≤ 1

24n as claimed in the paper of Aiello

and Venkatesan.

This problem is not easily solved : a precise analysis will be

needed in order to prove the security result m � 2n.
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? First ideas about our proof

Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti] ⇔
{

Si = f5(Xi)⊕ f6(Yi)
Ti = f7(Xi)⊕ f8(Yi)

with

{
Xi = f1(Li)⊕ f2(Ri)
Yi = f3(Li)⊕ f4(Ri)

Theorem 1

The probability to distinguish Benes functions from random func-

tions of 2n bits→ 2n bits in a CPA-2 is always ≤ p, when f1, . . . , f8
are randomly and independently chosen in Fn, and where p is the

probability to have a circle in X, Y .
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Proof of Theorem 1

With Benes, we have :

∀i, 1 ≤ i ≤ m, Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti] ⇔{
Si = f5(Xi)⊕ f6(Yi)
Ti = f7(Xi)⊕ f8(Yi)

(1)

with

{
Xi = f1(Li)⊕ f2(Ri)
Yi = f3(Li)⊕ f4(Ri)

When there are no circles in X, Y in each equation (1), we have
a new variable f5(Xi) or f6(Yi), and a new variable f7(Xi) or
f8(Yi), so if f5, f6, f7, f8 are random functions, the outputs Si

and Ti are perfectly random and independent from the previous
Sj, Tj, i < j.
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Circles in X, Y with k = 2

Theorem

The probability p2 to have a circle in X, Y of length 2, when

f1, f2, f3, f4 are randomly chosen in Fn satisfies : p2 ≤ m(m−1)
2·22n .

So p2 is negligible when m � 2n.

Proof : Here we want i < j such that Xi = Xj and Yj = Yi,

i.e. such that :{
f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj) (1)
f3(Li)⊕ f4(Ri) = f3(Lj)⊕ f4(Rj) (2)
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{
f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj) (1)
f3(Li)⊕ f4(Ri) = f3(Lj)⊕ f4(Rj) (2)

First case : Ri 6= Rj. Then when f1 is fixed, we have exactly
|Fn|
2n functions f2 such that (1) is satisfied, and when f3 is fixed,

we have exactly |Fn|
2n functions f4 such that (2) is satisfied.
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{
f1(Li)⊕ f2(Ri) = f1(Lj)⊕ f2(Rj) (1)
f3(Li)⊕ f4(Ri) = f3(Lj)⊕ f4(Rj) (2)

Second case : Ri = Rj. Then we have Li 6= Lj (since i < j

so i 6= j), so we have exactly |Fn|
2n functions f1 such that (1) is

satisfied and exactly |Fn|
2n functions f3 such that (2) is satisfied.
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Conclusion Whatever Li, Lj, Ri, Rj are, when i and j are fixed,

we have exactly |Fn|4
22n functions f1, f2, f3, f4 such that (1) and (2)

are satisfied. So, since we have m(m−1)
2 indices i, j, i < j, we have

p2 ≤ m(m−1)
2·22n , as claimed.
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Theorem A [Patarin, Montreuil, ICISC’05]

Let k be an even integer. The probability pk to have a circle in

X, Y of length k, when f1, f2, f3, f4 are randomly chosen in Fn

satisfies : pk ≤ k2k m2

22n.
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Definition

If k is odd, we will say that we have “a line in X, Y of length k”

if we have k + 1 pairwise distinct indices such that Xi1 = Xi2,

Yi2 = Yi3, Xi3 = Xi4, . . ., Yik−1
= Yik, Xik = Xik+1

.

Similarly, if k is even, we will say that we have “a line in X, Y

of length k” if we have k + 1 pairwise distinct indices such that

Xi1 = Xi2, Yi2 = Yi3, Xi3 = Xi4, . . ., Xik−1
= Xik, Yik = Yik+1

.
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Theorem B [Patarin, Montreuil, ICISC’05]

When f1, f2, f3, f4 are randomly and independently chosen in Fn,

the probability qk to have a line in X, Y of length k satisfies, when

k ≥ 4,

qk ≤
mk+1

2nk
+

k2km2

22n
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? First dependency lines

Definition A line in X, Y of length k will be called a “first depen-

dency” line when all the equations in X, Y except the last one

are independent and when the last one (i.e. the equation number

k) is a consequence of the previous equations in X, Y .

Example : If L1 = L3, L2 = L4, R1 = R2, R3 = R4, then

(X1 = X2), (Y2 = Y3), (X3 = X4) is a “first dependency line”,

since (X1 = X2) and (Y2 = Y3) are independent, but (X3 = X4)

is a consequence of (X1 = X2).
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Definition A circle in X, Y will be called a “ circle with one

dependency” when all the equations in the circle, except one

are independent from the others, and when exactly one is a

consequence of the others equations in X, Y .

The key argument in our proof will be this (new) Theorem :

Theorem 2 When f1, f2, f3, f4 are randomly chosen in Fn, the

probability qk to have a “first dependency line” in X, Y of length

k satisfies qk ≤ k5 mk−1

2(k−1)n
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Proof of Theorem 2
a) Rough Evaluation

Since we have (k−1) independent equations in X or Y , when all

the indices are fixed the probability to have all these equations is
1

2(k−1)n. Now, in order to choose the k+1 indices of the messages,

we have less than mk+1 possibilities. Therefore, qk ≤ mk+1

2(k−1)n.

Moreover, the last equation (in X or Y ) is a consequence of

the previous equations in X, Y . However, a dependency in these

equations implies the existence of a circle in L, R on a subset of

the indices involved in the dependency. [The proof is exactly the

same as for Theorem 1 except that here we use L, R instead of

X, Y and X, Y instead of S, T ].

Now if we have a circle in L, R of length α, α even, we know that
α
2 of the messages in the circle come from the other α

2 messages.
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Example of a circle in L, R
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For example, if L1 = L2, R2 = R3, L3 = L4, R4 = R5, L5 = L6,

R6 = R1, we have a circle in L, R of length 6, and if we know the

messages 1, 3, 5, then we know (L1, R1), (L3, R3), (L5, R5), and

we can deduce (L2, R2), (L4, R4) and (L6, R6), since (L2, R2) =

(L1, R3), (L4, R4) = (L3, R5) and (L6, R6) = (L5, R1). In a circle

in L, R of length α, we must have α ≥ 4, since α = 2 gives

Li = Lj and Ri = Rj, and therefore i = j. Therefore, if there

is a circle in L, R we will be able to find α
2 messages, α

2 ≥ 2,

from the other messages of the circle. So, in order to choose

k + 1 indices of the messages in a first dependency line, we will

have O(mk−1) possibilities (instead of mk+1 possibilities since at

least 2 messages will be fixed from the others), and therefore

qk ≤ O(m(k−1))
2(k−1)n . We will now evaluate the term O(m(k−1)) more

precisely.
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b) More precise evaluation An example of line in X, Y

× × × × × × ×X Y X Y X Y�
���

�
���

@
@@I

@
@@I

R L R Lk2

k

k2

From a first dependency line in X, Y we have just

seen that at least two messages of the line, let say

messages [La, Ra] and [Lb, Rb] are such that La = Li,

Ra = Rj, Lb = Rk, Rb = Rl with i, j, k, l /∈ {a, b}.
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Moreover, we can choose b to be the last message of the line

(since between the two last messages we have a dependency in X

or in Y from the other equations in X and Y ). Now for a we have

less than k possibilities, and for i, j, k, l we have less than (k−1)4

possibilities. Therefore, for the choice of the k + 1 messages of

the line we have less than k(k − 1)4 mk−1 possibilities, which is

less than k5 mk−1. Therefore, qk ≤ k5 mk−1

2(k−1)n as claimed.
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Theorem 3 When f1, f2, f3, f4 are randomly chosen in Fn, the

probability qk to have a “first dependency line” in X, Y of length

k, or a “circle with one dependency” of length k − 1 (k odd)

satisfies : qk ≤ k5 mk−1

2(k−1)n
.

Proof of theorem 3

This is just a simple extension of Theorem 2. A circle of length

k−1 with one dependency can be seen as a special line of length

k with the first index equal to the index number k, and the proof

given for Theorem 2 extended to the classical lines in X, Y and

to these special lines gives immediately Theorem 3.
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? Security of Benes Schemes

Theorem 4 When f1, f2, f3, f4 are randomly chosen in Fn, the

probability p to have a circle in X, Y satisfies, if m ≤ 2n

2

p ≤
m2

22n

( 1

1− m2

22n

)
+

m2

22n

(+∞∑
k=3

k5

2(k−3)

)

and
+∞∑
k=3

k5

2(k−3)
= 35+

45

2
+

55

22
+

65

23
+. . . converges to afinite value.

Therefore, when m � 2n, p ' 0, as wanted.
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Proof of theorem 4
For each circle in X, Y of length k, k even, we have three possi-
bilities :

a) Either all the k equations in X, Y are independent. Then the
probability to have a circle is less than or equal to mk

2kn.

b) Or there exists a first dependency line of length strictly less
than k in the equations in X, Y of the circle.

c) Or the circle is a circle with exactly one dependency.

Now from Theorems 2 and 3, we get immediately :

p ≤
( m2

22n
+

m4

24n
+

m6

26n
+

m8

28n
+ . . .

)
+

+∞∑
k=3

k5 mk−1

2(k−1)n
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Therefore, if m ≤ 2n

2 ,

p ≤
m2

22n

( 1

1− m2

22n

)
+

m2

22n

(+∞∑
k=3

k5

2(k−3)

)

as claimed (since mk−3

2(k−3)n ≤
1

2(k−3)). Therefore, from Theorem 1,

we see that we have proved the security of Benes when m �
O(2n) against all CPA-2, with an explicit O function, as wanted.
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? Open problem : Modified Benes, i.e. Benes with
f2 = f3 = Id

If we take f2 = f3 = Id in the Benes schemes, we obtain a scheme
called “Modified Benes”. Then we have : Xi = f1(Li)⊕Ri, Yi =
Li⊕f4(Ri) and the output [Si, Ti] is such that Si = f5(Xi)⊕f6(Yi)
and Ti = f7(Xi) ⊕ f8(Yi). It is conjectured that the security for
Modified Benes is also in O(2n) but so far we just have a proof
of security in O(2n−ε) for all ε > 0.

It is interesting to notice that the proof technique used in this
paper for the regular Benes cannot be used for the Modified
Benes, since, as we will see in the example below, for Modified
Benes, unlike for regular Benes, the first ‘dependent’ equation
can fix only one index instead of two.
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Example :

If we have L1 = L3, L2 = L4, R1 ⊕ R2 ⊕ R3 ⊕ R4 = 0, then we

will get the ‘line’, X1 = X2, Y3 = Y3, X3 = X4 from only two

independent equations in f , (X1 = X2 and Y2 = Y3), and the

first ‘dependent’ equation, here X3 = X4, fixes only the index 4

from the previous indices (since L4 = L2 and R4 = R1⊕R2⊕R3).

Therefore, a proof of security in O(2n) for the Modified Benes

will be different, and probably more complex than our proof of

security on O(2n) for the regular Benes.
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? Conclusion

W. Aiello and R. Venkatesan did a wonderful work by pointing
out the great potentialities of the Benes schemes and by giving
some very important parts of a possible proof. Unfortunately
the complete proof of security when m � 2n for CPA-2 is more
complex than what they published in their paper due to some
possible attacks in L,R.

In this paper we have been able to solve this open problem by im-
proving the analysis and the results of J.Patarin and A.Montreuil
at ICISC’05. The key point in our improved proof was to ana-
lyse more precisely what happens just after the first ‘dependent’
equations in X,Y and to use the fact that in this case two ‘indices’
are fixed from the others.
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Therefore we have obtained the optimal security bound (in O(2n))

with an explicit O function. This automatically improves the pro-

ved security of many schemes based on Benes.

Thank you for your attention !
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