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The Learning With Errors problem (LWE) introduced by Regev in [Reg05] has proved
invaluable towards designing cryptographic primitives. However, as the problem in-
stances involve unstructured matrices whose dimensions need to grow at least linearly
with the security parameter, LWE often results in primitives that are not very e�cient.
In order to improve the e�ciency, Stehlé, Steinfeld, Tanaka and Xagawa [SSTX09] intro-
duced the search Ideal-LWE problem which involves polynomials modulo Xn +1 for n a
power of two, and Lyubashevsky, Peikert and Regev [LPR10] exhibited the relationship
to power-of-two cyclotomic �elds, gave a reduction from the latter search problem to a
decision variant, and tackled more general rings. This is now referred to as Ring-LWE,
and leads to more e�cient cryptographic constructions. To support the conjecture that
Ring-LWE is computationally intractable, the authors of [SSTX09, LPR10] gave two dis-
tinct polynomial-time quantum reductions from approx-SVP restricted to ideal lattices to
Ring-LWE. Approx-SVP consists in �nding a non-zero vector of an input lattice, whose
norm is within a prescribed factor larger than the lattice minimum. Ideal lattices are
lattices corresponding to ideals of the rings of integers of power-of-two cyclotomic �elds.
A third quantum reduction from approx-SVP for ideal lattices to Ring-LWE was recently
proposed by Peikert, Regev and Stephens-Davidowitz [PRS17]. It has the advantage of
working for all number �elds. As always, the value of these reductions is highly depen-
dent on the intractability of the starting problem, i.e., approx-SVP for ideal lattices in
our case. In this work, we investigate the intractability of ideal approx-SVP for power-
of-two cyclotomic �elds, in a situation where we allow pre-processing depending only on
the �eld and not on the input ideal (this is a non-uniform model of computation).

In arbitrary lattices, the best known trade-o� between the time complexity and the
approximation factor is given by Schnorr's hierarchy of reduction algorithms [Sch87],
whose most popular variant is the BKZ algorithm [SE94]. For any real number α ∈ [0, 1]
and any lattice L of dimension n given by an arbitrary basis, it allows to compute a

non-zero vector of L which is no more than 2Õ(nα) times longer than a shortest non-

zero one, in time 2Õ(n1−α). In the case of ideal lattices in a cyclotomic ring of prime-
power conductor (i.e., the ring of integers of Q(ζm) where m is a prime power and
ζm is a complex primitive m-th root of unity), it has been shown that it is possible
to obtain a better trade-o� than the BKZ algorithm, in the quantum setting. More
precisely, building upon a blueprint given in [CGS14] and on the blog page of Dan
Bernstein,1 the solver of Biasse and Song [BS16] and the work of Cramer, Ducas, Peikert

1See https://blog.cr.yp.to/20140213-ideal.html
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and Regev [CDPR16] gave a quantum polynomial-time algorithm which solves approx-

SVP with a 2Õ(
√
n) approximation factor, for principal ideal lattices. This work was then

extended by Cramer, Ducas and Wesolowski [CDW17] to any ideal lattice of a cyclotomic
ring of prime-power conductor. Put together, these results give us the trade-o� between
approximation factor and time complexity drawn in red dashes in Figure 1. This is better

than the BKZ algorithm when the approximation factor is larger than 2Õ(
√
n). However,

for smaller approximation factors, Schnorr's hierarchy remains the record holder. One
could also hope to improve the trade-o� for classical computing, by replacing the quantum
principal ideal solver of [BS16] by the classical one of Biasse, Espitau, Fouque, Gélin and
Kirchner [BEF+17]. However, this classical principal ideal solver runs in sub-exponential

time 2Õ(
√
n), hence combining it with the works of [CDPR16, CDW17] results in a classical

approx-SVP algorithm for a 2Õ(
√
n) approximation factor in time 2Õ(

√
n). Up to the Õ(·)

terms, this is exactly the trade-o� obtained using Schnorr's hierarchy.
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Figure 1: Prior time/approximation
trade-o�s for approx-SVP in ideal lattices
in cyclotomic rings of prime power degree.
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Figure 2: New trade-o�s for ideal lattices
in cyclotomic rings of power-of-two degree

(with a pre-processing of cost 2Õ(n)).

Contributions. We improve the trade-o� above by allowing the algorithm to per-
form some pre-computations on the cyclotomic ring. More precisely, we consider only
cyclotomic rings whose conductor is a power of two, that is, rings of the form R =
Z[X]/(Xn +1) where n is a power of two. For these rings, our algorithm performs some
pre-processing on the ring R, in exponential time 2O(n). Once this pre-processing phase
is done and for any α ∈ [0, 1/2], the algorithm can, given any ideal lattice I of R, output

a 2Õ(nα) approximation of the shortest vector of I in time 2Õ(n1−2α) + TPIP(n), where
TPIP(n) is the time needed to �nd a generator of a principal ideal in the ring R. Using

the results of [BEF+17] and [BS16], we can replace TPIP(n) by 2Õ(
√
n) for a classical com-

puter and by poly(n) for a quantum computer. The correctness and complexity analyses
of the algorithm rely on heuristic assumptions. Our contribution is formalized in the
theorem below.

Theorem (heuristic). Let α ∈ [0, 1/2] and R = Z[X]/(Xn + 1) for n a power of two.

Under some conjectures and heuristics, there exist two algorithms Apre−proc and Aquery

such that
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• Algorithm Apre−proc takes as input the ring R, runs in time 2O(n) and outputs a

hint w of bit-length 2Õ(n1−2α).

• Algorithm Aquery takes as input any ideal I of R (whose algebraic norm is bounded

by 2poly(n)) and the hint w output by Apre−proc, and outputs an element x ∈ I such

that ‖x‖2 ≤ 2Õ(nα) ·λ1(I), where λ1(I) is the length of the shortest non zero vector

of I. It runs in classical time max(2Õ(n1−2α), 2Õ(
√
n)) or in quantum time 2Õ(n1−2α).

Varying α between 0 and 1/2, we obtain the trade-o�s represented in Figure 2. These
improve upon the prior trade-o�s, both for quantum and classical computers. Note that
in Figure 2, we only plot the time needed for the query phase of the algorithm, but there
is a pre-processing phase of exponential time performed before on the ring R. Also, the
new algorithm is no better than Schnorr's hierarchy in the classical setting when the

time complexity is smaller than 2Õ(
√
n). Hence, in Figure 2, we plotted the trade-o�s

obtained using Schnorr's hierarchy when they are better than the one obtained with
the new algorithm. The new algorithm gives a quantum acceleration for approx-SVP

for ideal lattices in power-of-two cyclotomic rings, for all approximation factors 2Õ(nα)

with α ∈ (0, 1). This extends [CDW17, CDPR16, BS16], which obtained such a quantum
acceleration for α ∈ [1/2, 1). The new algorithm also gives a classical acceleration, but
only for α ∈ (0, 1/2). One may wonder whether the trade-o�s corresponding to time

complexity no greater than 2Õ(
√
n) (which rely on Schnorr's hierarchy) can be improved.

We note that the new algorithm can also be seen as a non-uniform algorithm. Indeed,
the pre-computation part of our algorithm only relies on the dimension n of the cyclotomic
ring. Hence, our result also states that, for any dimension n which is a power of two and
any α ∈ [0, 1/2], there exists a (non-uniform) algorithm that solves approx-SVP for ideal

lattices in the cyclotomic ring of degree n, with approximation factor 2Õ(nα) and in time

2Õ(n1−2α) + TPIP(n).

Technical overview.

Our algorithm is inspired from [CDPR16, CDW17]. We �rst focus on solving approx-
SVP in principal ideals, as they are simpler to work with. Then, following [CDW17], we
extend our result from principal ideals to arbitrary ideals.

In [CDPR16], Cramer at al. show, by analyzing the log-unit lattice, that given an ar-
bitrary generator of a principal ideal, then one can compute in polynomial time another

generator which is a 2Õ(
√
n) approximation of the minimum of the lattice. Combined

with the principal ideal solver of Biasse et al. [BS16] which computes a generator of
any principal ideal in quantum polynomial time, this gives a quantum polynomial time

approx-SVP solver with approximation factor 2Õ(
√
n). Cramer et al. �nd a short gener-

ator by transforming the problem into a Closest Vector Problem (CVP) in the log-unit
lattice, where the target vector is the logarithm of the generator output by the principal
ideal solver of Biasse et al.. In order to e�ciently solve the CVP instance, Cramer et al.
also exhibit a `good' basis of the log-unit lattice, which enables them to obtain a gener-

ator which is a 2Õ(
√
n) approximation of the lattice minimum. One could then wonder
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whether it is possible to �nd an even better basis of the log-unit lattice, in order to �nd
shorter generators. However, Cramer at al. also proved that the generator they output is
the smallest possible for general ideals (up to a poly-logarithmic factor in the exponent).
This is because the log-unit lattice is not su�ciently dense, and so some generators of
principal ideals may be far from all vectors of the log-unit lattice.

In order to �nd smaller vectors of the ideal (which will not be generators in the general
case), the idea underlying our algorithm is to increase the density of the log-unit lattice
by adding to it elements of small algebraic norms.2 We show that by adding su�ciently
many such elements to the log-unit lattice, we obtain a lattice whose covering radius is
heuristically su�ciently small so that given a generator of a principal ideal we may �nd
a non-zero vector of the ideal whose Euclidean norm is only polynomially larger than the
�rst minimum of the ideal. However, even if we know that the closest vector to some
generator will lead to a short vector, it can stop being possible to �nd such a vector
e�ciently. Indeed, we do not a priori have a `good' basis of the new lattice, which could
allow us to solve the involved CVP instance with a small approximation factor.

As a second contribution, we describe a strategy to solve the approx-CVP instance in
this lattice L. At �rst glance, it may seem that we transformed an approx-SVP instance
in a structured lattice into an approx-CVP instance in a lattice that is algebraically less
appealing. However, it is important to observe that the lattice L does not depend on
the ideal in which we want to solve the approx-SVP instance, but only on the cyclotomic
ring we work with. The only part of the CVP instance that depends on the ideal is the
target point (which will be given by a generator of the ideal). Hence, one could consider
performing some pre-processing on the lattice L, in order to improve the time complexity
of the query phase. To solve this approx-CVP instance with pre-processing on the lat-
tice L, we use an algorithm of Laarhoven [Laa16]. This gives us the time/approximation
trade-o� drawn in Figure 2.

Finally, we extend the algorithm for principal ideals to arbitrary ideals. This is done
using the same ideas as Cramer et al. in [CDW17]. The goal is, given any ideal I,
to �nd an ideal J such that IJ is principal and then �nd a small vector in IJ (which
will also be a vector of I) using the approx-SVP solver for principal ideals. It can

be proven that if v is a 2Õ(nα) approximation of the shortest vector in IJ , then it is

a max(N (J)1/n, 2Õ(nα)) approximation of the shortest vector in I (where N (J) is the
algebraic norm of J). In [CDW17], Cramer et al. are interested in generalizing the

approx-SVP solver of [CDPR16] with approximation factor 2Õ(n0.5). Hence, they show

how to construct in polynomial time an ideal J with algebraic norm smaller than 2Õ(n1.5).

In our case, we would like to decrease the algebraic norm of the ideal J to 2Õ(n1+α) (for

α ∈ [0, 1/2]). For this, we allow ourselves to increase the computation time up to 2Õ(n1−2α)

and to perform some pre-computations on the ring. This is in line with the algorithm
for principal ideals described above. Looking more into the details, the way the authors

2Adding elements to the log-unit lattice was also suggested by Dan Bernstein in the `S-unit attacks'

post on the online forum https://groups.google.com/forum/#!forum/cryptanalytic-algorithms.

We note that we only focus on the magnitude of the algebraic norms of the elements we add, and

not on their arithmetic properties as in this forum post.
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of [CDW17] �nd their ideal J is by solving an approx-CVP instance in some lattice, for
which they have a `good' basis. Similarly to the log-unit situation described above, the
lattice used in this approx-CVP instance only depends on the cyclotomic ring, and only
the target point depends on the ideal. We modify the lattice used by [CDW17], in order
to ensure that it is dense enough so that we can �nd a lattice point su�ciently close to
any target. Then, using Laarhoven's algorithm for approx-CVP with pre-computation,

we can �nd a good ideal J whose algebraic norm is at most 2Õ(n1+α). This completes the
description of our approx-SVP solver for any ideal.
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