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Description of Grain

Grain

Family of stream ciphers designed in 2005 by
M.Hell, T. Johansson and W. Meier

Has two members Grain v1 and Grain-128:

Grain v1 accepts 80-bit key and 64-bit IV value
Grain-128 accepts 128-bit key and 96-bit IV value

One of 4 hardware ciphers in eSTREAM Portfolio
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Description of Grain

Keystream Generation

LFSR

f

NFSR

g

Grain v1: 80-bit NFSR and 80-bit LFSR

Grain-128: 128-bit NFSR and 128-bit LFSR
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Description of Grain

Keystream Generation

LFSR

f

NFSR

g

h∗

zt

Grain v1: h∗(x1 . . . x12) is a function of degree 3

Grain-128: h∗(x1 . . . x17) is a function of degree 3



Background Slide Attacks Differential Attacks Conclusions

Description of Grain

Key and IV Initialization

LFSR

f

NFSR

g

h∗

Grain v1: 80-bit key and 64-bit IV

Grain-128: 128-bit key and 96-bit IV
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Description of Grain

Key and IV Initialization

k0k1 . . . kn−1

g

v0 . . . vl−1

f

h∗

Grain v1: 80-bit key and 64-bit IV

Grain-128: 128-bit key and 96-bit IV
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Description of Grain

Key and IV Initialization

k0k1 . . . kn−1

g

v0 . . . vl−1 1 . . . 1

f

h∗

Grain v1: 80-bit key and 64-bit IV

Grain-128: 128-bit key and 96-bit IV
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Description of Grain

Key and IV Initialization

k0k1 . . . kn−1

g

v0 . . . vl−1 1 . . . 1

f

h∗

Grain v1: 160 initialization rounds

Grain-128: 256 initialization rounds
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Slid Pairs in Stream Ciphers

Slide Attacks

Introduced by A. Biryukov and D. Wagner in 1999

Mainly used to attack block ciphers

Exploits the self-similarity of the rounds of a cipher

Complexity is not affected by the number of rounds
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Slid Pairs in Stream Ciphers

Slid Pairs in Stream Ciphers

S0

(K , IV)
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(initialization rounds)
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Slid Pairs in Stream Ciphers
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I -round

Sm+1

Sm+2

Z -round

Z -round

z0

z1

z2

(initialization rounds)
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Slid Pairs in Stream Ciphers
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Condition 1: S1 is the initial state of a pair (K ∗, IV∗)
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Slid Pairs in Stream Ciphers
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Application to Grain
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S0: [k0 . . . k78k79] [v0 . . . v62v63 1 . . . 1 1]
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Related (K , IV) Pairs in Grain

Application to Grain

Condition 1: S1 is the initial state of a pair (K ∗, IV∗)

S0: [k0 . . . k78k79] [v0 . . . v62v63 1 . . . 1 1]
S1: [k1 . . . k79b80] [v1 . . . v63 1 1 . . . 1 s80]
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Related (K , IV) Pairs in Grain

Application to Grain

Condition 1: S1 is the initial state of a pair (K ∗, IV∗)

S0: [k0 . . . k78k79] [v0 . . . v62v63 1 . . . 1 1]
S1: [k1 . . . k79b80] [v1 . . . v63 1 1 . . . 1 1]

⇒ occurs with probability 1/2.

Condition 2: I -round(Sm) = Z -round(Sm)

I -round(Sm) = Z -round(Sm) ⇔ h∗(Sm) = 0

⇒ occurs with probability 1/2.

Remark: What if Condition 2 is not fulfilled?

⇒ Difference in right-most bit of NFSR and LFSR
⇒ Only affects output stream after 16 (32) steps
⇒ First 15 (31) keystream bits are still equal (but shifted)
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Related (K , IV) Pairs in Grain

Related (K , IV) Pairs in Grain

Property

For a fraction 2−2·n of pairs (K , IV), there exists a related pair

(K ∗, IV∗) which produces an identical but n-bit shifted key stream.
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Related (K , IV) Pairs in Grain

Is This Surprising?

2160 possible states form cycles
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outp u
t
bits

initialization algorithm defines starting point
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Related (K , IV) Pairs in Grain

Is This Surprising?

(K1,
IV1)(K

2 , IV
2)

(K
3
, I

V
3
)

(K
4 , IV

4)

if 280
× 264

× 2l > 2160
→ overlap unavoidable
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Related (K , IV) Pairs in Grain

Is This Surprising?

(K1,
IV1)

(K2, IV2)

(K3,
IV3)

(K4, I
V4)

special feature of Grain: clustering of starting points
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Applications

Related Key Attack

Assume that adversary manages to obtain keystream
sequences from two shifted (K , IV) pairs

⇒ With probability 1/4, sequences are identical but shifted
⇒ This indicates that s80 = 1, which yields simple

(non-linear) equation in secret key bits

Unlikely to happen in practice, unless

Session keys are derived from master key in funny way
Adversary can cause synchronization errors
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Applications

Speeding up Exhaustive Search when IV = [1 . . .1]
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Applications

Speeding up Exhaustive Search when IV = [1 . . .1]
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Applications

Speeding up Exhaustive Search

Keys are checked in a complex order, but form a big cycle
with an expected length of 279

On average, initialization algorithm only needs to be rerun for
1 out of 2 keys

⇒ twice as fast as regular exhaustive search

Only works when IV = [1 . . . 1]
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Sparse Characteristics in Grain

Sparse Characteristics in Grain

Start with a single bit difference in the state at step t

Propagate backwards and forwards

Each time a difference enters the non-linear functions we have
to make a choice

→ Our approach: choose the difference which introduces
as few differences as possible in the next steps and in
particular in NFSR
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Sparse Characteristics in Grain

Illustration – Grain v1

NFSR LFSR 0 −20 −40 −60 −80 −100
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differences in NFSR at step 0 → related keys
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Sparse Characteristics in Grain

Illustration – Grain v1

NFSR LFSR 0 −20 −40 −60 −80 −100
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equalities in final state → equalities in a few keystream positions
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Sparse Characteristics in Grain

Truncated Differentials
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focus on first keystream position; ignore rest
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with N different related pairs (K , IVi ) and (K + K ′, IVi + IV′),
and counting number of 0- and 1-differences in z0.

How large should N be to observe a bias?
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Sparse Characteristics in Grain

Data Complexity

Keystream can be distinguished from random by initializing
with N different related pairs (K , IVi ) and (K + K ′, IVi + IV′),
and counting number of 0- and 1-differences in z0.

How large should N be to observe a bias?

pC = P(characteristic is followed) = 2−47

pR = P(equality in z0 in random case) = 1/2

Regular differential attack: pC ≫ pR

⇒ N > 1/pC

In our case: pC ≪ pR

⇒ N > 1/p2
C

= 294
≫ 263 (total number of possible IV pairs)
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Partitioning the Key and IV Space

How to Reduce N?

Split characteristic into two parts:

Part 1: steps 0 to t (probability p1)
Part 2: steps t to 160 (probability p2)

Try to separate the pairs (K , IVi) and (K + K ′, IVi + IV′)
which satisfy Part 1 from those which do not

⇒ Effect: reduces N from (p1p2)
−2 to p′

1
−1

p−2
2
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Partitioning the Key and IV Space

IV1 IV2 IV3 IV4 . . . IV264

K1 1 0 1 1 1 1 . . . 0 0 1
K2 1 0 1 0 1 1 . . . 0 0 0
K3 0 0 1 0 1 1 . . . 0 0 0
K4 1 1 1 1 0 0 . . . 0 1 1
K5 1 0 1 0 1 1 . . . 1 1 0
K6 1 0 0 1 0 1 . . . 0 1 0
...

...
...

...
0 1 0 0 0 1 . . . 1 1 0
1 0 1 0 1 1 . . . 1 0 1

K280 0 1 0 1 0 0 . . . 1 0 1

Ft(Ki , IVi) for differences K ′ and IV′



Background Slide Attacks Differential Attacks Conclusions

Partitioning the Key and IV Space

Partitioning the Key Space

IV1 IV2 IV3 IV4 . . . IV264

Ka 0 0 0 0 0 0 . . . 0 0 0
...

...
...

...
Kc 0 0 0 0 0 0 . . . 0 0 0

Kd 0 1 1 0 0 1 . . . 1 0 0
...

...
...

...
0 1 1 0 0 1 . . . 1 0 0
...

...
...

1 0 1 0 1 1 . . . 1 0 1
...

...
...

1 0 1 0 1 1 . . . 1 0 1

sorting rows → equivalent key classes



Background Slide Attacks Differential Attacks Conclusions

Partitioning the Key and IV Space

Partitioning the Key Space

IV1 IV2 IV3 IV4 . . . IV264

Ka 0 0 0 0 0 0 . . . 0 0 0
...

...
...

...
Kc 0 0 0 0 0 0 . . . 0 0 0

Kd 0 1 1 0 0 1 . . . 1 0 0
...

...
...

...
0 1 1 0 0 1 . . . 1 0 0
...

...
...

1 0 1 0 1 1 . . . 1 0 1
...

...
...

1 0 1 0 1 1 . . . 1 0 1

w
ea

k
ke

ys

sorting rows → equivalent key classes
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Partitioning the IV Space

IVa . . . IVc IVd . . .

Ka 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
Kc 0 . . . 0 0 . . . 0 . . . 0 . . . 0

Kd 0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 1 . . . 1 . . . 1 . . . 1
...
0 . . . 0 1 . . . 1 . . . 1 . . . 1

sorting columns → equivalent IV classes
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Partitioning the IV Space

IVa . . . IVc IVd . . .

Ka 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
Kc 0 . . . 0 0 . . . 0 . . . 0 . . . 0

Kd 0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 1 . . . 1 . . . 1 . . . 1
...
0 . . . 0 1 . . . 1 . . . 1 . . . 1

weak IVs

sorting columns → equivalent IV classes
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Partitioning the IV Space

IVa . . . IVc IVd . . .

Ka 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
Kc 0 . . . 0 0 . . . 0 . . . 0 . . . 0

Kd 0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 1 . . . 1 . . . 1 . . . 1
...
0 . . . 0 1 . . . 1 . . . 1 . . . 1

when t increases → number of classes increases
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Partitioning the Key and IV Space

How to use this?

Assume that secret key is weak

Stage 1:

Initialize Grain with N different weak related pairs
Count number of 0- and 1-differences in z0

⇒ Keep separate counters for each IV equivalence class

Stage 2:

Guess key equivalence class and combine counters of all
IV equivalence classes for which Part 1 is satisfied
If no bias is detected, discard guess
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Computing N

Probability of Part 1 can be written as p1 = pK · pIV · p′

1

pK : fraction of keys which are weak
pIV: fraction of IVs which are weak
p′

1: probability that Part 1 is satisfied for weak key and IV
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1 · N pairs satisfy Part 1
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Partitioning the Key and IV Space

Computing N

Probability of Part 1 can be written as p1 = pK · pIV · p′

1

pK : fraction of keys which are weak
pIV: fraction of IVs which are weak
p′

1: probability that Part 1 is satisfied for weak key and IV

For given key class guess, M = p′

1 · N pairs satisfy Part 1

In order to detect bias after Part 2:

⇒ M > p−2
2 ⇒ N > p′

1
−1

p−2
2
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Attack Complexities

Cipher v1 v1 128 128 128

Rounds 160 112 256 224 192
Related keys yes no yes no no
# Weak keys 271 280 287 2126 2126

# Weak IVs 257 263 284 293 293

N 255 (272) 273 (296) 235

t 33 28 75 78 76
p1 2−23 2−3 2−64 2−6 2−6

p2 2−24 2−35 2−31 2−47 2−17

# Key classes 222 8 227 72 72
# IV classes 221 8 232 64 64
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Conclusions

Sliding property in Grain allows to speed up exhaustive search

⇒ Could be avoided if initialization used different constant

Related key attacks against both versions of Grain

Chosen IV attacks against reduced variants

⇒ Attacks have limited practical impact, but can nonetheless be
considered as non-ideal behavior
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