Parametrizations for Families of ECM-Friendly Curves

Alexandre Gélin

joint work with Thorsten Kleinjung and Arjen K. Lenstra

Laboratoire de Mathématiques de Versailles UVSQ – CNRS – Université Paris-Saclay

CAEN

2018/06/21

ullet Problem: To factor a composite number N

- ullet Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985
 - ullet Best strategy for small factors p

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985
 - Best strategy for small factors p
 - Part of the NFS

- Problem: To factor a composite number N
- Best solution: The Number Field Sieve (NFS)
- Our purposes: The Elliptic Curve Method (ECM)
 - Introduced by H.W. Lenstra in 1985
 - ullet Best strategy for small factors p
 - Part of the NFS
- How does it work? We perform arithmetic operations mod N

ullet Inputs: An e.c. E over ${f Z}/N{f Z}$, a point P on E and a param. k

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- ullet Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N
- Solution: ECM finds a factor p of N when

$$k \cdot P = \emptyset$$
 on $E_p = E \mod p$

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N
- Solution: ECM finds a factor p of N when

$$k \cdot P = \emptyset$$
 on $E_p = E \mod p$

 \iff

k is a multiple of the order of P over E_p

- Inputs: An e.c. E over $\mathbb{Z}/N\mathbb{Z}$, a point P on E and a param. k
- Algorithm: ECM computes the multiple $k \cdot P$ on E, modulo N
- Solution: ECM finds a factor p of N when

$$k \cdot P = \emptyset$$
 on $E_p = E \mod p$

 \iff

k is a multiple of the order of P over E_p

• Goal: Find curves E such that $\#E_p \mid k$ for a lot of primes p

ullet Solution: We want # E_p to be smooth and we choose $k=\prod p_i^{e_i}$

- ullet Solution: We want # E_p to be smooth and we choose $k=\prod p_i^{e_i}$
- New goal: To look for curves with smooth cardinalities

- ullet Solution: We want # E_p to be smooth and we choose $k=\prod p_i^{e_i}$
- New goal: To look for curves with smooth cardinalities
- ullet Fact: The torsion group of E over ${f Q}$ injects in every E_p

- ullet Solution: We want # E_p to be smooth and we choose $k=\prod p_i^{e_i}$
- New goal: To look for curves with smooth cardinalities
- ullet Fact: The torsion group of E over ${f Q}$ injects in every E_p
- Mazur's theorem: A torsion group over \mathbf{Q} is isomorphic to $\mathbf{Z}/n\mathbf{Z}$ with $1 \le n \le 10$ or n = 12, or $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2n\mathbf{Z}$ with $1 \le n \le 4$

• Lenstra presented ECM with short Weierstrass equations $v^2 = x^3 + ax + b$

- Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$
- GMP-ECM uses Montgomery curves $By^2 = x^3 + Ax^2 + x$

- Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$
- GMP-ECM uses Montgomery curves $By^2 = x^3 + Ax^2 + x$
- 2008: Twisted Edwards curves $ax^2 + y^2 = 1 + dx^2y^2$ Torsion groups: 12, 2 × 8, or smaller than 8

- Lenstra presented ECM with short Weierstrass equations $y^2 = x^3 + ax + b$
- GMP-ECM uses Montgomery curves $By^2 = x^3 + Ax^2 + x$
- 2008: Twisted Edwards curves $ax^2 + y^2 = 1 + dx^2y^2$ Torsion groups: 12, 2 × 8, or smaller than 8
- a=-1 Twisted Edwards curves: gain a field multiplication Torsion groups: 2×4 , 6, 8 or smaller than 4

Characterization of Z/12Z curves

If $u \in \mathbb{Q} \setminus \{0, \pm 1\}$ then the Edwards curve $x^2 + y^2 = 1 + dx^2y^2$ over \mathbb{Q} , where $u^2 - 1$ $(u - 1)^2$ $(u^2 + 1)^3(u^2 - 4u + 1)$

$$x_3 = \frac{u^2 - 1}{u^2 + 1}, \quad y_3 = -\frac{(u - 1)^2}{u^2 + 1}, \quad d = \frac{(u^2 + 1)^3(u^2 - 4u + 1)}{(u - 1)^6(u + 1)^2}$$

has (x_3, y_3) as a point of order 3 and has **Q**-torsion group isomorphic to **Z**/12**Z**. Conversely, every Edwards curve over **Q** with a point of order 3 arises in this way.

Characterization of **Z**/12**Z** curves

If $u \in \mathbb{Q} \setminus \{0, \pm 1\}$ then the Edwards curve $x^2 + y^2 = 1 + dx^2y^2$ over \mathbb{Q} , where

$$x_3 = \frac{u^2 - 1}{u^2 + 1}, \quad y_3 = -\frac{(u - 1)^2}{u^2 + 1}, \quad d = \frac{(u^2 + 1)^3(u^2 - 4u + 1)}{(u - 1)^6(u + 1)^2}$$

has (x_3, y_3) as a point of order 3 and has **Q**-torsion group isomorphic to **Z**/12**Z**. Conversely, every Edwards curve over **Q** with a point of order 3 arises in this way.

Montgomery [Mon87]

Let $(s, t) \notin \{(0,0), (-2, \pm 4), (6, \pm 12)\}$ be a rational point on the curve $T^2 = S^3 - 12S$. Define

$$d = -\frac{(s-2)^3(s+6)^3(s^2-12s-12)}{1024s^2t^2}.$$

Then the Edwards curve $E: x^2 + y^2 = 1 + dx^2y^2$ has **Q**-torsion group isomorphic to **Z**/12**Z** and has a non-torsion point (x_1, y_1) where

$$x_1 = \frac{8t(s^2 + 12)}{(s-2)(s+6)(s^2 + 12s - 12)}$$
 and $y_1 = -\frac{4s(s^2 - 12s - 12)}{(s-2)(s+6)(s^2 - 12)}$.

Characterization

Characterization

If $e \in \mathbf{Q} \setminus \{0, \pm 1\}$ then the a = -1 Twisted Edwards curve $-x^2 + y^2 = 1 + dx^2y^2$ over \mathbf{Q} , where $d = -e^4$ has \mathbf{Q} -torsion group isomorphic tp $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$. Conversely, every Edwards curve over \mathbf{Q} with such a torsion group arises in this way.

Galois properties studied in [BBBKM12]

Characterization

- Galois properties studied in [BBBKM12]
- for a generic d, P_8 splits into 3 irred. factors deg. 4, 4, 16

Characterization

- Galois properties studied in [BBBKM12]
- for a generic d, P₈ splits into 3 irred. factors deg. 4, 4, 16
- for $d = -e^4$, the deg-16 pol. splits into 3 factors of deg. 4, 4, 8

Characterization

- Galois properties studied in [BBBKM12]
- for a generic d, P_8 splits into 3 irred. factors deg. 4, 4, 16
- for $d = -e^4$, the deg-16 pol. splits into 3 factors of deg. 4, 4, 8

generic $\it e$	$e = g^2$	$e = \frac{g^2}{2}$	$e = \frac{2g^2 + 2g + 1}{2g + 1}$	$e = \frac{g - \frac{1}{g}}{2}$
4	4	2,2	4	2,2
4	4	4	4	2,2
8	4,4	8	4,4	4

Consequences for smoothness probabilities

Families	Curves	Average valuation of 2			Average valuation of 3		
		n	Th.	Exp.	n	Th.	Exp.
Suyama	$\sigma = 12$	2	$\frac{10}{3} \approx 3.333$	3.331	1	$\frac{27}{16} \approx 1.688$	1.689
Suyama-11	$\sigma = 11$	2	$\frac{11}{3} \approx 3.667$	3.669	1	$\frac{27}{16} \approx 1.688$	1.687
Suyama- $\frac{9}{4}$	$\sigma = \frac{9}{4}$	3	$\frac{11}{3} \approx 3.667$	3.664	1	$\frac{27}{16} \approx 1.688$	1.687
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$	E_{-11^4}	3	$\frac{14}{3} \approx 4.667$	4.666	1*	$\frac{87}{128} \approx 0.680$	0.679
$e = \frac{g - \frac{1}{g}}{2}$	$E_{-(\frac{77}{36})^4}$	3	$\frac{16}{3} \approx 5.333$	5.332	1*	$\frac{87}{128} \approx 0.680$	0.679
$e = g^2$	E_{-94}	3	$\frac{29}{6} \approx 4.833$	4.833	1*	$\frac{87}{128} \approx 0.680$	0.680
$e = \frac{g^2}{2}$	$E_{-(\frac{81}{8})^4}$	3	$\frac{29}{6} \approx 4.833$	4.831	1*	$\frac{87}{128} \approx 0.680$	0.679
$e = \frac{2g^2 + 2g + 1}{2g + 1}$	$E_{-(\frac{5}{3})^4}$	3	$\frac{29}{6} \approx 4.833$	4.833	1*	$\frac{87}{128} \approx 0.680$	0.679

Table 4. Experimental values (Exp.) are obtained with all primes below 2^{25} . The case $n=1^*$ means that the Galois group is isomorphic to $GL_2(\mathbb{Z}/\pi\mathbb{Z})$.

Theorem

For nonzero $t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$ let $e_1 = \frac{3(t^2 - 1)}{8t}$, $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27} \quad \text{and} \quad y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}.$

Theorem

For nonzero $t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$ let $e_1 = \frac{3(t^2 - 1)}{8t}$, $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27} \quad \text{and} \quad y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}.$

Then (x_1, y_1) is a non-torsion point on the curve $-x^2 + y^2 = 1 - e_1^4 x^2 y^2$ with torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

• Eases the curves generation

Theorem

For nonzero $t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$ let $e_1 = \frac{3(t^2 - 1)}{8t}$, $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27} \quad \text{and} \quad y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}.$

- Eases the curves generation
- Allows to look for additional constraints

Theorem

For nonzero $t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$ let $e_1 = \frac{3(t^2 - 1)}{8t}$, $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27} \quad \text{and} \quad y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}.$

- Eases the curves generation
- Allows to look for additional constraints

$$e = \frac{2g^2 + 2g + 1}{2g + 1} \iff e^2 - 1$$
 is a square

Theorem

For nonzero $t \in \mathbf{Q} \setminus \{\pm 1, \pm 3^{\pm 1}\}$ let $e_1 = \frac{3(t^2 - 1)}{8t}$, $x_1 = \frac{128t^3}{27t^6 + 63t^4 - 63t^2 - 27} \quad \text{and} \quad y_1 = \frac{9t^4 - 2t^2 + 9}{9t^4 - 9}.$

- Eases the curves generation
- Allows to look for additional constraints

$$e = \frac{2g^2 + 2g + 1}{2g + 1} \iff e^2 - 1 \text{ is a square}$$

$$e = \frac{g - \frac{1}{g}}{2} \iff e^2 + 1 \text{ is a square}$$

First parametrization for a subfamily [BBBKM12]

Corollary

Consider the elliptic curve $y^2 = x^3 - 36x$ of rank one, with the point (-3,9) generating a non-torsion subgroup. For any point (x,y) on this curve and

$$t = \frac{x+6}{x-6}$$

the a=-1 twisted Edwards curve with torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ defined as in the prior Theorem belongs to family $e=g^2$ and has positive rank over \mathbb{Q} .

Proof

$$e_1 = \frac{3(t^2 - 1)}{8t} = \frac{9x}{x^2 - 36} = \left(\frac{3x}{y}\right)^2$$

Our work [GKL17]

• Goal: Find more rational parametrizations

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$
- Idea: Search, search, and search again...

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$

• Idea: Search, search, and search again...

$$-x^2+y^2=1-e^4x^2y^2 \iff y^2=\frac{1+x^2}{1+e^4x^2} \iff e^4x^4+(1+e^4)x^2+1=\square$$

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$

• Idea: Search, search, and search again...

$$-x^{2}+y^{2} = 1 - e^{4}x^{2}y^{2} \iff y^{2} = \frac{1+x^{2}}{1+e^{4}x^{2}} \iff e^{4}x^{4} + (1+e^{4})x^{2} + 1 = \square$$

$$x = \frac{u(e)}{v(e)}$$
 \implies $e^4 u^4 + (1 + e^4) u^2 v^2 + v^4$ must be a square

- Goal: Find more rational parametrizations
- Hope to find one that matches with the best subfamily $e = \frac{g \frac{1}{g}}{2}$

• Idea: Search, search, and search again...

$$-x^{2}+y^{2}=1-e^{4}x^{2}y^{2} \iff y^{2}=\frac{1+x^{2}}{1+e^{4}x^{2}} \iff e^{4}x^{4}+(1+e^{4})x^{2}+1=\square$$

$$x = \frac{u(e)}{v(e)} \implies e^4 u^4 + (1 + e^4) u^2 v^2 + v^4 \quad \text{must be a square}$$

• Large number of tries for small polynomials

• Square-free part of degree ≥ 6 : hyperelliptic curves

- Square-free part of degree ≥ 6: hyperelliptic curves
- Square-free part of degree 2: lead to the rational parametrization

- Square-free part of degree ≥ 6: hyperelliptic curves ③
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves

- Square-free part of degree ≥ 6: hyperelliptic curves ②
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves

- Square-free part of degree ≥ 6: hyperelliptic curves ③
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

- Square-free part of degree ≥ 6: hyperelliptic curves ②
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

- Square-free part of degree ≥ 6: hyperelliptic curves 😊
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

• Choosing $e = \frac{3}{4k}$, the denominator becomes $\left(\frac{4k^2+9}{16k^2}\right)^2$

- Square-free part of degree ≥ 6: hyperelliptic curves 😟
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:

• For
$$x = \frac{e+k}{ke-1}$$
, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$

- Choosing $e = \frac{3}{4k}$, the denominator becomes $\left(\frac{4k^2+9}{16k^2}\right)^2$
- If $k^2 + 1$ is a square, then (x, y) is on $E: -x^2 + y^2 = 1 \left(\frac{3}{4k}\right)^4 x^2 y^2$

- Square-free part of degree ≥ 6: hyperelliptic curves ②
- Square-free part of degree 2: lead to the rational parametrization
- Square-free part of degree 4: elliptic curves
- Idea: To recognize parametrized families of curves
- Example:
 - For $x = \frac{e+k}{ke-1}$, we have $y^2 = \frac{k^2+1}{e^4+2ke^3+(k^2-1)e^2-2ke+1}$
 - Choosing $e = \frac{3}{4k}$, the denominator becomes $\left(\frac{4k^2+9}{16k^2}\right)^2$
 - If $k^2 + 1$ is a square, then (x, y) is on $E: -x^2 + y^2 = 1 \left(\frac{3}{4k}\right)^4 x^2 y^2$
 - Results in infinitely many curves

Our results [GKL17]

Theorem

For $1 \le j \le 7$, the point (x_j, y_j) is a non-torsion point on the curve defined by $-x^2 + y^2 = 1 - e_i^4 x^2 y^2$:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	j	e_{j}	x_j	\mathcal{Y}_{j}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1			$\frac{9t^4 - 2t^2 + 9}{9t^4 - 9}$
$\begin{array}{llll} 4 & \frac{t^2+4t}{t^2-4} & \frac{2t^3+2t^2-8t-8}{t^4+6t^3+12t^2+16t} & \frac{t^6+6t^5+10t^4-16t^3-48t^2-32t-32}{t^6+6t^5+10t^4+16t^3+48t^2+64t} \\ 5 & \frac{4t^4-1024}{t^5+512t} & \frac{96t^6+49152t^2}{t^8-1280t^4+262144} & \frac{t^{12}+3840t^8+1966080t^4+134217728}{t^{12}-768t^8+786432t^4-167772160} \\ 6 & \frac{t^3+8t}{4t^2+8} & \frac{12t^2+24}{t^4+4t^2-32} & \frac{4t^6+24t^4+192t^2+320}{5t^6+48t^4+96t^2+256} \end{array}$	2	2t+2	$t^4 + 6t^3 + 12t^2 + 16t$	$t^6 + 4t^5 + 10t^4 + 20t^3 + 40t^2 + 64t + 64$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	$\frac{t^2+4}{3t}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4			
$ \frac{1}{4t^2+8} \frac{1}{t^4+4t^2-32} \frac{1}{5t^6+48t^4+96t^2+256} $	5			
$7 \qquad \frac{t^3 - 8t}{4t^2 - 8} \qquad \qquad \frac{12t^2 - 24}{t^4 - 4t^2 - 32} \qquad \qquad \frac{4t^6 - 24t^4 + 192t^2 - 320}{5t^6 - 48t^4 + 96t^2 - 256}$	6			
	7	$\frac{t^3 - 8t}{4t^2 - 8}$		

Our results [GKL17]

Corollary

For $1 \le j \le 4$ let (e_j, x_j, y_j) be functions of t as in the previous theorem. For each case below the elliptic curve E has rank one, and for each point (x,y) on E the pair (x_j,y_j) is a non-torsion point on the curve defined by $-x^2+y^2=1-e_j^4x^2y^2$:

family	j	E	t	Proof
(<i>i</i>)	1	$y^2 = x^3 - 36x$		$e_1 = \left(\frac{3x}{y}\right)^2$
(ii)	2	$y^2 = x^3 + 3x$	x-1	$e_2 = \frac{1}{2} \left(\frac{y}{x} \right)^2$
(ii)	3	$y^2 = x^3 + 9x$	$\frac{2x}{3}$	$e_3 = \frac{1}{2} \left(\frac{2y}{3x} \right)^2$
(iii)	3	$y^2 = x^3 - x^2 - 64x + 64$	$\frac{8x-8}{y}$	$e_3^2 - 1 = \left(\frac{x^2 - 2x + 64}{6y}\right)^2$
(iii)	4	$y^2 = x^3 - 12x$	$\frac{x-2}{2}$	$e_4^2 - 1 = \left(\frac{4y^2}{x^2 - 4x - 12}\right)^2$
(iv)	4	$y^2 = x^3 - x^2 - 9x + 9$	$\frac{4x+4}{y-4}$	$e_4^2 + 1 = \left(\frac{x^4 + 4x^3 + 14x^2 - 108x + 153}{x^4 - 4x^3 - 18x^2 - 16xy + 12x + 48y + 9}\right)^2$

Our results [GKL17]

Corollary

For $1 \le j \le 4$ let (e_j, x_j, y_j) be functions of t as in the previous theorem. For each case below the elliptic curve E has rank one, and for each point (x,y) on E the pair (x_j,y_j) is a non-torsion point on the curve defined by $-x^2+y^2=1-e_j^4x^2y^2$:

family	j	E	t	Proof
(<i>i</i>)	1	$y^2 = x^3 - 36x$		$e_1 = \left(\frac{3x}{y}\right)^2$
(ii)	2	$y^2 = x^3 + 3x$	x-1	$e_2 = \frac{1}{2} \left(\frac{y}{x} \right)^2$
(ii)	3	$y^2 = x^3 + 9x$	$\frac{2x}{3}$	$e_3 = \frac{1}{2} \left(\frac{2y}{3x} \right)^2$
(iii)	3	$y^2 = x^3 - x^2 - 64x + 64$	$\frac{8x-8}{y}$	$e_3^2 - 1 = \left(\frac{x^2 - 2x + 64}{6y}\right)^2$
(iii)	4	$y^2 = x^3 - 12x$	$\frac{x-2}{2}$	$e_4^2 - 1 = \left(\frac{4y^2}{x^2 - 4x - 12}\right)^2$
(iv)	4	$y^2 = x^3 - x^2 - 9x + 9$	$\frac{4x+4}{y-4}$	$e_4^2 + 1 = \left(\frac{x^4 + 4x^3 + 14x^2 - 108x + 153}{x^4 - 4x^3 - 18x^2 - 16xy + 12x + 48y + 9}\right)^2$

So we have a parametrization for the best subfamily $e = \frac{g - \frac{1}{g}}{2}$.

Effectiveness of our curves

15 1612 1127 1049 1202 1155.4 1103 1.0665 1.0	0897
	0050
16 3030 1693 1564 1806 1737.3 1664 1.0667 1.0	0853
17 5709 3299 2985 3324 3197.9 3077 1.0075 1.0	0802
18 10749 6150 5529 6168 6020.0 5921 1.0029 1.0	0417
19 20390 10802 10200 10881 10723.8 10500 1.0073 1.0	0362
20 38635 16148 15486 16396 16197.7 15955 1.0153 1.0	0276
21 73586 24160 22681 24312 24003.3 23655 1.0062 1.0	0277
22 140336 48378 46150 48894 48515.6 48114 1.0106 1.0	0162
23 268216 83339 82743 85525 84840.0 84254 1.0262 1.0	0150
24 513708 193069 187596 193558 192825.7 191961 1.0025 1.0	0083
25 985818 318865 311864 320498 319154.8 317304 1.0051 1.0	0100
26 1894120 493470 480006 495082 493556.4 492364 1.0032 1.0	0055

Thanks

Merci