Correlated Keystreams in Moustique

Emilia Käsper, Vincent Rijmen, Tor Bjørstad, Christian Rechberger, Matt Robshaw and Gautham Sekar

> K.U. Leuven, ESAT-COSIC The Selmer Center, University of Bergen Graz University of Technology France Télécom Research and Development

> > Africacrypt 2008 Casablanca, June 2008

Image: A match a ma

Background on eStream

- April 2005: Call for stream cipher primitives
- 34 submissions
- April 2007: 16 ciphers in "focus"
- May 2008: final portfolio, 8 ciphers

http://www.ecrypt.eu.org/stream

イロン イヨン イヨン イヨン

eStream Portfolio

software	hardware
CryptMT	DECIM
Dragon	Edon80
HC	F-FCSR
LEX	Grain
NLS	Mickey
Rabbit	Moustique
Salsa20	Pomaranch
SOSEMANUK	Trivium

イロト イポト イヨト イヨト

Э

eStream Portfolio

software	hardware
HC-128	F-FCSR-H v2 Grain v1 Mickey v2
Rabbit	
Salsa20/12	
SOSEMANUK	Trivium

イロン スポン イヨン イヨン

Э

Moustique factsheet

- Tweaked version of Mosquito
- hardware-oriented design, encryption bit-by-bit
- 96-bit key
- 128-bit state with nonlinear state update
- nonlinear output filter
- self-synchronization after 105 correctly received ciphertext bits

イロト イポト イヨト イヨト

Moustique: high-level structure

g(a,b,c,d) = a+b+c(d+1)+1

イロン スポン メヨン スヨン

- Differential cryptanalysis: find "related" internal states that give correlated output
- Related-key attack: use related keys to obtain such related states
- Distinguishing attack: observe output of two cipher copies running on related keys, detect correlation
- Divide-and-conquer: fast key recovery in related-key setting
- "Smarter" exhaustive search without related keys

イロト イポト イヨト イヨト

Weaknesses in the filter function[JM06]

First round of filtering compressing

・ロト ・回ト ・ヨト

• 3 >

Weaknesses in the filter function[JM06]

- First round of filtering compressing
- Diffusion in first round is weak—single-bit differences give collisions

Image: A match a ma

→ Ξ →

Weaknesses in the filter function[JM06]

- First round of filtering compressing
- Diffusion in first round is weak—single-bit differences give collisions
- Example: Two register states with only difference in bit x₇₁ give coinciding outputs with probability 3/4.

▲ @ ▶ ▲ ∃ ▶

Weaknesses in register update

- Each register bit x_i $(1 \le i \le 88)$ depends only on one key bit k_{i-1} and previous state bits x_1, \ldots, x_{i-1}
- Flipping key bit k_{70} flips x_{71}

$$x_{71}^{(t+1)} = x_{70}^{(t)} + k_{70} + x_{67}^{(t)}(x_{69}^{(t)} + 1) + 1$$

・ロト ・回ト ・ヨト ・ヨト

Weaknesses in register update

- Each register bit x_i $(1 \le i \le 88)$ depends only on one key bit k_{i-1} and previous state bits x_1, \ldots, x_{i-1}
- Flipping key bit k₇₀ flips x₇₁

$$x_{71}^{(t+1)} = x_{70}^{(t)} + k_{70} + x_{67}^{(t)}(x_{69}^{(t)} + 1) + 1$$

• Deterministic left-to-right difference propagation:

$$\begin{aligned} x_{72}^{(t+2)} &= x_{71}^{(t+1)} + k_{71} + x_{67}^{(t+1)} (c^{(t+2)} + 1) + 1 \\ x_{73}^{(t+2)} &= x_{72}^{(t+1)} + k_{72} + x_{48}^{(t+1)} + x_{71}^{(t+1)} \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

Weaknesses in register update

- Each register bit x_i $(1 \le i \le 88)$ depends only on one key bit k_{i-1} and previous state bits x_1, \ldots, x_{i-1}
- Flipping key bit k₇₀ flips x₇₁

$$x_{71}^{(t+1)} = x_{70}^{(t)} + k_{70} + x_{67}^{(t)}(x_{69}^{(t)} + 1) + 1$$

• Deterministic left-to-right difference propagation:

$$\begin{aligned} x_{72}^{(t+2)} &= x_{71}^{(t+1)} + k_{71} + x_{67}^{(t+1)} (c^{(t+2)} + 1) + 1 \\ x_{73}^{(t+2)} &= x_{72}^{(t+1)} + k_{72} + x_{48}^{(t+1)} + x_{71}^{(t+1)} \end{aligned}$$

• Flipping key bits k_{71}, k_{72} cancels difference

・ロト ・回ト ・ヨト ・ヨト

Related-key distinguisher

- Correlated keystream from each pair $k_0, k_1, \ldots, k_{70}, k_{71}, k_{72}, \ldots, k_{95}$ $k_0, k_1, \ldots, k_{70} + 1, k_{71} + 1, k_{72} + 1, \ldots, k_{95}$
- We found 8 more such related-key sets
- So: Each key has 8 related keys that produce correlated keystream for any ciphertext
- Bias 0.25 or in some cases stronger = keystream overlap $\geq 75\%$

Related-key key recovery

- Observe output from two related keys with x_{71} flipped
- Bit x₇₁ affects filter output only in

$$a_9 = x_{86} + x_{60} + x_{71}(x_{43} + 1) + 1$$

イロン イヨン イヨン イヨン

Related-key key recovery

- Observe output from two related keys with x_{71} flipped
- Bit x₇₁ affects filter output only in

$$a_9 = x_{86} + x_{60} + x_{71}(x_{43} + 1) + 1$$

• $x_{43} = 1$ yields collision

イロン イヨン イヨン イヨン

Divide-and-conquer approach

- Guessing 43 bits of the key allows to compute x_{43}
- If $x_{43} = 1$ but outputs differ, the guess was wrong.
- Repeat for a second related key at position x_{89} .
- With some fine-tuning, final attack complexity 2³⁸.

Relevance of Related-Key Properties

- Attack scenario unrealistic:
 - Attacker allowed to modify key-unreasonable assumption (?)
 - Proper key generation a must (e.g., key should not be increased as counter)
 - Freshness provided by IV-s
- ...but related-key properties show (first) weakness of design:
 - Stream cipher \approx PRNG
 - May be used in applications other than encryption
 - The case of Moustique: freshness of IV not applicable, as cipher "forgets" IV

Smart exhaustive search

- Recall: each key has 8 related keys.
- Piling-Up Lemma—Key space partitioned into sets of 256 keys, bias within a set ranges from 0.25 to 2^{-9}
- Test only 2⁸⁸ keys—correlation with correct keystream will emerge.
- Trade-off: need longer keystream per candidate key (=more time).

Smarter exhaustive search

- Two states with related keys differ in at most 8 bits
- With probability $p = \frac{5}{8} \cdot \frac{1}{2^7}$, these bits do not affect output
 - Test one key in a set of 2^8 keys
 - If 8 "check bits" neutral but output differs from known keystream, eliminate the set of 2⁸ keys
- Need on average $\frac{2}{p} \approx 410$ bits of keystream
- Complexity $(105 + 410) \cdot 2^{88} \approx 2^{97}$ vs $105 \cdot 2^{96} \approx 2^{103}$
- Speed-up factor 50, conjectured security 90 bits.

イロト イポト イヨト イヨト

- Moustique keyspace partitioned into sets of 256 keys that produce correlated output
- Related-key key recovery in 2³⁸ steps (96-bit key)
- Conjectured security in known keystream scenario 290
- Moustique eliminated from eSTREAM final portfolio
- How to design a secure self-synchronizing stream cipher?

イロト イヨト イヨト イヨト

Thank you! Questions?

(日) (四) (日) (日) (日)

Э