An Adaptation of the NICE Cryptosystem to Real Quadratic Orders

Renate Scheidler

joint work with:

Mike Jacobson, University of Calgary Daniel Weimer, Charles River Development

Research supported in part by NSERC.

AfricaCrypt 2008 — June 12, 2008

Renate Scheidler (Calgary)

NICE in Real Quadratic Orders

- NICE (New Ideal Coset Encryption) is a public-key cryptosystem whose security is based on factoring $q^2 p$ (p, q distinct primes).
- Quadratic decryption time, allowing for fast signature generation.
- Makes use of the relationship between ideals in a non-maximal and the maximal order of a quadratic number field.
 - Original NICE: imaginary quadratic orders (Takagi & Paulus, J. Cryptology **13**, 2000).
 - REAL-NICE: adaptation to real quadratic orders.

- Mathematical Preliminaries (don't let them scare you!)
- Original NICE
- REAL-NICE
- Our Findings

- NICE (New Ideal Coset Encryption) is a public-key cryptosystem whose security is based on factoring q^2p (p, q distinct primes).
- Quadratic decryption time, allowing for fast signature generation.
- Makes use of the relationship between ideals in a non-maximal and the maximal order of a quadratic number field.
 - Original NICE: imaginary quadratic orders (Takagi & Paulus, J. Cryptology **13**, 2000).
 - REAL-NICE: adaptation to real quadratic orders.

- Mathematical Preliminaries (don't let them scare you!)
- Original NICE
- REAL-NICE
- Our Findings

- NICE (New Ideal Coset Encryption) is a public-key cryptosystem whose security is based on factoring $q^2 p$ (p, q distinct primes).
- Quadratic decryption time, allowing for fast signature generation.
- Makes use of the relationship between ideals in a non-maximal and the maximal order of a quadratic number field.
 - Original NICE: imaginary quadratic orders (Takagi & Paulus, J. Cryptology **13**, 2000).
 - REAL-NICE: adaptation to real quadratic orders.

- Mathematical Preliminaries (don't let them scare you!)
- Original NICE
- REAL-NICE
- Our Findings

- NICE (New Ideal Coset Encryption) is a public-key cryptosystem whose security is based on factoring q^2p (p, q distinct primes).
- Quadratic decryption time, allowing for fast signature generation.
- Makes use of the relationship between ideals in a non-maximal and the maximal order of a quadratic number field.
 - Original NICE: imaginary quadratic orders (Takagi & Paulus, J. Cryptology **13**, 2000).
 - REAL-NICE: adaptation to real quadratic orders.

- Mathematical Preliminaries (don't let them scare you!)
- Original NICE
- REAL-NICE
- Our Findings

- NICE (New Ideal Coset Encryption) is a public-key cryptosystem whose security is based on factoring $q^2 p$ (p, q distinct primes).
- Quadratic decryption time, allowing for fast signature generation.
- Makes use of the relationship between ideals in a non-maximal and the maximal order of a quadratic number field.
 - Original NICE: imaginary quadratic orders (Takagi & Paulus, J. Cryptology **13**, 2000).
 - REAL-NICE: adaptation to real quadratic orders.

- Mathematical Preliminaries (don't let them scare you!)
- Original NICE
- REAL-NICE
- Our Findings

 $\Delta_{1} \in \mathbb{Z} \text{ with } \Delta_{1} \equiv 1 \pmod{4}, \qquad \Delta_{f} = f^{2} \Delta_{1} \text{ with } f \in \mathbb{Z}$ Quadratic order of conductor $f: \mathcal{O}_{\Delta_{f}} = \mathbb{Z} \oplus \mathbb{Z} f \frac{\Delta_{1} + \sqrt{\Delta_{1}}}{2}$ Properties:

- \mathcal{O}_{Δ_f} is imaginary if $\Delta_f < 0$ and real if $\Delta_f > 0$
- $\mathcal{O}_{\Delta_f} \subseteq \mathcal{O}_{\Delta_1}$; \mathcal{O}_{Δ_1} is the maximal order

An \mathcal{O}_{Δ_f} -ideal is a subset $\mathfrak{a} = (N, B)$ of \mathcal{O}_{Δ_f} characterized by two integers $N = N(\mathfrak{a})$ (the **norm** of \mathfrak{a}) and $B = B(\mathfrak{a})$ such that

- N > 0 is unique, B is unique modulo 2N
- $B^2 \equiv \Delta_f \pmod{4N}$
- $gcd(N, B, (\Delta_f B^2)/4N) = 1$

 $\Delta_1 \in \mathbb{Z}$ with $\Delta_1 \equiv 1 \pmod{4}$, $\Delta_f = f^2 \Delta_1$ with $f \in \mathbb{Z}$

Quadratic order of **conductor** $f: \mathcal{O}_{\Delta_f} = \mathbb{Z} \oplus \mathbb{Z} f \frac{\Delta_1 + \sqrt{\Delta_1}}{2}$

Properties:

- \mathcal{O}_{Δ_f} is imaginary if $\Delta_f < 0$ and real if $\Delta_f > 0$
- $\mathcal{O}_{\Delta_f} \subseteq \mathcal{O}_{\Delta_1}$; \mathcal{O}_{Δ_1} is the maximal order

An \mathcal{O}_{Δ_f} -ideal is a subset $\mathfrak{a} = (N, B)$ of \mathcal{O}_{Δ_f} characterized by two integers $N = N(\mathfrak{a})$ (the **norm** of \mathfrak{a}) and $B = B(\mathfrak{a})$ such that

- N > 0 is unique, B is unique modulo 2N
- $B^2 \equiv \Delta_f \pmod{4N}$
- $gcd(N, B, (\Delta_f B^2)/4N) = 1$

 $\Delta_{1} \in \mathbb{Z} \text{ with } \Delta_{1} \equiv 1 \pmod{4}, \qquad \Delta_{f} = f^{2} \Delta_{1} \text{ with } f \in \mathbb{Z}$ Quadratic order of conductor $f: \mathcal{O}_{\Delta_{f}} = \mathbb{Z} \oplus \mathbb{Z} f \frac{\Delta_{1} + \sqrt{\Delta_{1}}}{2}$

Properties:

- \mathcal{O}_{Δ_f} is imaginary if $\Delta_f < 0$ and real if $\Delta_f > 0$
- $\mathcal{O}_{\Delta_f} \subseteq \mathcal{O}_{\Delta_1}$; \mathcal{O}_{Δ_1} is the **maximal** order

An \mathcal{O}_{Δ_f} -ideal is a subset $\mathfrak{a} = (N, B)$ of \mathcal{O}_{Δ_f} characterized by two integers $N = N(\mathfrak{a})$ (the norm of \mathfrak{a}) and $B = B(\mathfrak{a})$ such that

- *N* > 0 is unique, *B* is unique modulo 2*N*
- $B^2 \equiv \Delta_f \pmod{4N}$
- $gcd(N, B, (\Delta_f B^2)/4N) = 1$

 $\Delta_1 \in \mathbb{Z}$ with $\Delta_1 \equiv 1 \pmod{4}$, $\Delta_f = f^2 \Delta_1$ with $f \in \mathbb{Z}$

Quadratic order of conductor $f: \mathcal{O}_{\Delta_f} = \mathbb{Z} \oplus \mathbb{Z} f \frac{\Delta_1 + \sqrt{\Delta_1}}{2}$

Properties:

- \mathcal{O}_{Δ_f} is imaginary if $\Delta_f < 0$ and real if $\Delta_f > 0$
- $\mathcal{O}_{\Delta_f} \subseteq \mathcal{O}_{\Delta_1}$; \mathcal{O}_{Δ_1} is the maximal order

An \mathcal{O}_{Δ_f} -ideal is a subset $\mathfrak{a} = (N, B)$ of \mathcal{O}_{Δ_f} characterized by two integers $N = N(\mathfrak{a})$ (the **norm** of \mathfrak{a}) and $B = B(\mathfrak{a})$ such that

- N > 0 is unique, B is unique modulo 2N
- $B^2 \equiv \Delta_f \pmod{4N}$
- $gcd(N, B, (\Delta_f B^2)/4N) = 1$

 $\Delta_1 \in \mathbb{Z}$ with $\Delta_1 \equiv 1 \pmod{4}$, $\Delta_f = f^2 \Delta_1$ with $f \in \mathbb{Z}$

Quadratic order of conductor $f: \mathcal{O}_{\Delta_f} = \mathbb{Z} \oplus \mathbb{Z} f \frac{\Delta_1 + \sqrt{\Delta_1}}{2}$

Properties:

• \mathcal{O}_{Δ_f} is imaginary if $\Delta_f < 0$ and real if $\Delta_f > 0$

• $\mathcal{O}_{\Delta_f} \subseteq \mathcal{O}_{\Delta_1}$; \mathcal{O}_{Δ_1} is the maximal order

An \mathcal{O}_{Δ_f} -ideal is a subset $\mathfrak{a} = (N, B)$ of \mathcal{O}_{Δ_f} characterized by two integers $N = N(\mathfrak{a})$ (the norm of \mathfrak{a}) and $B = B(\mathfrak{a})$ such that

- N > 0 is unique, B is unique modulo 2N
- $B^2 \equiv \Delta_f \pmod{4N}$
- $gcd(N, B, (\Delta_f B^2)/4N) = 1$

 $\Delta_1 \in \mathbb{Z}$ with $\Delta_1 \equiv 1 \pmod{4}$, $\Delta_f = f^2 \Delta_1$ with $f \in \mathbb{Z}$

Quadratic order of conductor $f: \mathcal{O}_{\Delta_f} = \mathbb{Z} \oplus \mathbb{Z} f \frac{\Delta_1 + \sqrt{\Delta_1}}{2}$

Properties:

• \mathcal{O}_{Δ_f} is imaginary if $\Delta_f < 0$ and real if $\Delta_f > 0$

• $\mathcal{O}_{\Delta_f} \subseteq \mathcal{O}_{\Delta_1}$; \mathcal{O}_{Δ_1} is the maximal order

An \mathcal{O}_{Δ_f} -ideal is a subset $\mathfrak{a} = (N, B)$ of \mathcal{O}_{Δ_f} characterized by two integers $N = N(\mathfrak{a})$ (the norm of \mathfrak{a}) and $B = B(\mathfrak{a})$ such that

• N > 0 is unique, B is unique modulo 2N

•
$$B^2 \equiv \Delta_f \pmod{4N}$$

•
$$gcd(N, B, (\Delta_f - B^2)/4N) = 1$$

Ideal Equivalence: $\mathfrak{a} \sim \mathfrak{b} \iff \alpha \mathfrak{a} = \beta \mathfrak{b}$ for some $\alpha, \beta \in \mathcal{O}_{\Delta_f} \setminus \{0\}$

Ideal class group of \mathcal{O}_{Δ_f} : $Cl(\mathcal{O}_{\Delta_f}) = \{\text{set of equivalence classes}\}$

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N = 1 and $\# Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$;
- If \mathcal{O}_{Δ_f} is real, then
 - usually ${\it Cl}({\cal O}_{\Delta_f})$ is very small and $Npprox \sqrt{\Delta_f};$
 - for certain very special choices of Δ₁, we have N small and #Cl(O_{Δ1}) small.

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N = 1 and $\# Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$;
- If \mathcal{O}_{Δ_f} is real, then
 - usually $\mathit{Cl}(\mathcal{O}_{\Delta_f})$ is very small and $Npprox \sqrt{\Delta_f};$
 - for certain very special choices of Δ₁, we have N small and #Cl(O_{Δ1}) small.

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N = 1 and $\# Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$;
- If \mathcal{O}_{Δ_f} is real, then
 - usually $\mathit{Cl}(\mathcal{O}_{\Delta_f})$ is very small and $Npprox \sqrt{\Delta_f};$
 - for certain very special choices of Δ₁, we have N small and #Cl(O_{Δ1}) small.

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N=1 and $\#Cl(\mathcal{O}_{\Delta_f})pprox \sqrt{|\Delta_f|};$
- If \mathcal{O}_{Δ_f} is real, then
 - usually $Cl(\mathcal{O}_{\Delta_f})$ is very small and $N \approx \sqrt{\Delta_f}$;
 - for certain very special choices of Δ₁, we have N small and #Cl(O_{Δ1}) small.

Properties:

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N = 1 and $\# Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$;
- If \mathcal{O}_{Δ_f} is real, then
 - usually $\mathit{Cl}(\mathcal{O}_{\Delta_f})$ is very small and $Npprox \sqrt{\Delta_f};$
 - for certain very special choices of Δ₁, we have N small and #Cl(O_{Δ1}) small.

Renate Scheidler (Calgary)

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N = 1 and $\# Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$;
- If \mathcal{O}_{Δ_f} is real, then
 - usually $Cl(\mathcal{O}_{\Delta_f})$ is very small and $N \approx \sqrt{\Delta_f}$;
 - for certain very special choices of Δ₁, we have N small and #Cl(O_{Δ1}) small.

- Finite Abelian group;
- The identity is the **principal class** containing \mathcal{O}_{Δ_f} ;
- Efficient arithmetic;
- Given any \mathcal{O}_{Δ_f} -ideal \mathfrak{a} , it is efficient to compute a reduced ideal $\rho_{\Delta_f}(\mathfrak{a}) \sim \mathfrak{a}$;
- If N is an upper bound on the number of reduced ideals in each ideal class, then $N \cdot \#Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$
- If \mathcal{O}_{Δ_f} is imaginary, then N = 1 and $\# Cl(\mathcal{O}_{\Delta_f}) \approx \sqrt{|\Delta_f|}$;
- If \mathcal{O}_{Δ_f} is real, then
 - usually $Cl(\mathcal{O}_{\Delta_f})$ is very small and $N \approx \sqrt{\Delta_f}$;
 - for certain very special choices of Δ_1 , we have N small and $\#Cl(\mathcal{O}_{\Delta_1})$ small.

There is a one-to-one correspondence

$$egin{array}{lll} \phi: \{\mathcal{O}_{\Delta_1} ext{-ideals}\} & \longleftrightarrow & \{\mathcal{O}_{\Delta_f} ext{-ideals}\} \ \mathfrak{A} & o & \mathfrak{a} = \phi(\mathfrak{A}) \ \mathfrak{A} = \phi^{-1}(\mathfrak{a}) & \leftarrow & \mathfrak{a} \end{array}$$

Properties:

- ϕ and ϕ^{-1} are compatible with ideal multiplication
- ϕ and ϕ^{-1} preserve the N coefficient of any ideal
- ϕ preserves reducedness, but ϕ^{-1} doesn't
- ϕ^{-1} preserves ideal equivalence, but ϕ doesn't
- ϕ and ϕ^{-1} are efficiently computable if f is known
- ϕ and ϕ^{-1} are intractable to compute if f is unknown

 ϕ^{-1} is the trap-door one-way function underlying NICE and REAL-NICE, with trap-door information f a prime

There is a one-to-one correspondence

$$\begin{array}{rcl} \phi : \{\mathcal{O}_{\Delta_1} \text{-ideals}\} & \longleftrightarrow & \{\mathcal{O}_{\Delta_f} \text{-ideals}\}\\ \mathfrak{A} & \to & \mathfrak{a} = \phi(\mathfrak{A})\\ \mathfrak{A} = \phi^{-1}(\mathfrak{a}) & \leftarrow & \mathfrak{a} \end{array}$$

Properties:

- $\bullet~\phi$ and ϕ^{-1} are compatible with ideal multiplication
- ϕ and ϕ^{-1} preserve the N coefficient of any ideal
- ϕ preserves reducedness, but ϕ^{-1} doesn't
- ϕ^{-1} preserves ideal equivalence, but ϕ doesn't
- ϕ and ϕ^{-1} are efficiently computable if f is known
- ϕ and ϕ^{-1} are intractable to compute if f is unknown

 ϕ^{-1} is the trap-door one-way function underlying NICE and REAL-NICE, with trap-door information f a prime

Renate Scheidler (Calgary)

There is a one-to-one correspondence

$$\begin{array}{rcl} \phi : \{\mathcal{O}_{\Delta_1} \text{-ideals}\} & \longleftrightarrow & \{\mathcal{O}_{\Delta_f} \text{-ideals}\}\\ \mathfrak{A} & \to & \mathfrak{a} = \phi(\mathfrak{A})\\ \mathfrak{A} = \phi^{-1}(\mathfrak{a}) & \leftarrow & \mathfrak{a} \end{array}$$

Properties:

- $\bullet~\phi$ and ϕ^{-1} are compatible with ideal multiplication
- ϕ and ϕ^{-1} preserve the N coefficient of any ideal
- ϕ preserves reducedness, but ϕ^{-1} doesn't
- ϕ^{-1} preserves ideal equivalence, but ϕ doesn't
- ϕ and ϕ^{-1} are efficiently computable if f is known
- ϕ and ϕ^{-1} are intractable to compute if f is unknown

 ϕ^{-1} is the trap-door one-way function underlying NICE and REAL-NICE, with trap-door information f a prime

There is a one-to-one correspondence

$$egin{array}{rcl} \phi: \{\mathcal{O}_{\Delta_1} ext{-ideals}\} & \longleftrightarrow & \{\mathcal{O}_{\Delta_f} ext{-ideals}\}\ \mathfrak{A} & o & \mathfrak{a} = \phi(\mathfrak{A})\ \mathfrak{A} = \phi^{-1}(\mathfrak{a}) & \leftarrow & \mathfrak{a} \end{array}$$

Properties:

- $\bullet~\phi$ and ϕ^{-1} are compatible with ideal multiplication
- ϕ and ϕ^{-1} preserve the N coefficient of any ideal
- ϕ preserves reducedness, but ϕ^{-1} doesn't
- ϕ^{-1} preserves ideal equivalence, but ϕ doesn't
- ϕ and ϕ^{-1} are efficiently computable if f is known
- ϕ and ϕ^{-1} are intractable to compute if f is unknown

 ϕ^{-1} is the trap-door one-way function underlying NICE and REAL-NICE, with trap-door information f a prime

Private Key: Large distinct primes p, q with $p \equiv 3 \pmod{4}$

Public Key: $(\Delta_q, k, n, \mathfrak{p})$ where

- $\Delta_q = q^2 \Delta_1$ with $\Delta_1 = -p$
- $k = \text{bit length of } \sqrt{|\Delta_1|}/4$
- $n = {
 m bit}$ length of $q (\Delta_1/q)$
- \mathfrak{p} is a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal in \mathcal{O}_{Δ_1}

Messages are bit strings of length k of the form

$$\overline{m} = m \underbrace{000\cdots000}_{t \text{ zeros}}$$

Private Key: Large distinct primes p, q with $p \equiv 3 \pmod{4}$

Public Key: $(\Delta_q, k, n, \mathfrak{p})$ where

- $\Delta_q = q^2 \Delta_1$ with $\Delta_1 = -p$
- $k = \text{bit length of } \sqrt{|\Delta_1|}/4$
- $n = {
 m bit}$ length of $q (\Delta_1/q)$
- \mathfrak{p} is a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal in \mathcal{O}_{Δ_1}

Messages are bit strings of length k of the form

$$\overline{m} = m \underbrace{000\cdots000}_{t \text{ zeros}}$$

Private Key: Large distinct primes p, q with $p \equiv 3 \pmod{4}$

Public Key: (Δ_q, k, n, p) where

•
$$\Delta_q = q^2 \Delta_1$$
 with $\Delta_1 = -p$

- $k = \text{bit length of } \sqrt{|\Delta_1|}/4$
- n= bit length of $q-(\Delta_1/q)$
- \mathfrak{p} is a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal in \mathcal{O}_{Δ_1}

Messages are bit strings of length k of the form

$$\overline{m} = m \underbrace{000\cdots000}_{t \text{ zeros}}$$

Private Key: Large distinct primes p, q with $p \equiv 3 \pmod{4}$

Public Key: (Δ_q, k, n, p) where

•
$$\Delta_q = q^2 \Delta_1$$
 with $\Delta_1 = -p$

• $k = {
m bit length of } \sqrt{|\Delta_1|}/4$

•
$$n=$$
 bit length of $q-(\Delta_1/q)$

• \mathfrak{p} is a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal in \mathcal{O}_{Δ_1}

Messages are bit strings of length k of the form

$$\overline{m} = m \underbrace{000\cdots000}_{t \text{ zeros}}$$

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2\equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the $\mathcal{O}_{\Delta_q} ext{-ideal} \mathfrak{m}=(l,b)$
- Generate random $r \in_R \{1, 2, \ldots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt $\mathfrak c$ with private key (p,q):

- Compute $\mathfrak{M}=
 ho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M}\sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key (Δ_q, k, n, p) :

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2\equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the $\mathcal{O}_{\Delta_q} ext{-ideal} \mathfrak{m}=(l,b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}^r)$

To decrypt $\mathfrak c$ with private key (p,q):

- Compute $\mathfrak{M}=
 ho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M}\sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2\equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m}=(l,b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}^r)$

To decrypt $\mathfrak c$ with private key (p,q):

- Compute $\mathfrak{M}=
 ho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M}\sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key (Δ_q, k, n, p) :

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} =
 ho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt $\mathfrak c$ with private key (p,q):

- Compute $\mathfrak{M} =
 ho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key (Δ_q, k, n, p) :

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt $\mathfrak c$ with private key (p,q):

- Compute $\mathfrak{M}=
 ho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M}\sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key (Δ_q, k, n, p) :

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $\mathbf{r} \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt $\mathfrak c$ with private key (p,q):

- Compute $\mathfrak{M} = \rho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key (Δ_q, k, n, p) :

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

Compute M = ρ_{Δ1}(φ⁻¹(c)) *** Note that M ~ φ⁻¹(m) *** *m* is the *k* − *t* high order bits of N(M)

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

Compute M = ρ_{Δ1}(φ⁻¹(c)) *** Note that M ~ φ⁻¹(m) ***
 m is the *k* − *t* high order bits of N(M)

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $\mathbf{r} \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

Compute M = ρ_{Δ1}(φ⁻¹(c)) *** Note that M ~ φ⁻¹(m) ***
 m is the *k* − *t* high order bits of N(M)

Theorem

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $\mathbf{r} \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

- Compute $\mathfrak{M} = \rho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

With probability at least $P_t = 1 - 2^{-2^t/k}$, we have $l = N(\mathfrak{m}) \leq \overline{m} + 2^t$. This implies the following:

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $\mathbf{r} \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

- Compute $\mathfrak{M} = \rho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

With probability at least $P_t = 1 - 2^{-2^t/k}$, we have $l = N(\mathfrak{m}) \leq \overline{\mathfrak{m}} + 2^t$. This implies the following:

• $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.

• The k - t high order bits of \overline{m} and $N(\mathfrak{M}) = l$ are identical, and hence

make up m. So NICE is correct with probability at least P_t .

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $\mathbf{r} \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

- Compute $\mathfrak{M} = \rho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

With probability at least $P_t = 1 - 2^{-2^t/k}$, we have $l = N(\mathfrak{m}) \leq \overline{\mathfrak{m}} + 2^t$. This implies the following:

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

To encrypt \overline{m} with public key $(\Delta_q, k, n, \mathfrak{p})$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- The ciphertext is the reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt c with private key (p, q):

- Compute $\mathfrak{M} = \rho_{\Delta_1}(\phi^{-1}(\mathfrak{c}))$ *** Note that $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ ***
- *m* is the k t high order bits of $N(\mathfrak{M})$

Theorem

With probability at least $P_t = 1 - 2^{-2^t/k}$, we have $l = N(\mathfrak{m}) \leq \overline{\mathfrak{m}} + 2^t$. This implies the following:

- $\phi^{-1}(\mathfrak{m})$ is reduced, so $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$, and hence $N(\mathfrak{M}) = N(\mathfrak{m}) = I$.
- The k t high order bits of m and N(M) = I are identical, and hence make up m. So NICE is correct with probability at least P_t.

Assume that there exists an algorithm **A** that computes for any \mathcal{O}_{Δ_q} -ideal \mathfrak{a} the \mathcal{O}_{Δ_1} -ideal $\mathfrak{A} = \phi^{-1}(\mathfrak{a})$ without knowledge of q. By using **A** as an oracle, Δ_q can be factored in random polynomial time. The number of required queries to the oracle is polynomially bounded in $\log(\Delta_q)$.

Other Observations:

- The number of \mathcal{O}_{Δ_q} -ideal classes of the form $[\mathfrak{m}\mathfrak{p}^r]$, and hence the size of the ciphertext space, is $2^{n-1} \approx q$
- NICE was extended to provide IND-CCA2 security in the random oracle model, using standard techniques (NICE-X, Buchmann, Sakurai & Takagi, ICISC 2001)

Assume that there exists an algorithm **A** that computes for any \mathcal{O}_{Δ_q} -ideal \mathfrak{a} the \mathcal{O}_{Δ_1} -ideal $\mathfrak{A} = \phi^{-1}(\mathfrak{a})$ without knowledge of q. By using **A** as an oracle, Δ_q can be factored in random polynomial time. The number of required queries to the oracle is polynomially bounded in $\log(\Delta_q)$.

Other Observations:

- The number of \mathcal{O}_{Δ_q} -ideal classes of the form $[\mathfrak{mp}^r]$, and hence the size of the ciphertext space, is $2^{n-1} \approx q$
- NICE was extended to provide IND-CCA2 security in the random oracle model, using standard techniques (NICE-X, Buchmann, Sakurai & Takagi, ICISC 2001)

Assume that there exists an algorithm **A** that computes for any \mathcal{O}_{Δ_q} -ideal \mathfrak{a} the \mathcal{O}_{Δ_1} -ideal $\mathfrak{A} = \phi^{-1}(\mathfrak{a})$ without knowledge of q. By using **A** as an oracle, Δ_q can be factored in random polynomial time. The number of required queries to the oracle is polynomially bounded in $\log(\Delta_q)$.

Other Observations:

- The number of \mathcal{O}_{Δ_q} -ideal classes of the form $[\mathfrak{m}\mathfrak{p}']$, and hence the size of the ciphertext space, is $2^{n-1} \approx q$
- NICE was extended to provide IND-CCA2 security in the random oracle model, using standard techniques (NICE-X, Buchmann, Sakurai & Takagi, ICISC 2001)

- The number of ideal classes of the form [mp^r] can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer M = φ⁻¹(m) from M ∼ φ⁻¹(m) after decryption.

- Instead of hiding the message \mathcal{O}_{Δ_q} -ideal **m** in some random ideal class $[\mathfrak{mp}']$, it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large ($\approx q$)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(m) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ1))

- The number of ideal classes of the form [mp^r] can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$ from $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ after decryption.

- Instead of hiding the message O_{∆q}-ideal m in some random ideal class [mp'], it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large (≈ q)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(**m**) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ₁))

Extending NICE to Real Quadratic Orders

Obstacles:

- The number of ideal classes of the form $[\mathfrak{m}\mathfrak{p}^r]$ can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$ from $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ after decryption.

- Instead of hiding the message O_{Δq}-ideal m in some random ideal class [mp'], it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large (≈ q)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(m) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ₁))

- The number of ideal classes of the form $[\mathfrak{m}\mathfrak{p}^r]$ can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$ from $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ after decryption.

- Instead of hiding the message O_{Δq}-ideal m in some random ideal class [mp^r], it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large (≈ q)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(**m**) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ1))

- The number of ideal classes of the form $[\mathfrak{m}\mathfrak{p}^r]$ can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$ from $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ after decryption.

- Instead of hiding the message O_{Δq}-ideal m in some random ideal class [mp^r], it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large (≈ q)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(**m**) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ1))

- The number of ideal classes of the form $[\mathfrak{m}\mathfrak{p}^r]$ can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$ from $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ after decryption.

- Instead of hiding the message O_{Δq}-ideal m in some random ideal class [mp^r], it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large (≈ q)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(**m**) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ1))

- The number of ideal classes of the form $[\mathfrak{m}\mathfrak{p}^r]$ can be very small, yielding a potentially far too small ciphertext space.
- Ideal classes don't have unique reduced representatives, so we can no longer infer $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$ from $\mathfrak{M} \sim \phi^{-1}(\mathfrak{m})$ after decryption.

- Instead of hiding the message O_{Δq}-ideal m in some random ideal class [mp^r], it is instead hidden in the cycle of reduced ideals in its own ideal class. Each such cycle must therefore be large (≈ q)
- The decrypter now needs to locate a specific reduced O_{Δ1}-ideal *M* ~ φ⁻¹(m) in the cycle of reduced ideals in its own class. Each such cycle must therefore be small (≈ log(Δ1))

Private Key: Large distinct primes p, q with $p \equiv 1 \pmod{4}$

Public Key: $(\Delta_q, k, n, (\mathfrak{p}))$ where

- $\Delta_q = q^2 \Delta_1$ with $\Delta_1 = p$
- $k = \text{bit length of } \sqrt{\Delta_1}/4$
- $n = \text{bit length of } q (\Delta_1/q)$
- p is a randomly chosen O_{Δq}-ideal so that φ⁻¹(p) is principal; inclusion of p in the public key is optional

Messages are bit strings of length k the form

 $\overline{m} = 1 \underbrace{000\cdots000}_{u-1 \text{ zeros}} m \underbrace{000\cdots000}_{t \text{ zeros}}$

- *m* is the plaintext
- t is as in the original NICE

u is large enough that with high probability *P_u*, every *O*_{Δ1}-ideal class contains at most one reduced ideal *Ω* with *N*(*Ω*) = 100 ··· 000 *X*

Renate Scheidler (Calgary)

NICE in Real Quadratic Orders

June 12, 2008 10 / 14

Private Key: Large distinct primes p, q with $p \equiv 1 \pmod{4}$

Public Key: $(\Delta_q, k, n, (p))$ where

- $\Delta_q = q^2 \Delta_1$ with $\Delta_1 = p$
- $k = \text{bit length of } \sqrt{\Delta_1}/4$
- $n = \text{bit length of } q (\Delta_1/q)$
- p is a randomly chosen O_{Δq}-ideal so that φ⁻¹(p) is principal; inclusion of p in the public key is optional

Messages are bit strings of length k the form

 $\overline{m} = 1 \underbrace{000 \cdots 000}_{u-1 \text{ zeros}} m \underbrace{000 \cdots 000}_{t \text{ zeros}}$

- *m* is the plaintext
- t is as in the original NICE
- *u* is large enough that with high probability P_u , every \mathcal{O}_{Δ_1} -ideal class contains at most one reduced ideal \mathfrak{A} with $N(\mathfrak{A}) = 100 \cdots 000 X$

Renate Scheidler (Calgary)

NICE in Real Quadratic Orders

June 12, 2008 10 / 14

Private Key: Large distinct primes p, q with $p \equiv 1 \pmod{4}$

Public Key: $(\Delta_q, k, n, (p))$ where

- $\Delta_q = q^2 \Delta_1$ with $\Delta_1 = p$
- $k = \text{bit length of } \sqrt{\Delta_1}/4$
- n= bit length of $q-(\Delta_1/q)$
- p is a randomly chosen O_{Δq}-ideal so that φ⁻¹(p) is principal; inclusion of p in the public key is optional

Messages are bit strings of length k the form

 $\overline{m} = 1 \underbrace{000 \cdots 000}_{u-1 \text{ zeros}} m \underbrace{000 \cdots 000}_{t \text{ zeros}}$

- *m* is the plaintext
- t is as in the original NICE

• *u* is large enough that with high probability P_u , every \mathcal{O}_{Δ_1} -ideal class contains at most one reduced ideal \mathfrak{A} with $N(\mathfrak{A}) = 100 \cdots 000 X$

Renate Scheidler (Calgary)

NICE in Real Quadratic Orders

June 12, 2008 10 / 14

Private Key: Large distinct primes p, q with $p \equiv 1 \pmod{4}$

Public Key: $(\Delta_q, k, n, (p))$ where

- $\Delta_q = q^2 \Delta_1$ with $\Delta_1 = p$
- $k = \text{bit length of } \sqrt{\Delta_1}/4$
- n= bit length of $q-(\Delta_1/q)$
- p is a randomly chosen O_{Δq}-ideal so that φ⁻¹(p) is principal; inclusion of p in the public key is optional

Messages are bit strings of length k the form

$$\overline{m} = \underbrace{1 \underbrace{000 \cdots 000}_{u-1 \text{ zeros}} m \underbrace{000 \cdots 000}_{t \text{ zeros}}}_{t \text{ zeros}}$$

- *m* is the plaintext
- t is as in the original NICE
- u is large enough that with high probability P_u, every O_{Δ1}-ideal class contains at most one reduced ideal A with N(A) = 100 ··· 000 X

Renate Scheidler (Calgary)

REAL-NICE, Encryption & Decryption

To encrypt \overline{m} with public key $(\Delta_q, k, n, (\mathfrak{p}))$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \ldots, 2^{n-1}\}$
- If the public key does not include p, generate a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal
- The ciphertext is a reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt \mathfrak{c} with private key (p,q):

- Compute $\mathfrak{C} = \phi^{-1}(\mathfrak{c})$ *** Note that $\mathfrak{C} \sim \phi^{-1}(\mathfrak{m})$ ***
- Search through the cycle of reduced ideals equivalent to \mathfrak{C} until an ideal \mathfrak{M} is found such that $N(\mathfrak{M}) = 100 \cdots 000 X$
- *m* is the k t high order bits of $N(\mathfrak{M})$

REAL-NICE, Encryption & Decryption

To encrypt \overline{m} with public key $(\Delta_q, k, n, (p))$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- If the public key does not include \mathfrak{p} , generate a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal
- The ciphertext is a reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt \mathfrak{c} with private key (p,q):

- Compute $\mathfrak{C} = \phi^{-1}(\mathfrak{c})$ *** Note that $\mathfrak{C} \sim \phi^{-1}(\mathfrak{m})$ ***
- Search through the cycle of reduced ideals equivalent to \mathfrak{C} until an ideal \mathfrak{M} is found such that $N(\mathfrak{M}) = 100 \cdots 000 X$
- *m* is the k t high order bits of $N(\mathfrak{M})$

REAL-NICE, Encryption & Decryption

To encrypt \overline{m} with public key $(\Delta_q, k, n, (\mathfrak{p}))$:

- Find the smallest prime $l > \overline{m}$ so that Δ_q is a square modulo l
- Solve $b^2 \equiv \Delta_q \pmod{4l}$ and set \mathfrak{m} to be the \mathcal{O}_{Δ_q} -ideal $\mathfrak{m} = (l, b)$
- Generate random $r \in_R \{1, 2, \dots, 2^{n-1}\}$
- If the public key does not include \mathfrak{p} , generate a randomly chosen \mathcal{O}_{Δ_q} -ideal so that $\phi^{-1}(\mathfrak{p})$ is principal
- The ciphertext is a reduced \mathcal{O}_{Δ_q} -ideal $\mathfrak{c} = \rho_{\Delta_q}(\mathfrak{mp}^r)$

To decrypt \mathfrak{c} with private key (p, q):

- Compute $\mathfrak{C} = \phi^{-1}(\mathfrak{c})$ *** Note that $\mathfrak{C} \sim \phi^{-1}(\mathfrak{m})$ ***
- Search through the cycle of reduced ideals equivalent to \mathfrak{C} until an ideal \mathfrak{M} is found such that $N(\mathfrak{M}) = 100 \cdots 000 X$
- *m* is the k t high order bits of $N(\mathfrak{M})$

With probability at least $P_u = (1 - 2^{-u})^N$, we have $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$. Here, N is an upper bound on the number of reduced ideals in any \mathcal{O}_{Δ_1} -ideal class. So REAL-NICE is correct with probability at least $\min\{P_t, P_u\}$.

Choice of Parameters:

- As before, breaking REAL-NICE leads to a factorization of Δ_q in random polynomial time. Choose p and q accordingly.
- Choosing p properly ensures that the ciphertext ideals $\rho_{\Delta_q}(\mathfrak{mp}^r)$, $r = 1, 2, \ldots$ are all distinct (choice depends on bit length of Δ_q only)
- Choosing *q* ± 1 to have a large prime factor ensures with high probability that each O_{Δq}-ideal class contains a large number of reduced ideals.
- Choosing p = Δ₁ to be a Schinzel sleeper ensures with high probability that each O_{Δ1}-ideal class contains a small number of reduced ideals N < κ log(Δ₁) with κ explicitly computable.

Renate Scheidler (Calgary)

With probability at least $P_u = (1 - 2^{-u})^N$, we have $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$. Here, N is an upper bound on the number of reduced ideals in any \mathcal{O}_{Δ_1} -ideal class. So REAL-NICE is correct with probability at least $\min\{P_t, P_u\}$.

Choice of Parameters:

- As before, breaking REAL-NICE leads to a factorization of Δ_q in random polynomial time. Choose p and q accordingly.
- Choosing p properly ensures that the ciphertext ideals $\rho_{\Delta_q}(\mathfrak{mp}^r)$, $r = 1, 2, \ldots$ are all distinct (choice depends on bit length of Δ_q only)
- Choosing *q* ± 1 to have a large prime factor ensures with high probability that each O_{Δq}-ideal class contains a large number of reduced ideals.
- Choosing p = Δ₁ to be a Schinzel sleeper ensures with high probability that each O_{Δ1}-ideal class contains a small number of reduced ideals N < κ log(Δ₁) with κ explicitly computable.

Renate Scheidler (Calgary)

With probability at least $P_u = (1 - 2^{-u})^N$, we have $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$. Here, N is an upper bound on the number of reduced ideals in any \mathcal{O}_{Δ_1} -ideal class. So REAL-NICE is correct with probability at least $\min\{P_t, P_u\}$.

Choice of Parameters:

- As before, breaking REAL-NICE leads to a factorization of Δ_q in random polynomial time. Choose p and q accordingly.
- Choosing p properly ensures that the ciphertext ideals $\rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}^r)$, $r = 1, 2, \ldots$ are all distinct (choice depends on bit length of Δ_q only)
- Choosing $q \pm 1$ to have a large prime factor ensures with high probability that each \mathcal{O}_{Δ_q} -ideal class contains a large number of reduced ideals.
- Choosing p = Δ₁ to be a Schinzel sleeper ensures with high probability that each O_{Δ1}-ideal class contains a small number of reduced ideals N < κ log(Δ1) with κ explicitly computable.

Renate Scheidler (Calgary)

With probability at least $P_u = (1 - 2^{-u})^N$, we have $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$. Here, N is an upper bound on the number of reduced ideals in any \mathcal{O}_{Δ_1} -ideal class. So REAL-NICE is correct with probability at least $\min\{P_t, P_u\}$.

Choice of Parameters:

- As before, breaking REAL-NICE leads to a factorization of Δ_q in random polynomial time. Choose p and q accordingly.
- Choosing \mathfrak{p} properly ensures that the ciphertext ideals $\rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}^r)$, $r = 1, 2, \ldots$ are all distinct (choice depends on bit length of Δ_q only).
- Choosing q ± 1 to have a large prime factor ensures with high probability that each O_{Δq}-ideal class contains a large number of reduced ideals.
- Choosing p = Δ₁ to be a Schinzel sleeper ensures with high probability that each O_{Δ1}-ideal class contains a small number of reduced ideals N < κ log(Δ₁) with κ explicitly computable.

Renate Scheidler (Calgary)

With probability at least $P_u = (1 - 2^{-u})^N$, we have $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$. Here, N is an upper bound on the number of reduced ideals in any \mathcal{O}_{Δ_1} -ideal class. So REAL-NICE is correct with probability at least $\min\{P_t, P_u\}$.

Choice of Parameters:

- As before, breaking REAL-NICE leads to a factorization of Δ_q in random polynomial time. Choose p and q accordingly.
- Choosing \mathfrak{p} properly ensures that the ciphertext ideals $\rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}^r)$, $r = 1, 2, \ldots$ are all distinct (choice depends on bit length of Δ_q only).
- Choosing $q \pm 1$ to have a large prime factor ensures with high probability that each \mathcal{O}_{Δ_q} -ideal class contains a large number of reduced ideals.
- Choosing p = Δ₁ to be a Schinzel sleeper ensures with high probability that each O_{Δ1}-ideal class contains a small number of reduced ideals N < κ log(Δ₁) with κ explicitly computable.

Renate Scheidler (Calgary)

With probability at least $P_u = (1 - 2^{-u})^N$, we have $\mathfrak{M} = \phi^{-1}(\mathfrak{m})$. Here, N is an upper bound on the number of reduced ideals in any \mathcal{O}_{Δ_1} -ideal class. So REAL-NICE is correct with probability at least $\min\{P_t, P_u\}$.

Choice of Parameters:

- As before, breaking REAL-NICE leads to a factorization of Δ_q in random polynomial time. Choose p and q accordingly.
- Choosing \mathfrak{p} properly ensures that the ciphertext ideals $\rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}^r)$, $r = 1, 2, \ldots$ are all distinct (choice depends on bit length of Δ_q only).
- Choosing q ± 1 to have a large prime factor ensures with high probability that each O_{Δq}-ideal class contains a large number of reduced ideals.
- Choosing p = Δ₁ to be a Schinzel sleeper ensures with high probability that each O_{Δ1}-ideal class contains a small number of reduced ideals N < κ log(Δ₁) with κ explicitly computable.

Renate Scheidler (Calgary)

Summary of Numerical Results

Comparative Implementation of all five NIST levels of security of

- REAL-NICE with small public key and NICE prototypes, using NTL
- OpenSSL RSA highly optimized

Results:

- NICE outperforms REAL-NICE at all five NIST levels for both encryption and decryption; more so for decryption.
 - Generation of a new ideal p for each message slows down encryption of REAL-NICE over NICE, but allows for a smaller public key in REAL-NICE.
 - Search through the cycle of reduced ideals equivalent to the decryption ideal. M slows down decryption of REAL-NICE over NICE.
- NICE and REAL-NICE outperform RSA in decryption at all five NIST levels.
- NICE and REAL-NICE outperform RSA in overall performance at the two highest NIST levels.

Summary of Numerical Results

Comparative Implementation of all five NIST levels of security of

- REAL-NICE with small public key and NICE prototypes, using NTL
- OpenSSL RSA highly optimized

Results:

- NICE outperforms REAL-NICE at all five NIST levels for both encryption and decryption; more so for decryption.
 - Generation of a new ideal p for each message slows down encryption of REAL-NICE over NICE, but allows for a smaller public key in REAL-NICE.
 - Search through the cycle of reduced ideals equivalent to the decryption ideal. \mathfrak{M} slows down decryption of REAL-NICE over NICE.
- NICE and REAL-NICE outperform RSA in decryption at all five NIST levels.
- NICE and REAL-NICE outperform RSA in overall performance at the two highest NIST levels.

- REAL-NICE with small public key and NICE prototypes, using NTL
- OpenSSL RSA highly optimized

Results:

- NICE outperforms REAL-NICE at all five NIST levels for both encryption and decryption; more so for decryption.
 - Generation of a new ideal p for each message slows down encryption of REAL-NICE over NICE, but allows for a smaller public key in REAL-NICE.
 - Search through the cycle of reduced ideals equivalent to the decryption ideal. \mathfrak{M} slows down decryption of REAL-NICE over NICE.
- NICE and REAL-NICE outperform RSA in decryption at all five NIST levels.
- NICE and REAL-NICE outperform RSA in overall performance at the two highest NIST levels.

- REAL-NICE with small public key and NICE prototypes, using NTL
- OpenSSL RSA highly optimized

Results:

- NICE outperforms REAL-NICE at all five NIST levels for both encryption and decryption; more so for decryption.
 - Generation of a new ideal p for each message slows down encryption of REAL-NICE over NICE, but allows for a smaller public key in REAL-NICE.
 - \bullet Search through the cycle of reduced ideals equivalent to the decryption ideal. ${\mathfrak M}$ slows down decryption of REAL-NICE over NICE.
- NICE and REAL-NICE outperform RSA in decryption at all five NIST levels.
- NICE and REAL-NICE outperform RSA in overall performance at the two highest NIST levels.

- REAL-NICE with small public key and NICE prototypes, using NTL
- OpenSSL RSA highly optimized

Results:

- NICE outperforms REAL-NICE at all five NIST levels for both encryption and decryption; more so for decryption.
 - Generation of a new ideal p for each message slows down encryption of REAL-NICE over NICE, but allows for a smaller public key in REAL-NICE.
 - \bullet Search through the cycle of reduced ideals equivalent to the decryption ideal. ${\mathfrak M}$ slows down decryption of REAL-NICE over NICE.
- NICE and REAL-NICE outperform RSA in decryption at all five NIST levels.
- NICE and REAL-NICE outperform RSA in overall performance at the two highest NIST levels.

- REAL-NICE with small public key and NICE prototypes, using NTL
- OpenSSL RSA highly optimized

Results:

- NICE outperforms REAL-NICE at all five NIST levels for both encryption and decryption; more so for decryption.
 - Generation of a new ideal p for each message slows down encryption of REAL-NICE over NICE, but allows for a smaller public key in REAL-NICE.
 - \bullet Search through the cycle of reduced ideals equivalent to the decryption ideal. ${\mathfrak M}$ slows down decryption of REAL-NICE over NICE.
- NICE and REAL-NICE outperform RSA in decryption at all five NIST levels.
- NICE and REAL-NICE outperform RSA in overall performance at the two highest NIST levels.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp') using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp^r) using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp') using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp') using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp') using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp^r) using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing $\rho_{\Delta_q}(\mathfrak{m}\mathfrak{p}')$ using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp^r) using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp^r) using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.

- Security proof for REAL-NICE IND-CCA2 security in the random oracle model, as for NICE?
- Security of choosing Δ_1 to be a Schinzel sleeper?
- Comparison to $q^2 p$ RSA (Takagi, CRYPTO 1998) faster decryption
- Better Implementation
- Integer multiple side step encryption for REAL-NICE:
 - Not applicable to the imaginary setting.
 - Successfully used for real hyperelliptic curves.
 - Instead of computing ρ_{Δq}(mp^r) using square & multiply, choose a random number r of square steps and replace the (quadratic complexity) multiply steps by (linear complexity) reduction steps.
 - Preliminary computations show that IMS-REAL-NICE outperforms REAL-NICE even under the most conservative analysis, using provable results on reduced ideals.
 - Much better performance under heuristic assumptions on the behaviour of reduced ideals, but requires careful security analysis.