
CAEN – June 20-22, 2018, Caen

An overview of the discrete logarithm in
finite fields

Razvan Barbulescu
CNRS and IMJ-PRG

R. Barbulescu — Discrete log in finite fields 0 / 39

Three-party Diffie-Hellman

Problem
Alice, Bob and Carol use a public elliptic curve E and a pairing e with respect to a
point P. Each of the participants broadcast simultaneously an information in a public
channel. How can they agree on a common key ?

Joux’s protocol

1. Simultaneously, each participant generates a random integer in [0, r − 1] and
broadcasts a multiple of P :
• Alice generates a and computes [a]P ;
• Bob generates b and computes [b]P ;
• Carol generates c and computes [c]P ;

2. Simultaneously, each participant computes the pairing of the received information
and computes the common key:
• Alice computes e([b]P , [c]P)a;
• Bob computes e([c]P , [a]P)b;
• Carol computes e([a]P , [b]P)c ;

Common secret key: µabc .

R. Barbulescu — Discrete log in finite fields 1 / 39

Multi-linear maps

Applications

• Zero-knowledge proof;

• identity based encryption;

• short signature;

• etc.

Mathematical realization

• lattice-based maps

• elliptic curve pairings
• in 2000 it was proposed by Sakai, Ohgishi and Kasahara and later by Joux, and

key sizes were proposed based on a hypothesis;
• in 2012 the NIST studied them for standardization and in 2013 Boneh, Franklin

and Joux received the Gödel prize;
• between 2013 and 2016 there were attacks which invalidated the key sizes;
• currently, key sizes are being updated and new implementations are proposed.

R. Barbulescu — Discrete log in finite fields 2 / 39

Multi-linear maps

Applications

• Zero-knowledge proof;

• identity based encryption;

• short signature;

• etc.

Mathematical realization

• lattice-based maps

• elliptic curve pairings
• in 2000 it was proposed by Sakai, Ohgishi and Kasahara and later by Joux, and

key sizes were proposed based on a hypothesis;
• in 2012 the NIST studied them for standardization and in 2013 Boneh, Franklin

and Joux received the Gödel prize;
• between 2013 and 2016 there were attacks which invalidated the key sizes;
• currently, key sizes are being updated and new implementations are proposed.

R. Barbulescu — Discrete log in finite fields 2 / 39

Security

Pairings security

The security of pairings based cryptosystems relies on the difficulty of

• elliptic curves discrete logarithms;

• finite fields discrete logarithm.

Embedding degree

If a paring is such that
E1/FQ [r]× E2/FQ [r]→ (FQn)∗

then n is called the embedding degree. If Q is prime and n > 1 then it is a different

problem than behind DSA;

Required: DLP(curve over Fp)≈ DLP(finite field Fpk)

R. Barbulescu — Discrete log in finite fields 3 / 39

Discrete logarithm

Definition

Given g and g x , find x if possible (here G is a known group of known order).

Generic algorithm

A combination of Pohlig-Hellman reduction and Pollard’s rho solves DLP in a generic
group G after O(

√
r) operations, where r is the largest prime factor of #G .

Relation to pairings

A pairing e : 〈P〉 × 〈P〉 → K (µ) is safe only if

1. DLP in E [r] is hard; (DLP on elliptic curves) if log2 #G = n, cost=2
n
2

2. DLP in K (µ) is hard. (DLP in finite fields) if log2 #K (µ) = n, cost≈ exp(3
√
n)

R. Barbulescu — Discrete log in finite fields 4 / 39

Cryptographic sizes before 2018

Key sizes

security (bits) key size RSA key size ECDSA quotient

80 1024 160 6

128 3072 256 12

256 15360 512 30

Pairings

• discrete log problem over elliptic curves (DSA) must be as hard as discrete log in
Fpn (RSA under the assumption that it is as hard as factoring);

• most important cases: 2 ≤ n ≤ 30;

• very fast construction (Barreto-Naehrig) at n = 12.

R. Barbulescu — Discrete log in finite fields 5 / 39

DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.

R. Barbulescu — Discrete log in finite fields 6 / 39

DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

76 mod p = 8740 = 22 · 5 · 19 · 23

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.

R. Barbulescu — Discrete log in finite fields 6 / 39

DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

76 mod p = 8740 = 22 · 5 · 19 · 23

77 mod p = 675 = 33 · 52

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.

R. Barbulescu — Discrete log in finite fields 6 / 39

DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

76 mod p = 8740 = 22 · 5 · 19 · 23

77 mod p = 675 = 33 · 52

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.

R. Barbulescu — Discrete log in finite fields 6 / 39

DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

76 mod p = 8740 = 22 · 5 · 19 · 23

77 mod p = 675 = 33 · 52

78 mod p = . . .

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.

R. Barbulescu — Discrete log in finite fields 6 / 39

DLP: an example (2)

Thanks to the Pohlig-Hellman reduction

we do the linear algebra computations modulo ` = 11.

Linear algebra computations

We have to find the unknown log7 2, log7 3 and lg7 5 in the equation0 3 2

8 1 0

6 0 2

 ·
log7 2

log7 3

log7 5

 ≡
 7

25

42

 mod 11.

Conjecture

The matrix obtained by the technique above has maximal rank.

We can drop all conjectures by modifying the algorithm, but this variant is fast and,
even if the matrix has smaller rank we can find logs.

Solution
We solve to obtain log7 2 ≡ 0 mod 11; log7 3 ≡ 3 mod 11 and log7 5 ≡ 10 mod 11.
For this small example we can also use Pollard’s rho method and obtain that

log7 3 = 8869 ≡ 3 mod 11.

R. Barbulescu — Discrete log in finite fields 7 / 39

DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.

R. Barbulescu — Discrete log in finite fields 8 / 39

DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

73151 mod p = 3389

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.

R. Barbulescu — Discrete log in finite fields 8 / 39

DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

73151 mod p = 3389

74151 mod p = 11622 = 2 · 3 · 13 · 149

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.

R. Barbulescu — Discrete log in finite fields 8 / 39

DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

73151 mod p = 3389

74151 mod p = 11622 = 2 · 3 · 13 · 149

75151 mod p = 8748 = 22 · 37

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.

R. Barbulescu — Discrete log in finite fields 8 / 39

DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

73151 mod p = 3389

74151 mod p = 11622 = 2 · 3 · 13 · 149

75151 mod p = 8748 = 22 · 37

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.

R. Barbulescu — Discrete log in finite fields 8 / 39

Chronology of DLP in finite fields

Index Calculus

• Fp, 1977, Adleman

• F2n, 1982, Hellman Reyneri, use polynomials instead of numbers

• Fpn, 1994, Hellman for n = 2 then Adleman DeMarrais, Fpn = Z[ι]/pZ[ι].

NFS and FFS

• Fp, 1990, Gordon / Schirokauer

• F2n, 1994, Adleman, use polynomials instead of numbers

• Fpn,
• 2000, Schirokauer, Fpn = Z[ι]/pZ[ι] (rehabilitated in 2015 by B., Gaudry and

Kleinjung).
• 2006, Joux Lercier Smart Vercauteren, modify polynomial selection (JLSV)
• 2016, Kim and B., combiner TNFS and JLSV: exTNFS

R. Barbulescu — Discrete log in finite fields 9 / 39

The number field sieve(NFS): diagram

NFS for DLP in Fp

Let f , g ∈ Z[x] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x]

Z/pZ

Z[x]/〈f (x)〉 Z[x]/〈g(x)〉

R. Barbulescu — Discrete log in finite fields 10 / 39

The number field sieve(NFS): diagram

NFS for DLP in Fp

Let f , g ∈ Z[x] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x]

Z/pZ

Z[αf] Z[αg]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m

R. Barbulescu — Discrete log in finite fields 10 / 39

The NFS algorithm for Fp

F (a, b) =
∑d

i=0 fia
ibd−i where d = deg f and G (a, b) = g1a + g0b.

Input a finite field Fp, two elements t (generator) and s
Output logt s

1: (Polynomial selection) Choose two polynomials f and g in Z[x] which have a
common root modulo p;

2: (Sieve) Collect relatively prime pairs (a, b) such that F (a, b) and G (a, b) are
B-smooth (for a parameter B);

3: Write a linear equation for each pair (a, b) found in the Sieve stage.

4: (Linear algebra) Solve the linear system to find (virtual) logarithms of the prime
ideals of norm less than B ;

5: (Individual logarithm) Write logt s in terms of the previously computed logs.

R. Barbulescu — Discrete log in finite fields 11 / 39

Why is the polynomial selection important?

Cost of algorithms of the Index Calculus family

where norms’ size is

• p in Index Calculus;

• B3p
1
2 for Gaussian integers (complexity Lp(12));

• Bd+1p
1
d for NFS in Fp (complexity Lp(13));

• norms product for NFS in Fpn when n > 1

Norms’ product

If f = fdx
d + · · ·+ f1x + f0 then

|Nf (a + bαf)| = |fdad + · · ·+ f1ab
d−1 + f0b

d | ≤ (d + 1)Bd‖f ‖ .

The bit size of the norm’s product is very well approximated by
(deg f + deg g) + log2‖f ‖+ log2‖g‖ .

The polynomial selection task

Fix deg f and deg g as small as possible (or try all possibilities, in practice the optimal
choices are ≤ 10, then find f and g of small coefficients.
Intuitively in favor of the hypothesis of 2000 : when k ≥ 2 we have the extra
condition min(deg f , deg g) ≥ n which makes the task harder.

R. Barbulescu — Discrete log in finite fields 12 / 39

The idea of Joux Lercier Smart Vercauteren

Polynomial selection

Select f and g which have a common root factor ϕ of degree n modulo p.

a − bx ∈ Z[x]

Fp[t]/〈ϕ〉 ' Fpn

Z[x]/〈f (x)〉 Z[x]/〈g(x)〉

R. Barbulescu — Discrete log in finite fields 13 / 39

The idea of Joux Lercier Smart Vercauteren

Polynomial selection

Select f and g which have a common root factor ϕ of degree n modulo p.

a − bx ∈ Z[x]

Fp[t]/〈ϕ〉 ' Fpn

Z[x]/〈f (x)〉 Z[x]/〈g(x)〉

mod f mod g

mod p

mod ϕ

mod p

mod ϕ

R. Barbulescu — Discrete log in finite fields 13 / 39

JLSV in practice

Modifications

The only modification is the polynomial selection (done in sage or magma) and the
fact that in the sieve we have two non-linear polynomials.

• the implementation of Joux and Lercier was so even for Fp;

• CADO-NFS supports two non-linear polynomials since 2014).

Records

• 2006, Joux Lercier Smart Vercauteren, Fp3, 120dd.

• 2014, Barbulescu Gaudry Guillevic Morain, Fp2, 180dd.

• 2015, Barbulescu Gaudry Guillevic Morain, Fp4, 120dd.

• 2015, Barbulescu Gaudry Guillevic Morain, Fp3 and again Guillevic, Thomé,
Morain (2016) 156dd.

• 2017, Gremy, Guillevic Morain and Thomé, Fp6 using 3d sieving (Gremy
implemented it in the nfs-hd branch of CADO-NFS since 2016) 132dd

R. Barbulescu — Discrete log in finite fields 14 / 39

Important tool

Theorem (Lenstra, Lenstra, Lovasz)

Let M ∈Mn(Z) define a lattice. Then one can compute in polynomial time a vector

of euclidean norm less than 2
n−1

4 | detM | 1n .

Corollary (rational reconstruction (also called continued fractions))

For any integer a and prime p one can compute two integers u and v so that

a ≡ u

v
mod p

and |u|, |v | ≤ 2
1
4
√
p.

R. Barbulescu — Discrete log in finite fields 15 / 39

Polynomial selection : GJL

Lattice

Let ϕ ∈ Fp[x] be a polynomial of degree n.
For a parameter D consider the subgroup of ZD defined by the rows of

M(p, ϕ,D) =



p
. . .

p

ϕ0 · · · ϕn 1
.

ϕ0 · · · ϕn 1



 degϕ = n

 D + 1− n

JLSV2 algorithm

1. Take random f ∈ Z[x] of degree D + 1 with a factor of degree n modulo p.

2. Set g ∈ Z[x] to have the same coefficients as the shortest vector in the
LLL-reduced basis of the lattice defined by M(p, ϕ,D).

justification: The LLL algorithm cannot return f = g because g is too large.

R. Barbulescu — Discrete log in finite fields 16 / 39

Polynomial selection : JLSV1

Raw variant

1. Select f ∈ Z[x] of degree n irreducible modulo p;

2. Set g = f + p.

information theory: f and g are optimal.

Practical variant

1. Take f0, f1 ∈ Z[x] so that deg f0 = n and deg f1 < n.

2. Take a ≥ 2
1
4
√
p as small as possible so that f := f0 + af1 is irreducible modulo p.

3. Compute the rational reconstruction a ≡ u/v mod p and set g := vf0 + uf1.

justification: LLL cannot return a/1 as rational reconstruction.

R. Barbulescu — Discrete log in finite fields 17 / 39

Polynomial selection : Conjugation (part I)

Idea

•
√

3 in Fp has a representative which is larger than 2
1
4p

1
2 so the LLL theorem

cannot return the rational reconstruction

√
3 ≡
√

3/1 mod p.

• A polynomial f0 +
√

3f1 is not allowed but we can conjugate it to obtain
(f0 +

√
3f1)(f0 −

√
3f1) = f 20 − 3f 21 ∈ Z[x].

Conjugation algorithm

1. Take f0, f1 ∈ Z[x] so that deg f0 = n and deg f1 < n.

2. Take a < p non-square so that
√
a exists in Fp and ϕ := f0 +

√
af1 is irreducible

modulo p.

3. Set ϕ = f 20 − af 21 .

4. Compute the rational reconstruction
√
a ≡ u

v mod p and set g := vf0 + uf1.

justification: f and g share the factor ϕ modulo p.

R. Barbulescu — Discrete log in finite fields 18 / 39

Polynomial selection : Conjugation (part II)
Example

Discrete logarithm in Fp2 of 180 decimal digits Consider DLP in Fp2 where
p = bπ · 1089c+ 14905741

• GJL : f = x4 + x − 1 and
g = 559473469462407609487884994103807929466175004x3

+79866641850329856433972092304608878381464121x2

+52391486839645529970296074400426159302999066x

−140985078126918434544107335150321349526616620.

• Conjugation : f = x4 + 1 and
g = 448225077249286433565160965828828303618362474x2

−296061099084763680469275137306557962657824623x

448225077249286433565160965828828303618362474.

;

Fp2 (Conjugation) was 160 times faster than Fp (GJL)

Domain of application

• Nf = E 2n and Ng = E n(pn)
1

2n instead of E dN
1

d+1 and EN
1

d+1 for the prime case;

• When n = 1
12

−1
3 (log pn

log log pn)
1
3 the complexity is Lpn(1/3, 3

√
48/9) instead of

≥ Lpn(1/3, 3
√

64/9).

R. Barbulescu — Discrete log in finite fields 19 / 39

TNFS diagram

NFS for DLP in Fp

Let f , g ∈ Z[x] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x]

Z/pZ ' Fp

Z[x]/〈f (x)〉 = Z[αf] Z[x]/〈g(x)〉 = Z[αg]

R. Barbulescu — Discrete log in finite fields 20 / 39

TNFS diagram

NFS for DLP in Fp

Let f , g ∈ Z[x] be two irreducible polynomials which have a common root m modulo p.

Let h ∈ Z[x] be a monic irreducible polynomial of degree k such that p is inert in its
number field Q(ι); we have Z[ι]/pZ[ι] ' Fpk .

a − bx ∈ Z[x]

Z/pZ' Fp

Z[x]/〈f (x)〉 =Z[αf] Z[x]/〈g(x)〉 =Z[αg]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m

R. Barbulescu — Discrete log in finite fields 20 / 39

TNFS diagram

NFS for DLP in Fpk

Let f , g ∈ Z[x] be two irreducible polynomials which have a common root m modulo p.

Let h ∈ Z[x] be a monic irreducible polynomial of degree k such that p is inert in its
number field Q(ι); we have Z[ι]/pZ[ι] ' Fpk .

a − bx ∈ Z[ι][x]

Z[ι]/pZ[ι] ' Fpk

Z[ι][x]/〈f (x)〉 = Z[ι][αf] Z[ι][x]/〈g(x)〉 = Z[ι][αg]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m

R. Barbulescu — Discrete log in finite fields 20 / 39

Relation collection

Reminder of NFS

Enumerate pairs (a, b) in Z× Z without common divisors such that F (a, b) and
G (a, b) are B-smooth for a parameter B .

TNFS

• Enumerate pairs (a, b) in Z[ι]× Z[ι] without common divisors such that
NQ(ι)/Q(F (a, b)) and NQ(ι)/Q(G (a, b)) are B-smooth for the same parameter B as
in NFS.

• In particular for the first example, we enumerate (a, b) ∈ Z[i]× Z[i] and search
those where

(ReF (a, b))2 + (ImF (a, b))2 and (ReG (a, b))2 + (ImG (a, b))2

are B-smooth.

We collect smooth values of polynomials with 2n-variables.

R. Barbulescu — Discrete log in finite fields 21 / 39

Relation collection

Reminder of NFS

Enumerate pairs (a, b) in Z× Z without common divisors such that F (a, b) and
G (a, b) are B-smooth for a parameter B .

TNFS

• Enumerate pairs (a, b) in Z[ι]× Z[ι] without common divisors such that
NQ(ι)/Q(F (a, b)) and NQ(ι)/Q(G (a, b)) are B-smooth for the same parameter B as
in NFS.

• In particular for the first example, we enumerate (a, b) ∈ Z[i]× Z[i] and search
those where

(ReF (a, b))2 + (ImF (a, b))2 and (ReG (a, b))2 + (ImG (a, b))2

are B-smooth.

We collect smooth values of polynomials with 2n-variables.

R. Barbulescu — Discrete log in finite fields 21 / 39

Pollard’s Lattice sieve (1/2)

Lattice sieve (theory 1993) : Franke-Kleinjung (algo 2009)

Given a lattice, find the next point in a tight lane.
HIJKLMNO

In dimension 2 (classical NFS) one can find the next point in O(1) operations because
only 3 vectors, called transition vectors, can occur as differences. In practice lattice
sieve is 20 times faster than line sieve.

R. Barbulescu — Discrete log in finite fields 22 / 39

Sieving in higher dimension (NFS-HD)

• Hayasaka, Aoki, Kobayashi, Takagi 2015 : 3D sieving;

• Grémy 2016 : 3D sieving (hybrid between 2D and 3D) available in the nfs-hd
branch of CADO-NFS;

• Grémy 2018 : 4D sieving.

The question of implementing 6D, 8D etc is open.

R. Barbulescu — Discrete log in finite fields 23 / 39

Plan of the lecture

I JLSV’s idea: from Fp to Fpn

I Schirokauer’s idea: from Fp to Fpn

I Pairings

I Pairing-friendly curves

I Consequences

I Updating key sizes (joint work with S. Duquesne)

R. Barbulescu — Discrete log in finite fields 24 / 39

CM method

Difference with constructiong curves for ECDSA

The embedding degree has probability less than 1/q to be ≤ 20.

Constructing pairings

Given an embedding degree k we construct a pairing-friendly curve E as follows:

1. find q, r and t subject to the CM equations in next slide; they are
• Fq is the field of coefficients
• E has q + 1− t points
• E has a subgroup of order r .

2. apply the complex method to construct a curve E so that. The cost is O(h2+εD)

where hD is the class number of Q(
√
D) (for a random D, hD '

√
D).

R. Barbulescu — Discrete log in finite fields 25 / 39

CM equations

Two primes q and r and a square-free integer D satisfy the CM conditions if

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

R. Barbulescu — Discrete log in finite fields 26 / 39

Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4

R. Barbulescu — Discrete log in finite fields 27 / 39

Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4

R. Barbulescu — Discrete log in finite fields 27 / 39

Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4

R. Barbulescu — Discrete log in finite fields 27 / 39

Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. generalized Pell equation (e.g. X 2 − 3Dy 2 = 24, where X = 6x ± 3)

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4

R. Barbulescu — Discrete log in finite fields 27 / 39

Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. generalized Pell equation (e.g. X 2 − 3Dy 2 = 24, where X = 6x ± 3)

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4

R. Barbulescu — Discrete log in finite fields 27 / 39

Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x] so that Q[x]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.

R. Barbulescu — Discrete log in finite fields 28 / 39

Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. Dy 2 + (t − 2)2 ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x] so that Q[x]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.

R. Barbulescu — Discrete log in finite fields 28 / 39

Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. Dy 2 + (t − 2)2 ≡ 0 (mod r)⇔ (
√
−Dy + (t − 2))(

√
−Dy − (t − 2) ≡ 0(r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x] so that Q[x]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.

R. Barbulescu — Discrete log in finite fields 28 / 39

Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. Dy 2 + (t− 2)2 ≡ 0 (mod r)⇔ (
√
−Dy + (t− 2))(

√
−Dy − (t− 2) ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x] so that Q[x]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.

R. Barbulescu — Discrete log in finite fields 28 / 39

Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. Dy 2 + (t− 2)2 ≡ 0 (mod r)⇔ (
√
−Dy + (t− 2))(

√
−Dy − (t− 2) ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x] so that Q[x]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.

R. Barbulescu — Discrete log in finite fields 28 / 39

Summary

Cocks-Pinch

MNT

fast pairings

small char.

BN,BLS,...

DEM

• Pinch-Cocks constructs all the fast pairings, but it is never in the fast case.

• Sparse families (e.g. MNT) construct many pairings but k = 2 and they are not
fast for the ≥ 80 bits of security.

• Dupond-Enge-Morain offers a very small number of pairings, which might be
target of subsequent attacks, impossible to tune them to be faster in practice.

We are left with small char and parametrized families (e.g. BN, BLS).

R. Barbulescu — Discrete log in finite fields 29 / 39

Summary

Cocks-Pinch

MNT

fast pairings

small char.

BN,BLS,...

DEM

• Pinch-Cocks constructs all the fast pairings, but it is never in the fast case.

• Sparse families (e.g. MNT) construct many pairings but k = 2 and they are not
fast for the ≥ 80 bits of security.

• Dupond-Enge-Morain offers a very small number of pairings, which might be
target of subsequent attacks, impossible to tune them to be faster in practice.

We are left with small char and parametrized families (e.g. BN, BLS).
R. Barbulescu — Discrete log in finite fields 29 / 39

The special number field sieve (SNFS)

Example: when factoring N = 21039 − 1 the polynomial selection is easy

• d = 4, m = 2260, f = x4 − 2

• d = 5, m = 2208, f = x5 − 2

• d = 6, m = 2173, f = 2x6 − 1

Definition: an integer N is d-SNFS

for an absolute constant A if there exists f ∈ Z[x] and m ∈ Z so that

N = f (m)

and ‖f ‖ ≤ A. Note that |m| ≤ dAN
1
d = (N

1
d+1)1+o(1).

Consequences

When we run NFS with ‖f ‖ = O(1) we say that we run SNFS because the complexity
is reduced.

R. Barbulescu — Discrete log in finite fields 30 / 39

The extended TNFS (Kim B. 2016)

Q

Q(ι)

Q(ι, αf) Q(ι, αg)

h

gf

Fp

Fpη

F(pη)κ

h

k

exTNFS algorithm

constraints: n = ηκ with gcd(η, κ) = 1

1. select h as in TNFS for Fpη ;

2. select f and g as for Fpκ; put k = gcd(f mod p, g mod p);

3. continue the algorithm as for TNFS.

R. Barbulescu — Discrete log in finite fields 31 / 39

exTNFS diagram

a − bx ∈ Z[ι][x]

(Z[ι]/pZ[ι])[t]/〈k(t)〉 ' Fpηκ

Z[ι][x]/〈f (x)〉 Z[ι][x]/〈g(x)〉

Explication

k is irreducible over Fp and, since gcd(η, κ) = 1, it is automatically irreducible over Fpη .

R. Barbulescu — Discrete log in finite fields 32 / 39

exTNFS diagram

a − bx ∈ Z[ι][x]

(Z[ι]/pZ[ι])[t]/〈k(t)〉 ' Fpηκ

Z[ι][x]/〈f (x)〉 Z[ι][x]/〈g(x)〉

mod f mod g

mod p

mod k

mod p

mod k

Explication

k is irreducible over Fp and, since gcd(η, κ) = 1, it is automatically irreducible over Fpη .

R. Barbulescu — Discrete log in finite fields 32 / 39

exTNFS with Conjugation
From Kim to Barbulescu

small medium large

TNFS

JLSVexTNFS

exTNFS

exTNFS with Conjugation method

• idea: exTNFS can be used to extend to the left any case of NFS

• complexity: the best case of NFS is when p = Lpn(1/3, 12
1
3) and one uses the

Conjugation method

Theorem

If n = ηκ, gcd(η, κ) = 1 and κ = 12−
1
3 then DLP can be solved in time

Lpn(1/3, 3
√

48/9).

R. Barbulescu — Discrete log in finite fields 33 / 39

Joux-Pierrot’s SNFS when n ≥ 1

Method when p = Π(u)

1. Enumerate polynomials S of degree ≤ n − 1 until xn + S(x)− u is irreducible
modulo p;

2. return g = xn + S(x)− u and f = Π(xn + S(x))

Correction: f (x)− p = Π(xn + S(x))− Π(u) = (xn + S(x)− u)(· · ·).

Size of norms
The product of norms, which must be small, has size

E n(d+1)Q
1
nd ,

where E and Q are given.

Due to exTNFS We replace n by one of its divisors.

R. Barbulescu — Discrete log in finite fields 34 / 39

DLP in Fpn when p is not SNFS but n is composite with
good factors

quasi

MNFS

MNFS+conj

MNFS

conjugation

exTNFS

2.42

1.74

1.92
2.152.15

small medium large
1/3 2/3

lp

complexity=Lpn(1/3, c)

t

exTNFS+Conj

where p = Lpn(lp,O(1))

R. Barbulescu — Discrete log in finite fields 35 / 39

Size of keys for RSA (naive computation)

key of n bits

se
cu

ri
ty

s
(i

n
bi

ts
)

−

768

−

1024

−

2048
−

3072

−

6144

−67

−80

−107

−128

Extrapolation formula (based on the RSA-768 record)

2s = 267
L2n[64]

L2768[64]

where LN [c] = exp((c
9

)
1
3 (loge N)

1
3 (loge(loge N))

2
3)

R. Barbulescu — Discrete log in finite fields 36 / 39

Size of keys for SNFS (naive computation)
y

key of n bits

se
cu

ri
ty

s
(i

n
bi

ts
)

−

768

−

1024

−

2048

−

3072

−

6144

−67

−80

−107

−128

Extrapolation formula (based on factoring 21039 − 1)

2s = 263
L2n[32]

L2768[32]

where LN [c] = exp((c
9

)
1
3 (loge N)

1
3 (loge(loge N))

2
3)

R. Barbulescu — Discrete log in finite fields 37 / 39

Size of keys for SNFS (naive computation)

Cost

cost =
2B

A logB
ρ

(
log2(Nf)

log2 B

)−1
ρ

(
log2(Ng)

log2 B

)−1
+ 27

B2

A2(logB)2(log2 B)2
,

where A can be upper bounded by ηκ/ gcd(η, κ).

Litterature records
record log2 E log2(cost of sieve) log2 B log2(cost of lin.alg) log2(csieve) log2(clin.alg)

SNFS-1039 (factor) 31.0 63.0 38 63.0 1 1

NFS-768 (factor) 33.0 66.5 40 64.5 0.5 −2

FFS-809 27.0 57.5 28 55.0 3.5 2

SNFS-1024 (DLP) 31.5 64.5 31 63.5 1.5 2

NFS-768 (DLP) 35.0 68.0 36 66.0 −2 −4

R. Barbulescu — Discrete log in finite fields 38 / 39

Conclusion

Summary

property of pairing-friendly curves attack which exploits it

small ϕ(k) exTNFS for composite k

SNFS q SNFS variant of exTNFS

Unaffected pairings

1. The fastest families of pairings are all affected, BLS12 became the best in place of
BN

2. future work with Nadia El Mrabet and Kamel Mohamed to update keysizes for
more exotic families of pairings.

R. Barbulescu — Discrete log in finite fields 39 / 39

	JLSV's idea: from Fp to Fpn
	Schirokauer's idea: from Fp to Fpn
	Pairings
	 Pairing-friendly curves
	Consequences
	Updating key sizes (joint work with S. Duquesne)

