Authenticated Encryption Mode for Beyond the Birthday Bound Security

Tetsu Iwata Nagoya University

iwata@cse.nagoya-u.ac.jp
Africacrypt 2008, Casablanca, Morocco
June 11, 2008

Blockcipher

- |M| = |C| = n (block length), |K| = k (key length)
- designed to withstand various known attacks (diff. attack, linear attack,...)
- indistinguishable from a random permutation even if the adversary obtains $2^n \delta$ plaintext-ciphertext pairs

Blockcipher Modes

- privacy: CBC mode, CTR mode,...
- authenticity: CBC MAC, CMAC, PMAC,...
- privacy and authenticity: GCM, OCB, EAX,...

Security Proofs

- success probability $O(\sigma^2/2^n)$
- birthday bound
- σ : amount of data adversary obtains (in blocks)
- n: block length of the underlying blockcipher (in bits)

Security Proofs with Beyond the Birthday Bound

- privacy: CENC, NEMO
- authenticity: XOR MAC, RMAC, Poly1305, MACH,...
- privacy and authenticity: Generic Composition, CHM

Why Beyond the Birthday Bound?

- higher security is a valid goal
- huge gap between blockcipher security and mode security
 - blockcipher: $2^n \delta$, mode: $2^{n/2} \cdots O(\sigma^2/2^n)$
 - The security of the blockcipher is *significantly lost* once it is plugged into the modes
 - CTR mode, CMAC, and GCM do not fully inherit the security of the blockcipher
- some applications require n = 64 (HIGHT, Present)
 - -2^{32} is small

Goal of This Paper

- design of an authenticated encryption mode, CIP
- CENC with Inner Product hash
- beyond the birthday bound security
- fix the security issue in the authenticity of CHM and GCM

Authenticated Encryption

- two security goals:
 - privacy
 - authenticity
- two design approaches
 - generic composition: secure encryption + secure MAC (BN00, K01)
 - one algorithm of dedicated design, more efficient than generic composition

Authenticated Encryption Using Blockcipher

- IAPM, IACBC (Jutla '01)
- XCBC, XECBS (Gligor, Donescu '01)
- OCB (Rogaway '01)
- GCM (McGrew and Viega '04, NIST SP 800-38D)
- CHM (Iwata '06)

• • • •

GCM (McGrew, Viega '04, NIST SP 800-38D)

- \bullet blockcipher E
- inputs: the key K, nonce N, plaintext M and header A
- \bullet outputs: the ciphertext C and tag T

$$(K, N, M, A) \rightarrow \boxed{\text{GCM}} \rightarrow (C, T)$$

- M is encrypted and authenticated
- A is authenticated (and not encrypted)
- M and A can be any lengths
- \bullet |C| = |M|

Encryption of GCM

CHM (Iwata, FSE '06)

- CENC with Hash based MAC
- beyond the birthday bound security
 - CENC for encryption
 - encryption mode, Iwata, FSE '06
 - Parameters of CENC:
 - * blockcipher $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$
 - * nonce length: ℓ_{nonce} bits, $\ell_{\text{nonce}} < n$
 - * frame width: w

Key Stream Generation of CENC

- \bullet L: mask
- w: frame width, default: $w = 2^8 = 256$
- N: nonce, $\operatorname{ctr} \leftarrow N || 0 \cdots 0$, default: $|N| = \ell_{\text{nonce}} = n/2$

Encryption of CENC

Indistinguishability from Random String

CENC oracle

random oracle

A must not repeat the same nonce

$$\mathbf{Adv}^{\mathrm{priv}}_{\mathrm{CENC}}(A) \stackrel{\mathrm{def}}{=} \left| \Pr_{K}(A^{\mathrm{CENC}_{K}(\cdot,\cdot)} = 1) - \Pr_{\mathcal{R}}(A^{\mathcal{R}(\cdot,\cdot)} = 1) \right|$$

Security Theorem of CENC

$$\mathbf{Adv}_{\mathrm{CENC}}^{\mathrm{priv}}(A) \le \frac{w\hat{\sigma}^3}{2^{2n-3}} + \frac{w\hat{\sigma}}{2^n}$$

- A: q queries with total of σ blocks
- $\bullet \ \hat{\sigma} = \sigma + qw \ (\approx \sigma)$
- beyond the birthday bound

CHM (Iwata, FSE '06)

- CENC with Hash based MAC
- $S_0 \leftarrow E_K(1^{n-1}0), S_1 \leftarrow E_K(1^n),$
- use CENC to produce $1 + \lceil |M|/n \rceil$ blocks of S $(\lceil |M|/n \rceil \cdots \text{block length of } M)$

- $C \leftarrow M \oplus (\text{first } |M| \text{ bits of } S_C)$
- $T \leftarrow \operatorname{Hash}_{S_0}(C) \oplus \operatorname{Hash}_{S_1}(A) \oplus S_A$ (truncate if needed)

Encryption of CHM

Security Theorems

• privacy

$$\mathbf{Adv}_{\mathrm{CHM}}^{\mathrm{priv}}(A) \le \frac{w\tilde{\sigma}^2}{2^{2n-6}} + \frac{w\tilde{\sigma}^3}{2^{2n-3}} + \frac{1}{2^n} + \frac{w\tilde{\sigma}}{2^n}$$

• authenticity

$$\mathbf{Adv}_{\mathrm{CHM}}^{\mathrm{auth}}(A) \leq \frac{w\tilde{\sigma}^2}{2^{2n-6}} + \frac{w\tilde{\sigma}^3}{2^{2n-3}} + \frac{1}{2^n} + \frac{w\tilde{\sigma}}{2^n} + \frac{(1+H_{\mathrm{max}} + M_{\mathrm{max}})}{2^{\tau}}$$

- τ : tag length, $\tau \leq n$
- H_{max} , M_{max} are max. block lengths of header and plaintext

Security Issue

• T is τ bits

$$\mathbf{Adv}_{\mathrm{CHM}}^{\mathrm{auth}}(A) \le \dots + \frac{(1 + H_{\mathrm{max}} + M_{\mathrm{max}})}{2^{\tau}}$$

- Consider the case where τ is small, e.g. $\tau = 32$
- with only one message of length 2^{22} blocks (64 MBytes), the bound is 1/1024 (not acceptable in general)
- \bullet "beyond the birthday bound security" has little impact when τ is small
- same issue in GCM

CIP (This Talk)

- fix the security issue in CHM and GCM
 - can be used even when MAC is short
- beyond the birthday bound security
- allows parallel computation
- Encryption part: CENC
- MAC part: Based on Inner Product Hash

Inner Product Hash

- inputs: $x = (x_1, ..., x_t), \text{ key } k = (k_1, ..., k_t),$
- output: $H_k(x) = (x_1, \dots, x_t) \cdot (k_1, \dots, k_t)$ = $x_1 \cdot k_1 \oplus \dots \oplus x_t \cdot k_t$

multiplication over $GF(2^n)$

- fully parallelizable
- |k| can be large, |x| = |k|
 - parse x intro a "frame," (= ϖ blocks)
 - ϖ : frame width, small constant, default: $\varpi = 4$

Padding for Hash

MAC Part of CIP

- combines inner product $(x_1, \ldots, x_{\varpi}) \cdot (T_1, \ldots, T_{\varpi})$ and E
- long (but constant) key size
- about |x|/n field multiplications and $|x|/\varpi n$ E calls

MAC Part of CIP

- frame counter to avoid trivial swap
- last block of x is non-zero (by padding)
- proof that CIP.Hash is ϵ -AXU

CIP.Hash is ϵ -AXU (ϵ -almost XOR universal)

• H is ϵ -AXU if $\forall x, x' \ (x \neq x')$ and $\forall y \in \{0, 1\}^{\tau}$,

$$\Pr(H_K(x) \oplus H_K(x') = y) \le \epsilon$$

• Proposition $\forall x, x' \ (x \neq x') \text{ and } \forall y \in \{0, 1\}^{\tau},$

$$\Pr(H_K(x) \oplus H_K(x') = y) \le \frac{\ell + \ell' - 1}{2^n} + \frac{2}{2^{\tau}} + \mathbf{Adv}_E^{\text{prp}}(A)$$

- -x: ℓ frames, x': ℓ' frames, $\ell + \ell' 1 \leq 2^{n-1}$
- -A makes at most $\ell + \ell'$ queries
- The only term that depends on τ is $2/2^{\tau}$
- It does not depend on the input length

- Replace the Hash in CHM with CIP. Hash
- inputs: the key K, nonce N, plaintext M
- \bullet outputs: the ciphertext C and tag T

$$(K, N, M) \to \boxed{\text{CIP}} \to (C, T)$$

• M is encrypted and authenticated, can be any length, |C| = |M|

Hash Key Derivation of CIP

• Hash keys: $K_H, T_1, \dots, T_{\varpi}$ $-K_H \leftarrow E_K(\langle 0 \rangle_{n/2} || 1^{n/2}) || \dots || E_K(\langle \lceil k/n \rceil - 1 \rangle_{n/2} || 1^{n/2})$ $-T_1 \leftarrow E_K(\langle \lceil k/n \rceil \rangle_{n/2} || 1^{n/2})$ $-T_2 \leftarrow E_K(\langle \lceil k/n \rceil + 1 \rangle_{n/2} || 1^{n/2})$ $-\dots$

 $-T_{\varpi} \leftarrow E_K(\langle \lceil k/n \rceil + \varpi - 1 \rangle_{n/2} || 1^{n/2})$

Security Theorems of CIP

• privacy:

$$- \mathbf{Adv}_{CIP}^{priv}(A) \le \frac{wr^2\tilde{\sigma}^2}{2^{2n-4}} + \frac{w\tilde{\sigma}^3}{2^{2n-3}} + \frac{r^2}{2^{n+1}} + \frac{w\tilde{\sigma}}{2^n}$$

- follows from the security proof of CENC
- authenticity:

$$-\operatorname{\mathbf{Adv}}_{\operatorname{CIP}}^{\operatorname{auth}}(A) \leq \frac{wr^{2}\tilde{\sigma}^{2}}{2^{2n-4}} + \frac{w\tilde{\sigma}^{3}}{2^{2n-3}} + \frac{r^{2}}{2^{n+1}} + \frac{w\tilde{\sigma}}{2^{n}} + \frac{r^{2}}{2^{n-1}} + \frac{2}{2^{\tau}} + \operatorname{\mathbf{Adv}}_{E}^{\operatorname{prp}}(D)$$

- follows from the result of CIP. Hash
- $r = \lceil k/n \rceil + 1$ (small const.), $\tilde{\sigma} = \sigma + q(w+1)$ ($\approx \sigma$)

Security Theorems of CIP (with AES)

- CIP can encrypt at most 2⁶⁴ plaintexts
- max plaintext length is 2^{62} blocks (2^{36} GBytes)

•
$$\mathbf{Adv}^{\mathrm{priv}}_{\mathrm{CIP}}(A) \leq \frac{\tilde{\sigma}^3}{2^{245}} + \frac{\tilde{\sigma}}{2^{119}}$$

•
$$\mathbf{Adv}_{CIP}^{auth}(A) \le \frac{\hat{\sigma}^3}{2^{245}} + \frac{\hat{\sigma}}{2^{118}} + \frac{2}{2^{\tau}}$$

- secure up to $\hat{\sigma} \ll 2^{81}$ blocks (2⁵⁵GBytes)
- The only term that depends on τ is $2/2^{\tau}$
- It does not depend on the message length
- CIP can be used even for short tag length.

Performance

• $m = \lceil |M|/n \rceil$ (block length of M)

	blockcipher calls	multiplications
GCM	m	m
CHM	$\frac{(w+1)m}{w}$	m
CIP	$\frac{(w+1)m}{w} + \frac{m}{\varpi}$	m

Performance

• $m = \lceil |M|/n \rceil$ (block size of M)

	blockcipher calls	multiplications
GCM	m	m
CHM	$\frac{257m}{256}$	m
CIP	$\frac{257m}{256} + \frac{m}{4}$	m

• $w = 256, \varpi = 4$

Conclusions

- Many solutions for modes up to birthday bound security
 - privacy: CBC mode, CTR mode,...
 - authenticity: CBC MAC, CMAC, PMAC,...
 - privacy and authenticity: GCM, OCB, EAX,...
- Modes with beyond the birthday bound security
 - privacy: CENC, NEMO
 - authenticity: XOR MAC, RMAC, Poly1305, MACH,...
 - privacy and authenticity: Generic Composition, CHM,CIP

Conclusions

- beyond the birthday bound security
- introduce ϖ for a constant hash key length
- fix the security issue in CHM and GCM
 - can be used even when MAC is short

Future Work

- better security
- parallelizability with better efficiency
- handling arbitrary length nonce (limit in the length of one plaintext)