▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Analysis of Grain's Initialization Algorithm

Christophe De Cannière^{1,2} Özgül Küçük¹ Bart Preneel¹

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC Département d'Informatique École Normale Supérieure

Casablanca - June 12, 2008

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Outline

1 Background

Description of Grain

2 Slide Attacks

- Slid Pairs in Stream Ciphers
- Related (K, IV) Pairs in Grain
- Applications

3 Differential Attacks

- Sparse Characteristics in Grain
- Partitioning the Key and IV Space
- Attack Complexities

4 Conclusions

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

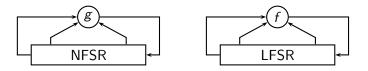
Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers

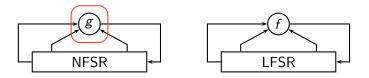
- Related (K, IV) Pairs in Grain
- Applications
- **3** Differential Attacks
 - Sparse Characteristics in Grain
 - Partitioning the Key and IV Space
 - Attack Complexities


4 Conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

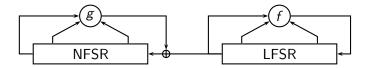
Grain

- Family of stream ciphers designed in 2005 by M.Hell, T. Johansson and W. Meier
- Has two members Grain v1 and Grain-128:
 - **Grain v1** accepts 80-bit key and 64-bit IV value
 - Grain-128 accepts 128-bit key and 96-bit IV value
- One of 4 hardware ciphers in eSTREAM Portfolio

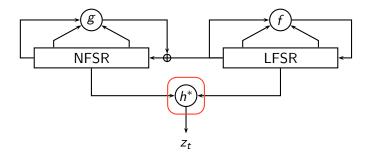

Background	Slide Attacks	Differential Attacks	Conclusio
0000	0000000000	0000000000000	
Description of Grain			

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Grain v1: 80-bit NFSR and 80-bit LFSR Grain-128: 128-bit NFSR and 128-bit LFSR


Background	Slide Attacks	Differential Attacks	Co
00●0	0000000000	0000000000000	o
Description of Grain			

Grain v1: g(x₁...x₁₃) is a function of degree 6
Grain-128: g(x₁...x₁₉) is a very sparse quadratic function


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

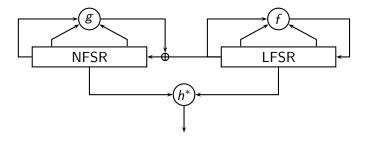
Background	Slide Attacks	Differential Attacks	Conclusions
0000	0000000000	0000000000000	
Description of Grain			

Grain v1: g(x₁...x₁₃) is a function of degree 6
Grain-128: g(x₁...x₁₉) is a very sparse quadratic function

Background	Slide Attacks	Differential Attacks	Conclusions
0000			
Description of Grain			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Grain v1: h*(x1...x12) is a function of degree 3
Grain-128: h*(x1...x17) is a function of degree 3

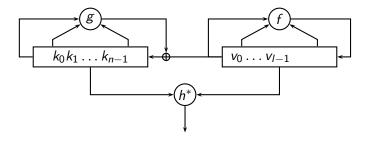

Background 000● Description of Grain Slide Attacks

Differential Attacks

Conclusions 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Key and IV Initialization



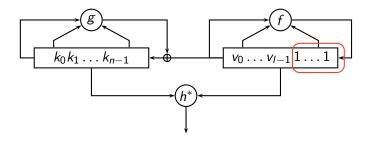
- Grain v1: 80-bit key and 64-bit IV
- Grain-128: 128-bit key and 96-bit IV

Background Slide ooo● ooc Description of Grain Differential Attacks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Key and IV Initialization

- Grain v1: 80-bit key and 64-bit IV
- Grain-128: 128-bit key and 96-bit IV

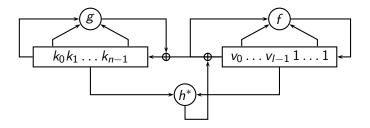

Background 000● Description of Grain Slide Attacks

Differential Attacks

Conclusions 0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Key and IV Initialization


- Grain v1: 80-bit key and 64-bit IV
- Grain-128: 128-bit key and 96-bit IV

Slide Attacks

Differential Attacks

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Key and IV Initialization

Grain v1: 160 initialization rounds
Grain-128: 256 initialization rounds

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers

- Related (K, IV) Pairs in Grain
- Applications

3 Differential Attacks

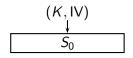
- Sparse Characteristics in Grain
- Partitioning the Key and IV Space
- Attack Complexities

4 Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Slide Attacks

- Introduced by A. Biryukov and D. Wagner in 1999
- Mainly used to attack block ciphers
- Exploits the self-similarity of the rounds of a cipher
- Complexity is not affected by the number of rounds

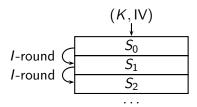

Background 0000 Slide Attacks

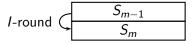
Differential Attacks

Conclusions 0

Slid Pairs in Stream Ciphers

Slid Pairs in Stream Ciphers

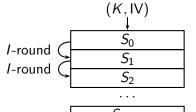


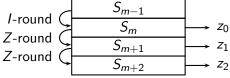


Slide Attacks 00000000000

Slid Pairs in Stream Ciphers

Slid Pairs in Stream Ciphers

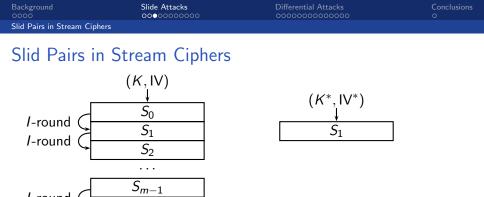



(initialization rounds)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Background	Slide Attacks	Differential Attacks	Conclusions
	000000000		
Slid Pairs in Stream Ciphers			

Slid Pairs in Stream Ciphers



(initialization rounds)

(keystream generation)

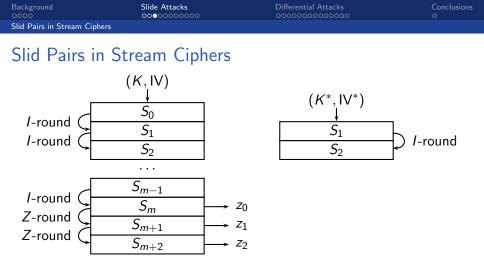
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 Z_0

 Z_1

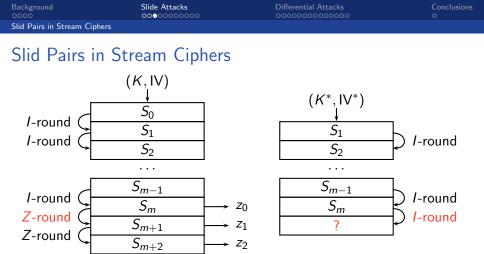
 Z_2

Sm

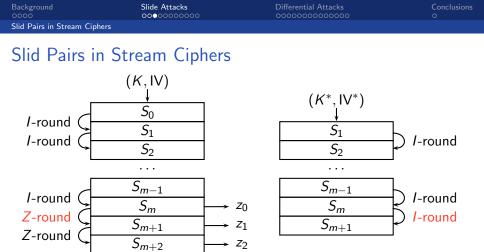

 S_{m+1}

 S_{m+2}

I-round

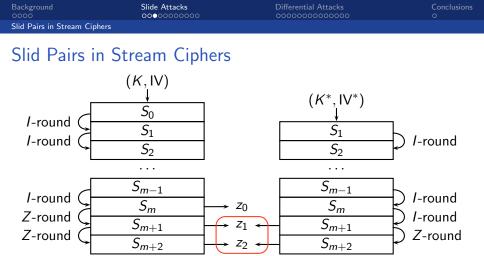

Z-round

Z-round


Condition 1: S_1 is the initial state of a pair (K^* , IV^*)

▲ロ▶ ▲御▶ ▲注▶ ▲注▶ 三注 - 釣��

Condition 1: S_1 is the initial state of a pair (K^* , IV^*)


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Condition 1: S₁ is the initial state of a pair (K^{*}, IV^{*})

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

Condition 1: S_1 is the initial state of a pair (K^* , IV^*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers

- Related (K, IV) Pairs in Grain
- Applications
- 3 Differential Attacks
 - Sparse Characteristics in Grain
 - Partitioning the Key and IV Space
 - Attack Complexities

4 Conclusions

Background	Slide Attacks	Differential Attacks	Conclusions
	000 000 0000		
Related (K, IV) Pairs in Grain			

Application to Grain

Condition 1: S_1 is the initial state of a pair (K^* , IV^*)

Background	Slide Attacks	Differential Attacks	Conclusions
	000000000		
Related (K, IV) Pairs in Grain			

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

 $S_0: [k_0 \dots k_{78} k_{79}] [v_0 \dots v_{62} v_{63} 1 \dots 1 1]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & s_{80}] \end{array}$$

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 \Rightarrow occurs with probability 1/2.

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 \Rightarrow occurs with probability 1/2.

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

 \Rightarrow occurs with probability 1/2.

Condition 2: I-round $(S_m) = Z$ -round (S_m)

• I-round $(S_m) = Z$ -round $(S_m) \Leftrightarrow h^*(S_m) = 0$

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

 \Rightarrow occurs with probability 1/2.

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

• *I*-round(S_m) = *Z*-round(S_m) \Leftrightarrow $h^*(S_m) = 0$

 \Rightarrow occurs with probability 1/2.

■ Condition 1: S₁ is the initial state of a pair (K^{*}, IV^{*})

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

 \Rightarrow occurs with probability 1/2.

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

• I-round $(S_m) = Z$ -round $(S_m) \Leftrightarrow h^*(S_m) = 0$

 \Rightarrow occurs with probability 1/2.

Remark: What if Condition 2 is not fulfilled?

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

 \Rightarrow occurs with probability 1/2.

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

• I-round $(S_m) = Z$ -round $(S_m) \Leftrightarrow h^*(S_m) = 0$

 \Rightarrow occurs with probability 1/2.

Remark: What if Condition 2 is not fulfilled?
 ⇒ Difference in right-most bit of NFSR and LFSR

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Condition 1: S_1 is the initial state of a pair (K^*, IV^*)

$$\begin{array}{cccc} S_0: & [k_0 \dots k_{78} k_{79}] & [v_0 \dots v_{62} v_{63} 1 \dots 1 & 1] \\ S_1: & [k_1 \dots k_{79} b_{80}] & [v_1 \dots v_{63} & 1 1 \dots 1 & 1] \end{array}$$

 \Rightarrow occurs with probability 1/2.

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

• I-round $(S_m) = Z$ -round $(S_m) \Leftrightarrow h^*(S_m) = 0$

 \Rightarrow occurs with probability 1/2.

Remark: What if Condition 2 is not fulfilled?

- \Rightarrow Difference in right-most bit of NFSR and LFSR
- \Rightarrow Only affects output stream after 16 (32) steps

■ Condition 1: S₁ is the initial state of a pair (K^{*}, IV^{*})

 \Rightarrow occurs with probability 1/2.

Condition 2: *I*-round(S_m) = *Z*-round(S_m)

• I-round $(S_m) = Z$ -round $(S_m) \Leftrightarrow h^*(S_m) = 0$

 \Rightarrow occurs with probability 1/2.

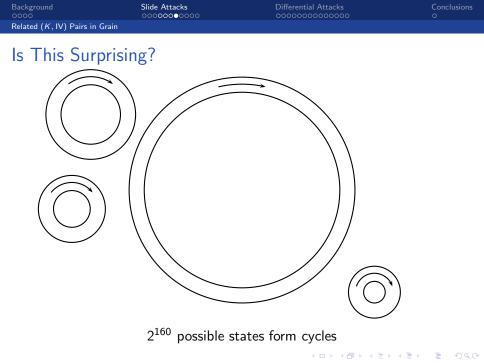
Remark: What if Condition 2 is not fulfilled?

- \Rightarrow Difference in right-most bit of NFSR and LFSR
- \Rightarrow Only affects output stream after 16 (32) steps
- \Rightarrow First 15 (31) keystream bits are still equal (but shifted)

Background 0000 Slide Attacks

Differential Attacks

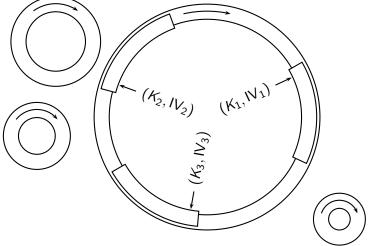
Conclusions 0


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Related (K, IV) Pairs in Grain

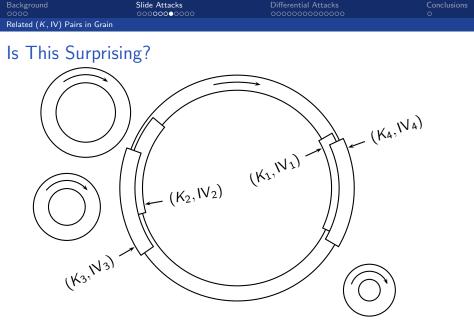
Related (K, IV) Pairs in Grain

Property


For a fraction $2^{-2 \cdot n}$ of pairs (K, IV), there exists a related pair (K*, IV*) which produces an identical but n-bit shifted key stream.

Background 0000	Slide Attacks	Differential Attacks 0000000000000	Conclusions 0
Related (K , IV) Pairs in Grain			
Related (<i>K</i> , IV) Pairs in Grain	ng?	(K1, N1))
		\bigcirc	
initia	alization algorith	m defines starting point	

Background 0000	Slide Attacks ○○○○○○○○○○○	Differential Attacks 0000000000000	Conclusions 0
Related (K, IV) Pairs in			
Related (K, IV) Pairs in		(K1, N1)	
)
	$2^{80} imes 2^{64}$ s	tarting points	


Background 0000	Slide Attacks	Differential Attacks 0000000000000	Conclusic O
Related (K, IV) Pairs in (Grain		
Is This Sur	orising?		

 $2^{80}\times2^{64}$ starting points

Related (K, IV) Pairs in Grain			
Is This Surprising	$(\mathcal{H}_{2}, \mathcal{N}_{3})$ (K	$(\mathcal{H}_{q}, \mathcal{H}_{q})$)
if 2^{80} ×	$ imes 2^{64} imes 2' > 2^{160} ightarrow 0$	overlap unavoidable	

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

special feature of Grain: clustering of starting points

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers
 Related (K, IV) Pairs in Grain

- Applications
- 3 Differential Attacks
 - Sparse Characteristics in Grain
 - Partitioning the Key and IV Space
 - Attack Complexities

4 Conclusions

Background	Slide Attacks	Differential Attacks	Conclusions
0000	00000000000	000000000000	
Applications			

Related Key Attack

 Assume that adversary manages to obtain keystream sequences from two shifted (K, IV) pairs

Background	Slide Attacks	Differential Attacks	Conclusions
0000		0000000000000	0
Applications			

Related Key Attack

- Assume that adversary manages to obtain keystream sequences from two shifted (K, IV) pairs
 - \Rightarrow With probability 1/4, sequences are identical but shifted

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Related Key Attack

- Assume that adversary manages to obtain keystream sequences from two shifted (K, IV) pairs
 - \Rightarrow With probability 1/4, sequences are identical but shifted
 - ⇒ This indicates that $s_{80} = 1$, which yields simple (non-linear) equation in secret key bits

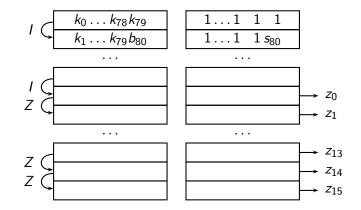
Related Key Attack

- Assume that adversary manages to obtain keystream sequences from two shifted (K, IV) pairs
 - \Rightarrow With probability 1/4, sequences are identical but shifted
 - ⇒ This indicates that $s_{80} = 1$, which yields simple (non-linear) equation in secret key bits
- Unlikely to happen in practice, unless
 - Session keys are derived from master key in funny way
 - Adversary can cause synchronization errors

Background	Slide Attacks	Differential Attacks	Conclusions
	00000000000		
Applications			

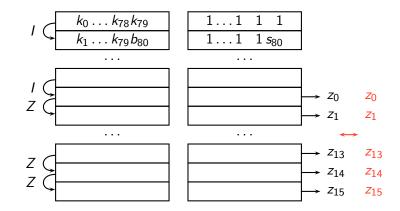
$$k_0 \dots k_{78} k_{79}$$
 1...1 1

initialize Grain with arbitrary key K


◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Background Slide Attacks 0000 000000000 Applications Differential Attacks

Conclusions


▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のなべ

Speeding up Exhaustive Search when $IV = [1 \dots 1]$

initialize Grain with arbitrary key K

Background	Slide Attacks	Differential Attacks	Conclusions
	000000000000		
Applications			

compare output with known keystream

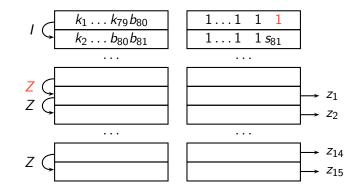
▲ロト ▲圖 ト ▲ 画 ト ▲ 画 - の Q ()

Background	Slide Attacks	Differential Attacks	Con
	00000000000		
Applications			

if no match, shift everything up by one step

◆□ > ◆□ > ◆□ > ◆□ > ・□ = ・ つへで

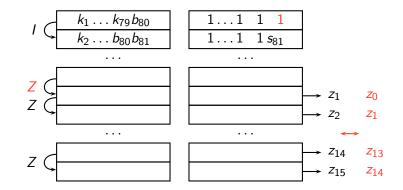
 Background
 Slide Attacks


 0000
 00000000000

 Applications

Differential Attacks

Conclusions


Speeding up Exhaustive Search when $IV = [1 \dots 1]$

if $S_{80} = 1 \Rightarrow$ no need to recompute anything

◆□ > ◆□ > ◆□ > ◆□ > ・□ = ・ つへで

Background	Slide Attacks	Differential Attacks	Conclusions
	000000000000		
Applications			

compare (shifted) output with known keystream

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

Background	Slide Attacks	Differential Attacks	
	00000000000		
Annlingtions			

if no match, shift everything up by one step

◆□ > ◆□ > ◆□ > ◆□ > ・□ = ・ つへで

 Background
 Slide Attacks
 Differential Attacks

 0000
 0000000000
 000000000000

 Applications
 Control of the second secon

Conclusions 0

Speeding up Exhaustive Search when $IV = [1 \dots 1]$

if $S_{81} = 0 \Rightarrow$ correct and rerun initialization

◆□ > ◆□ > ◆□ > ◆□ > ・□ = ・ つへで


Background	Slide Attacks	Differential Attacks	Conclusions
	00000000000		
Applications			

$$k_0 \dots b_{80} b_{81}$$
 1...1 1 1

if $S_{81} = 0 \Rightarrow$ correct and rerun initialization

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Background	Slide Attacks	Differential Attacks	Conclusions
0000	○○○○○○○○○○	0000000000000	O
Applications			

if $S_{81} = 0 \Rightarrow$ correct and rerun initialization

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Speeding up Exhaustive Search

Keys are checked in a complex order, but form a big cycle with an expected length of 2⁷⁹

Speeding up Exhaustive Search

- Keys are checked in a complex order, but form a big cycle with an expected length of 2⁷⁹
- On average, initialization algorithm only needs to be rerun for 1 out of 2 keys

 \Rightarrow twice as fast as regular exhaustive search

Speeding up Exhaustive Search

- Keys are checked in a complex order, but form a big cycle with an expected length of 2⁷⁹
- On average, initialization algorithm only needs to be rerun for 1 out of 2 keys

 \Rightarrow twice as fast as regular exhaustive search

• Only works when $IV = [1 \dots 1]$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Sparse Characteristics in Grain

Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers

- Related (K, IV) Pairs in Grain
- Applications

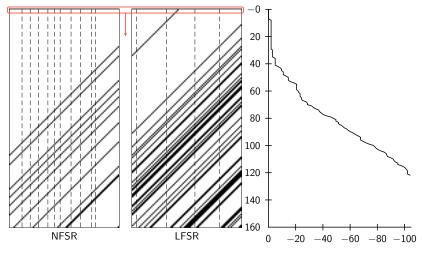
3 Differential Attacks

Sparse Characteristics in Grain

- Partitioning the Key and IV Space
- Attack Complexities

4 Conclusions

Sparse Characteristics in Grain


- Start with a single bit difference in the state at step t
- Propagate backwards and forwards
- Each time a difference enters the non-linear functions we have to make a choice
 - \rightarrow **Our approach:** choose the difference which introduces as few differences as possible in the next steps and in particular in NFSR

Slide Attacks

Differential Attacks

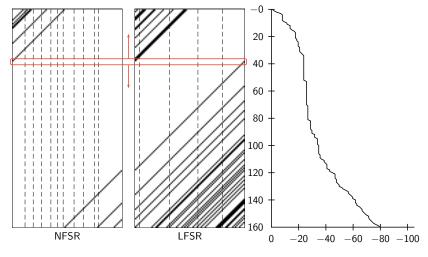
Sparse Characteristics in Grain

Illustration – Grain v1

single bit difference at step 0

▲ロ > ▲ 圖 > ▲ 圖 > ▲ 圖 > → 圖 → の Q @

Slide Attacks


Differential Attacks

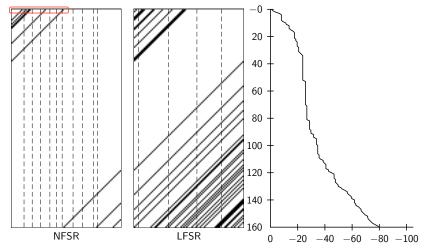
<ロ> (四) (四) (三) (三) (三) (三)

Conclusions 0

Sparse Characteristics in Grain

Illustration – Grain v1

single bit difference at step 38


Slide Attacks

Differential Attacks

Conclusions 0

Sparse Characteristics in Grain

Illustration – Grain v1

differences in NFSR at step 0 \rightarrow related keys

<ロト < @ ト < 注 > < 注 > ご の < @</p>


Slide Attacks

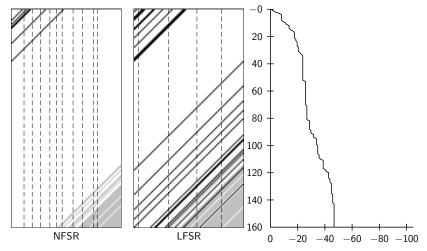
Differential Attacks

Conclusions 0

Sparse Characteristics in Grain

Illustration – Grain v1

equalities in final state \rightarrow equalities in a few keystream positions


Slide Attacks

Differential Attacks

Conclusions 0

Sparse Characteristics in Grain

Truncated Differentials

focus on first keystream position; ignore rest

• Keystream can be distinguished from random by initializing with N different related pairs (K, IV_i) and $(K + K', IV_i + IV')$, and counting number of 0- and 1-differences in z_0 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

■ How large should *N* be to observe a bias?

• Keystream can be distinguished from random by initializing with N different related pairs (K, IV_i) and $(K + K', IV_i + IV')$, and counting number of 0- and 1-differences in z_0 .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

■ How large should *N* be to observe a bias?

•
$$p_C = P(\text{characteristic is followed}) = 2^{-47}$$

• $p_R = P(\text{equality in } z_0 \text{ in random case}) = 1/2$

• Keystream can be distinguished from random by initializing with N different related pairs (K, IV_i) and $(K + K', IV_i + IV')$, and counting number of 0- and 1-differences in z_0 .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

- How large should *N* be to observe a bias?
 - $p_C = P(\text{characteristic is followed}) = 2^{-47}$
 - $p_R = P(\text{equality in } z_0 \text{ in random case}) = 1/2$
- **Regular differential attack:** $p_C \gg p_R$

 $\Rightarrow N > 1/p_C$

In our case: $p_C \ll p_R$

 $\Rightarrow N > 1/p_C^2$

- Keystream can be distinguished from random by initializing with N different related pairs (K, IV_i) and $(K + K', IV_i + IV')$, and counting number of 0- and 1-differences in z_0 .
- How large should *N* be to observe a bias?
 - $p_C = P(\text{characteristic is followed}) = 2^{-47}$
 - $p_R = P(\text{equality in } z_0 \text{ in random case}) = 1/2$
- **Regular differential attack:** $p_C \gg p_R$

$$\Rightarrow N > 1/p_C$$

In our case: $p_C \ll p_R$

 $\label{eq:N} \begin{array}{l} \Rightarrow \ {\sf N} > 1/p_{\sf C}^2 \\ &= 2^{94} \gg 2^{63} \mbox{ (total number of possible IV pairs)} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Partitioning the Key and IV Space

Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers

- Related (K, IV) Pairs in Grain
- Applications

3 Differential Attacks

- Sparse Characteristics in Grain
- Partitioning the Key and IV Space
- Attack Complexities

4 Conclusions

 Background
 Slide Attacks
 Differential Attacks
 C

 0000
 0000000000
 0000000000
 0

 Partitioning the Key and IV Space
 00000000000
 0

How to Reduce N?

Split characteristic into two parts:

Part 1: steps 0 to t (probability p₁)
Part 2: steps t to 160 (probability p₂)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

 Background
 Slide Attacks
 Differential Attacks

 0000
 0000000000
 0000000000

 Partitioning the Key and IV Space
 00000000000

How to Reduce N?

Split characteristic into two parts:

Part 1: steps 0 to t (probability p_1)

Part 2: steps t to 160 (probability p_2)

Try to separate the pairs (K, IV_i) and (K + K', IV_i + IV') which satisfy Part 1 from those which do not

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

 Background
 Slide Attacks
 Differential Attacks

 0000
 0000000000
 0000000000

 Partitioning the Key and IV Space
 00000000000

Split characteristic into two parts:

- Part 1: steps 0 to t (probability p₁)
 Part 2: steps t to 160 (probability p₂)
- Try to separate the pairs (*K*, IV_{*i*}) and (*K* + *K*', IV_{*i*} + IV') which satisfy Part 1 from those which do not

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

 \Rightarrow **Effect:** reduces *N* from $(p_1p_2)^{-2}$ to $p_1'^{-1}p_2^{-2}$

Partitioning the Key and IV Space

Partitioning the Key and IV Space

	IV_1	IV_2	IV_3	IV_4					$IV_{2^{64}}$
K_1	1	0	1	1	1	1	 0	0	1
K_2	1	0	1	0	1	1	 0	0	0
K_3	0	0	1	0	1	1	 0	0	0
K_4	1	1	1	1	0	0	 0	1	1
K_5	1	0	1	0	1	1	 1	1	0
K_6	1	0	0	1	0	1	 0	1	0
÷	÷					÷	÷		
	0	1	0	0	0	1	 1	1	0
	1	0	1	0	1	1	 1	0	1
$K_{2^{80}}$	0	1	0	1	0	0	 1	0	1

 $F_t(K_i, IV_i)$ for differences K' and IV'

Background	Slide Attacks	Differential Attacks	Conclusions
0000	0000000000	0000000000000	
Partitioning the Key and N	/ Space		

Partitioning the Key Space

	IV_1	IV_2	IV_3	IV_4						$IV_{2^{64}}$
Ka	0	0	0	0	0	0	•••	0	0	0
÷	÷					÷		÷		
K _c	0	0	0	0	0	0		0	0	0
K _d	0	1	1	0	0	1		1	0	0
÷	:					÷		÷		
	0	1	1	0	0	1		1	0	0
	:					÷		÷		
	1	0	1	0	1	1	•••	1	0	1
	:					÷		÷		
	1	0	1	0	1	1		1	0	1
		sortir	ng row	$s \to \epsilon$	equiva	lent	key cla	isses		

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Background	Slide Attacks	Differential Attacks	Conclusions
		0000000000000	
Partitioning the Key and IV	Space		

Partitioning the Key Space

		IV_1	IV_2	IV_3	IV_4						$IV_{2^{64}}$
	Ka	0	0	0	0	0	0		0	0	0
	÷	÷					÷		÷		
	K _c	0	0	0	0	0	0		0	0	0
	$-K_d$	0	1	1	0	0	1		1	0	0
	÷	÷					÷		÷		
eys		0	1	1	0	0	1		1	0	0
weak keys		:					÷		÷		
We		1	0	1	0	1	1		1	0	1
		÷					÷		÷		
		1	0	1	0	1	1		1	0	1
sorting rows \rightarrow equivalent key classes											

Background	Slide Attacks	Differential Attacks	Conclusions
		00000000000000	
Partitioning the Key and	IV Space		

Partitioning the IV Space

	IV _a		IV_c	IV_d						
Ka	0		0	0		0		0		0
÷	÷									
K _c	0		0	0		0		0		0
K _d	0		0	1		1		0		0
÷	÷									
	0		0	1		1		0		0
	÷		÷	÷		÷		÷		÷
	0	•••	0	1		1		1		1
	÷									
	0		0	1		1		1		1
	sorting columns \rightarrow equivalent IV classes									

Background	Slide Attacks	Differential Attacks	Conclusions
		0000000000000000	
Partitioning the Key and N	/ Space		

woold IV/c

Partitioning the IV Space

	weak IVs									
	IV _a		IV_c	IV_d						
Ka	0	•••	0	0		0		0	•••	0
÷	÷									
K _c	0		0	0		0		0		0
K _d	0	•••	0	1		1		0		0
÷	÷									
	0		0	1		1		0		0
	÷		÷	÷		÷		÷		÷
	0	•••	0	1		1		1		1
	÷									
	0		0	1		1		1		1
	S	orting	colun	$nns \rightarrow$	equiv	alent	IV cl	asses		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Background	Slide Attacks	Differential Attacks	Conclusions
		00000000000000	
Partitioning the Key and	IV Space		

Partitioning the IV Space

	IV _a	 IV_c	IV_d					
Ka	0	 0	0	 0	•••	0	•••	0
÷	÷							
K _c	0	 0	0	 0		0		0
K _d	0	 0	1	 1		0		0
÷	÷							
	0	 0	1	 1		0		0
	÷	÷		÷		••••		÷
	0	 0	1	 1		1		1
	:							
	0	 0	1	 1		1		1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Background	Slide Attacks	Differential Attacks	Conclusions
		000000000000000000000000000000000000000	
Partitioning the Key and IV Space			

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ = 差 - 釣��

Background	Slide Attacks	Differential Attacks	Conclusions
		00000000000000	
Partitioning the Key and IV Space			

How to use this?

Assume that secret key is weak

Assume that secret key is weak

- Stage 1:
 - Initialize Grain with *N* different weak related pairs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

■ Count number of 0- and 1-differences in *z*₀

Assume that secret key is weak

- Stage 1:
 - Initialize Grain with N different weak related pairs
 - Count number of 0- and 1-differences in z_0
 - \Rightarrow Keep separate counters for each IV equivalence class

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Assume that secret key is weak

- Stage 1:
 - Initialize Grain with N different weak related pairs
 - Count number of 0- and 1-differences in z₀
 - \Rightarrow Keep separate counters for each IV equivalence class
- Stage 2:
 - Guess key equivalence class and combine counters of all IV equivalence classes for which Part 1 is satisfied

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

If no bias is detected, discard guess

Background	Slide Attacks	Differential Attacks	Conclusions
		000000000000000000000000000000000000000	
Partitioning the Key and	IV Space		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Probability of Part 1 can be written as $p_1 = p_K \cdot p_{\text{IV}} \cdot p'_1$

- p_K : fraction of keys which are weak
- *p*_{IV}: fraction of IVs which are weak
- p'_1 : probability that Part 1 is satisfied for weak key and IV

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Probability of Part 1 can be written as $p_1 = p_K \cdot p_{\mathsf{IV}} \cdot p'_1$

- p_K : fraction of keys which are weak
- *p*_{IV}: fraction of IVs which are weak
- p'_1 : probability that Part 1 is satisfied for weak key and IV

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

For given key class guess, $M = p'_1 \cdot N$ pairs satisfy Part 1

Probability of Part 1 can be written as $p_1 = p_K \cdot p_{\text{IV}} \cdot p'_1$

- *p_K*: fraction of keys which are weak
- *p*_{IV}: fraction of IVs which are weak
- p'_1 : probability that Part 1 is satisfied for weak key and IV

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

For given key class guess, M = p'_1 · N pairs satisfy Part 1
In order to detect bias after Part 2:

$$\Rightarrow M > p_2^{-2} \Rightarrow N > p_1'^{-1}p_2^{-2}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Outline

BackgroundDescription of Grain

2 Slide Attacks

Slid Pairs in Stream Ciphers

- Related (K, IV) Pairs in Grain
- Applications

3 Differential Attacks

- Sparse Characteristics in Grain
- Partitioning the Key and IV Space
- Attack Complexities

4 Conclusions

Attack Complexities

Attack Complexities

Cipher	v1	v1	128	128	128
Rounds	160	112	256	224	192
Related keys	yes	no	yes	no	no
# Weak keys	2^{71}	2 ⁸⁰	2 ⁸⁷	2^{126}	2^{126}
# Weak IVs	2 ⁵⁷	2 ⁶³	2 ⁸⁴	2 ⁹³	2 ⁹³
N	2 ⁵⁵	(2 ⁷²)	2 ⁷³	(2 ⁹⁶)	2 ³⁵
t	33	28	75	78	76
p_1	2^{-23}	2^{-3}	2^{-64}	2 ⁻⁶	2 ⁻⁶
<i>p</i> ₂	2^{-24}	2^{-35}	2^{-31}	2^{-47}	2^{-17}
# Key classes	2 ²²	8	2 ²⁷	72	72
# IV classes	2 ²¹	8	2 ³²	64	64

Conclusions

Sliding property in Grain allows to speed up exhaustive search

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusions

• Sliding property in Grain allows to speed up exhaustive search \Rightarrow Could be avoided if initialization used different constant

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Conclusions

Sliding property in Grain allows to speed up exhaustive search
 ⇒ Could be avoided if initialization used different constant
 Related key attacks against both versions of Grain

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Conclusions

Sliding property in Grain allows to speed up exhaustive search
 ⇒ Could be avoided if initialization used different constant
 Related key attacks against both versions of Grain
 Chosen IV attacks against reduced variants

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ◇ ◇ ◇

Conclusions

- Sliding property in Grain allows to speed up exhaustive search
 ⇒ Could be avoided if initialization used different constant
 Related key attacks against both versions of Grain
 Chosen IV attacks against reduced variants
- ⇒ Attacks have limited practical impact, but can nonetheless be considered as non-ideal behavior