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Overview

NICE (New Ideal Coset Encryption) is a public-key cryptosystem
whose security is based on factoring q2p (p, q distinct primes).

Quadratic decryption time, allowing for fast signature generation.

Makes use of the relationship between ideals in a non-maximal and
the maximal order of a quadratic number field.

Original NICE: imaginary quadratic orders (Takagi & Paulus, J.
Cryptology 13, 2000).

REAL-NICE: adaptation to real quadratic orders.

Outline

Mathematical Preliminaries (don’t let them scare you!)
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Quadratic Orders and Ideals

∆1 ∈ Z with ∆1 ≡ 1 (mod 4), ∆f = f 2∆1 with f ∈ Z

Quadratic order of conductor f : O∆f
= Z ⊕ Z f

∆1 +
√

∆1

2

Properties:

O∆f
is imaginary if ∆f < 0 and real if ∆f > 0

O∆f
⊆ O∆1 ; O∆1 is the maximal order

An O∆f
-ideal is a subset a = (N,B) of O∆f

characterized by two integers
N = N(a) (the norm of a) and B = B(a) such that

N > 0 is unique, B is unique modulo 2N

B2 ≡ ∆f (mod 4N)

gcd(N,B, (∆f − B2)/4N) = 1

An O∆f
-ideal a with N(a) <

√
|∆f |/2 is reduced

Renate Scheidler (Calgary) NICE in Real Quadratic Orders June 12, 2008 3 / 14



Quadratic Orders and Ideals

∆1 ∈ Z with ∆1 ≡ 1 (mod 4), ∆f = f 2∆1 with f ∈ Z

Quadratic order of conductor f : O∆f
= Z ⊕ Z f

∆1 +
√

∆1

2

Properties:

O∆f
is imaginary if ∆f < 0 and real if ∆f > 0

O∆f
⊆ O∆1 ; O∆1 is the maximal order

An O∆f
-ideal is a subset a = (N,B) of O∆f

characterized by two integers
N = N(a) (the norm of a) and B = B(a) such that

N > 0 is unique, B is unique modulo 2N

B2 ≡ ∆f (mod 4N)

gcd(N,B, (∆f − B2)/4N) = 1

An O∆f
-ideal a with N(a) <

√
|∆f |/2 is reduced

Renate Scheidler (Calgary) NICE in Real Quadratic Orders June 12, 2008 3 / 14



Quadratic Orders and Ideals

∆1 ∈ Z with ∆1 ≡ 1 (mod 4), ∆f = f 2∆1 with f ∈ Z

Quadratic order of conductor f : O∆f
= Z ⊕ Z f

∆1 +
√

∆1

2

Properties:

O∆f
is imaginary if ∆f < 0 and real if ∆f > 0

O∆f
⊆ O∆1 ; O∆1 is the maximal order

An O∆f
-ideal is a subset a = (N,B) of O∆f

characterized by two integers
N = N(a) (the norm of a) and B = B(a) such that

N > 0 is unique, B is unique modulo 2N

B2 ≡ ∆f (mod 4N)

gcd(N,B, (∆f − B2)/4N) = 1

An O∆f
-ideal a with N(a) <

√
|∆f |/2 is reduced

Renate Scheidler (Calgary) NICE in Real Quadratic Orders June 12, 2008 3 / 14



Quadratic Orders and Ideals

∆1 ∈ Z with ∆1 ≡ 1 (mod 4), ∆f = f 2∆1 with f ∈ Z

Quadratic order of conductor f : O∆f
= Z ⊕ Z f

∆1 +
√

∆1

2

Properties:

O∆f
is imaginary if ∆f < 0 and real if ∆f > 0

O∆f
⊆ O∆1 ; O∆1 is the maximal order

An O∆f
-ideal is a subset a = (N,B) of O∆f

characterized by two integers
N = N(a) (the norm of a) and B = B(a) such that

N > 0 is unique, B is unique modulo 2N

B2 ≡ ∆f (mod 4N)

gcd(N,B, (∆f − B2)/4N) = 1

An O∆f
-ideal a with N(a) <

√
|∆f |/2 is reduced

Renate Scheidler (Calgary) NICE in Real Quadratic Orders June 12, 2008 3 / 14



Quadratic Orders and Ideals

∆1 ∈ Z with ∆1 ≡ 1 (mod 4), ∆f = f 2∆1 with f ∈ Z

Quadratic order of conductor f : O∆f
= Z ⊕ Z f

∆1 +
√

∆1

2

Properties:

O∆f
is imaginary if ∆f < 0 and real if ∆f > 0

O∆f
⊆ O∆1 ; O∆1 is the maximal order

An O∆f
-ideal is a subset a = (N,B) of O∆f

characterized by two integers
N = N(a) (the norm of a) and B = B(a) such that

N > 0 is unique, B is unique modulo 2N

B2 ≡ ∆f (mod 4N)

gcd(N,B, (∆f − B2)/4N) = 1

An O∆f
-ideal a with N(a) <

√
|∆f |/2 is reduced

Renate Scheidler (Calgary) NICE in Real Quadratic Orders June 12, 2008 3 / 14



Quadratic Orders and Ideals

∆1 ∈ Z with ∆1 ≡ 1 (mod 4), ∆f = f 2∆1 with f ∈ Z

Quadratic order of conductor f : O∆f
= Z ⊕ Z f

∆1 +
√

∆1

2

Properties:

O∆f
is imaginary if ∆f < 0 and real if ∆f > 0

O∆f
⊆ O∆1 ; O∆1 is the maximal order

An O∆f
-ideal is a subset a = (N,B) of O∆f

characterized by two integers
N = N(a) (the norm of a) and B = B(a) such that

N > 0 is unique, B is unique modulo 2N

B2 ≡ ∆f (mod 4N)

gcd(N,B, (∆f − B2)/4N) = 1

An O∆f
-ideal a with N(a) <

√
|∆f |/2 is reduced

Renate Scheidler (Calgary) NICE in Real Quadratic Orders June 12, 2008 3 / 14



Ideal Equivalence

Ideal Equivalence: a ∼ b ⇐⇒ αa = βb for some α, β ∈ O∆f
\ {0}

Ideal class group of O∆f
: Cl(O∆f

) = {set of equivalence classes}

Properties:

Finite Abelian group;

The identity is the principal class containing O∆f
;

Efficient arithmetic;

Given any O∆f
-ideal a, it is efficient to compute a reduced ideal

ρ∆f
(a) ∼ a;

If N is an upper bound on the number of reduced ideals in each ideal
class, then N ·#Cl(O∆f

) ≈
√
|∆f |

If O∆f
is imaginary, then N = 1 and #Cl(O∆f

) ≈
√
|∆f |;

If O∆f
is real, then

usually Cl(O∆f
) is very small and N ≈

√
∆f ;

for certain very special choices of ∆1, we have N small and
#Cl(O∆1) small.
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O∆1
-Ideals and O∆f

-Ideals

There is a one-to-one correspondence

φ : {O∆1-ideals} ←→ {O∆f
-ideals}

A → a = φ(A)

A = φ−1(a) ← a

Properties:

φ and φ−1 are compatible with ideal multiplication

φ and φ−1 preserve the N coefficient of any ideal

φ preserves reducedness, but φ−1 doesn’t

φ−1 preserves ideal equivalence, but φ doesn’t

φ and φ−1 are efficiently computable if f is known

φ and φ−1 are intractable to compute if f is unknown

φ−1 is the trap-door one-way function underlying NICE and REAL-NICE,
with trap-door information f a prime
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Original NICE, Keys and Messages

Private Key: Large distinct primes p, q with p ≡ 3 (mod 4)

Public Key: (∆q, k , n, p) where

∆q = q2∆1 with ∆1 = −p

k = bit length of
√
|∆1|/4

n = bit length of q − (∆1/q)

p is a randomly chosen O∆q -ideal so that φ−1(p) is principal in O∆1

Messages are bit strings of length k of the form

m = m 000 · · · 000︸ ︷︷ ︸
t zeros

where m is the plaintext and t is chosen sufficiently large to foil the chosen
ciphertext attack of Jaulmes & Joux (EUROCRYPT 2000)
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Original NICE, Encryption & Decryption

To encrypt m with public key (∆q, k , n, p):

Find the smallest prime l > m so that ∆q is a square modulo l

Solve b2 ≡ ∆q (mod 4l) and set m to be the O∆q -ideal m = (l , b)

Generate random r ∈R {1, 2, . . . , 2n−1}
The ciphertext is the reduced O∆q -ideal c = ρ∆q (mpr )

To decrypt c with private key (p, q):

Compute M = ρ∆1(φ−1(c)) ∗ ∗ ∗ Note that M ∼ φ−1(m) ∗ ∗ ∗
m is the k − t high order bits of N(M)

Theorem

With probability at least Pt = 1− 2−2t/k , we have l = N(m) ≤ m + 2t .
This implies the following:

φ−1(m) is reduced, so M = φ−1(m), and hence N(M) = N(m) = l .
The k − t high order bits of m and N(M) = l are identical, and hence
make up m. So NICE is correct with probability at least Pt .
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Security

Theorem

Assume that there exists an algorithm A that computes for any O∆q -ideal
a the O∆1-ideal A = φ−1(a) without knowledge of q. By using A as an
oracle, ∆q can be factored in random polynomial time. The number of
required queries to the oracle is polynomially bounded in log(∆q).

Other Observations:

The number of O∆q -ideal classes of the form [mpr ], and hence the
size of the ciphertext space, is 2n−1 ≈ q

NICE was extended to provide IND-CCA2 security in the random
oracle model, using standard techniques (NICE-X, Buchmann,
Sakurai & Takagi, ICISC 2001)
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Extending NICE to Real Quadratic Orders

Obstacles:

The number of ideal classes of the form [mpr ] can be very small,
yielding a potentially far too small ciphertext space.

Ideal classes don’t have unique reduced representatives, so we can no
longer infer M = φ−1(m) from M ∼ φ−1(m) after decryption.

Solution:

Instead of hiding the message O∆q -ideal m in some random ideal
class [mpr ], it is instead hidden in the cycle of reduced ideals in its
own ideal class. Each such cycle must therefore be large (≈ q)

The decrypter now needs to locate a specific reduced O∆1-ideal
M ∼ φ−1(m) in the cycle of reduced ideals in its own class. Each
such cycle must therefore be small (≈ log(∆1))
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REAL-NICE, Keys and Messages

Private Key: Large distinct primes p, q with p ≡ 1 (mod 4)

Public Key: (∆q, k , n, (p)) where

∆q = q2∆1 with ∆1 = p
k = bit length of

√
∆1/4

n = bit length of q − (∆1/q)
p is a randomly chosen O∆q -ideal so that φ−1(p) is principal;
inclusion of p in the public key is optional

Messages are bit strings of length k the form

m = 1 000 · · · 000︸ ︷︷ ︸
u−1 zeros

m 000 · · · 000︸ ︷︷ ︸
t zeros

m is the plaintext
t is as in the original NICE
u is large enough that with high probability Pu, every O∆1-ideal class
contains at most one reduced ideal A with N(A) = 100 · · · 000 X
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REAL-NICE, Encryption & Decryption

To encrypt m with public key (∆q, k , n, (p)):

Find the smallest prime l > m so that ∆q is a square modulo l

Solve b2 ≡ ∆q (mod 4l) and set m to be the O∆q -ideal m = (l , b)

Generate random r ∈R {1, 2, . . . , 2n−1}
If the public key does not include p, generate a randomly chosen
O∆q -ideal so that φ−1(p) is principal

The ciphertext is a reduced O∆q -ideal c = ρ∆q (mpr )

To decrypt c with private key (p, q):

Compute C = φ−1(c) ∗ ∗ ∗ Note that C ∼ φ−1(m) ∗ ∗ ∗
Search through the cycle of reduced ideals equivalent to C until an
ideal M is found such that N(M) = 100 · · · 000 X

m is the k − t high order bits of N(M)
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Correctness and Security

Theorem

With probability at least Pu = (1− 2−u)N , we have M = φ−1(m). Here,
N is an upper bound on the number of reduced ideals in any O∆1-ideal
class. So REAL-NICE is correct with probability at least min{Pt ,Pu}.

Choice of Parameters:

As before, breaking REAL-NICE leads to a factorization of ∆q in
random polynomial time. Choose p and q accordingly.
Choosing p properly ensures that the ciphertext ideals ρ∆q (mpr ),
r = 1, 2, . . . are all distinct (choice depends on bit length of ∆q only).
Choosing q ± 1 to have a large prime factor ensures with high
probability that each O∆q -ideal class contains a large number of
reduced ideals.
Choosing p = ∆1 to be a Schinzel sleeper ensures with high
probability that each O∆1-ideal class contains a small number of
reduced ideals N < κ log(∆1) with κ explicitly computable.
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Summary of Numerical Results

Comparative Implementation of all five NIST levels of security of

REAL-NICE with small public key and NICE — prototypes, using NTL
OpenSSL RSA — highly optimized

Results:
NICE outperforms REAL-NICE at all five NIST levels for both
encryption and decryption; more so for decryption.

Generation of a new ideal p for each message slows down
encryption of REAL-NICE over NICE, but allows for a smaller
public key in REAL-NICE.
Search through the cycle of reduced ideals equivalent to the
decryption ideal. M slows down decryption of REAL-NICE over
NICE.

NICE and REAL-NICE outperform RSA in decryption at all five NIST
levels.

NICE and REAL-NICE outperform RSA in overall performance at the
two highest NIST levels.
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Further Work

Security proof for REAL-NICE — IND-CCA2 security in the random
oracle model, as for NICE?

Security of choosing ∆1 to be a Schinzel sleeper?

Comparison to q2p RSA (Takagi, CRYPTO 1998) – faster decryption

Better Implementation
Integer multiple side step encryption for REAL-NICE:

Not applicable to the imaginary setting.
Successfully used for real hyperelliptic curves.
Instead of computing ρ∆q (mpr ) using square & multiply, choose
a random number r of square steps and replace the (quadratic
complexity) multiply steps by (linear complexity) reduction steps.
Preliminary computations show that IMS-REAL-NICE
outperforms REAL-NICE even under the most conservative
analysis, using provable results on reduced ideals.
Much better performance under heuristic assumptions on the
behaviour of reduced ideals, but requires careful security analysis.
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