An (Almost) Constant-Effort Solution-Verification

Proof-of-Work Protocol based on Merkle Trees

Fabien Coelho

Composed with LATEX, revision 841

Proof of Work?

economic measure to deter DOS attacks

Crypto'92 Cynthia Dwork and Moni Naor

Pricing via processing or combatting junk mail

computation stamp for a service

moderately hard for requester, easy check by provider

spams per day received

on my addresses

period last 2 years

HashCash Adam Back 1997

- partial hash inversion SHA1(service description : counter) hash starts with n zeros (e.g. n = 22)
- 2^n hashes on average to compute 1 hash to check

```
To: fabien.coelho@ensmp.fr
Date: Sun, 19 Mar 2006 19:41:30 -0500
From: "Eric S. Johansson" <esj@harvee.org>
Hashcash: 1:25:060320:fabien.coelho@ensmp.fr::8064c52cc126872c:14b3bb
```

25 bits partial hash inversion	fabien.coelho@ dest. address
060320 valid until March 20, 2006	14b3bb counter is $1,356,731$

SHA1(stamp) = 0000006e0dfbac6d6664d4afc028aa767ac98275

Challenge-Response

interactive bounded schemes, small variance

bounded search, find an item with some property in a finite set

Solution-Verification

one-way schemes as HashCash : must check problem and solution

unbounded probabilistic search, stdev equals average (long tail)

trial success proba $\frac{1}{N}$, $e^{-\frac{i}{N}}$ no-success after i iters, $e^{-4} \approx \frac{1}{50}$

Deterministic bounded solution-verification scheme?

possible? YES! Dwork and Naor Crypto'92

integer square root modulo a large prime $p \equiv 3 \mod 4$

optimality? NO! solution p^3 , communication p, verification p^2

complexity depends on multiplication/root-squaring algorithm

Better scheme?

- 1. bounded solution
- 2. small proof
- 3. quick verification

Outline

- Proof of Work and optimality
- Lamport signature and Merkle tree
- bounded scheme and feedback proof
- attack cost lower bound
- iterative attack
- conclusion

Measures

effort solution work from the requester	E(w)
communication volume from requester to provider	C(w)
checking work computation by provider	w
work ratio requester work to provider work	$rac{E(w)}{w}$

Two Optimality Criteria

communication volume is minimum

computation check is minimum

verification is linear in the received data

$$C(w) = \log\left(\frac{E(w)}{w}\right)$$
$$C(w) = w$$

Lamport signature scheme

• Alice publishes the hashes of two secrets

 $x_0 = h(s_0), \quad x_1 = h(s_1)$

- Bob proposes: *would you marry me?*
- Alice one-bit answer is signed:

no by returning s_0

yes by returning s_1

• Bob checks with published hashes

Requires publishing a lot of hashes...

Merkel tree

- (binary) hash tree
- aggregate many hashes
 - tree leaves are hashes of secrets
 - build binary tree n = h(left || right)
 - publish only root hash n_0
- with Lamport signature

intermediate hashes show that a leaf belongs to the tree

WORK: Merkle tree

- bounded 2N hash computations
- *D* service description hobbes@comics:20080611:0001
- s = h(D) service hash 617afdd5b0c61464f33c24d25762ee3b 1
- $h_s(x) = h(x \| s)$ service-dependent hash function
- $N=2^d$ number of leaves from tree depth
- $n_{N-1+i} = h_s(i)$ hashes for each leaf number i N
- $n_i = h_s(n_{2i+1} || n_{2i+2})$ internal node hashes, root hash $n_0 \qquad N-1$

PROOF

• a subset of P leaves selected from n_0

- $\ell_j = \mathcal{G}(r, j)$ pseudo-random leaf numbers to return in $\frac{N}{P}$ -size chunks
- feedback: selected leaves depend on the whole computation

Communication

- send proof that leaves belong to the Merkle tree
- D, ℓ_j for $j \in (0 \dots P 1)$, inner hashes
- volume is about $P \cdot \log_2(N)$

(Fast) Verification

• consistency of selected leaves

recompute ℓ_j from provided data

•
$$s = h(D)$$
, $n_{N-1+\ell_j} = h_s(\ell_j)$,
 $n_0 = \dots$, $r = S(n_0)$, re-derive ℓ_j from r

• costs $P \cdot \log_2(N)$ computations

Choice of Parameters

tree depth d = 22, $N = 2^{22}$

hash function strong cryptographic

to avoid inversions or collisions

hash size m may vary

small in lower tree $m\approx 24$

large in upper tree and for service $m\approx 160$

PRNG seed $r = h_s^P(n_0)$ (*P* compositions)

number of proofs $P = 8 \cdot \log_2(N)$

induces $w = \mathcal{O}(\ln(N)^2)$, proof volume is $11 \mathrm{KB}$

Why is this P okay?

Partial tree attacks

fraction f of actual leaves plus fake hashes valid feedback probability f^P per trial mix of iterative/extension strategies constant f or increasing f

n

Attack cost lower bound

target a valid accepted partial tree

strong hypothesis any mixed strategy!

every leaf tested at no added cost

$$\mathcal{C}(N,P) \ge \left(\frac{1}{N}\right)^{\frac{1}{P+1}} \cdot \frac{P}{P+1} \cdot (2N)$$

lower bound 90% of full $2N \operatorname{cost}$ with $d \geq 7$

$$\mathcal{C}(N) \ge \left(\frac{1}{2}\right)^{\frac{1}{8}} \cdot \frac{8 \cdot \log_2(N)}{8 \cdot \log_2(N) + 1} \cdot (2N) \ge 0.9 \cdot (2N)$$

Lower bound relative to full cost

Iterative attack

- iterations at constant f
- partial tree + iterative cost

$$\mathcal{C}_{\text{iter}}(f, N, P) \approx 2Nf + (P + \log_2(P) + 1)\frac{1}{f^P}$$

• optimal fraction f

$$\mathcal{F}(N,P) = \sqrt[P+1]{\frac{P(P + \log_2(P) + 1)}{2N}}$$

Contributions

optimality criteria for POW schemes

- 1. communication optimal
- 2. computation optimal

vs DOS attack on POW

bounded solution-verification POW

effort is $e^{\sqrt{w}}$

computation optimal, not communication optimal

conservative lower bound on attack cost

at least 90% of the full cost

interative attack with a small 1% gain

the attack is probabilistic, thus unbounded

Conclusion

- bounded solution-verification scheme
- solution work is well known, null or small variance (almost)
- but verification is probabilistic!

Future work in POW?

- not the ultimate solution against spams...
- try to publish about memory-bound POW functions