Efficient Optimal Ate Pairing at 128-bit Security Level

Loubna GHAMMAM

GREYC Université de Caen Normandie France

Co-authored with Md. Al-Amin Khandaker, Yuki Nanjo, Sylvain Duquesne, Yasuyuki Nogami (INDOCRYPT 2017)

Cryptography and Algorithmic Number Theory Caen 2018

June 22, 2018

אונא(או

Efficient Optimal Ate Pairing at 128-bit Security Level

June 22, 2018

1

Introduction

- 2 Optimal Ate pairing for the 128 bits security level
- 3 New security Levels
- 4 Miller algorithm Optimizations
- 5 Implementation Results

Introduction

- 2 Optimal Ate pairing for the 128 bits security level
- 3 New security Levels
- 4 Miller algorithm Optimizations
- 5 Implementation Results

Generality on Elliptic Curves

Definition

An elliptic curve E defined over a field \mathbb{K} with car(\mathbb{K}) \geq 5, is a non-singular plane algebraic curve defined by an equation of the form

 $y^2 = x^3 + ax + b$, with $a, b \in \mathbb{K}$

This type of equation is called a short Weierstrass equation.

The set of points of an elliptic curve *E* forms an additive abelian group with P_{∞} is the identity element.

Definition

Let *E* be an Elliptic curve defined over \mathbb{F}_p and *r* an integer.

$$E[r] = \{P \in E(\overline{\mathbb{F}_p})/rP = P_{\infty}\}$$

A point $P \in E[r]$ is called a r-torsion point.

Definition

The embedding degree of E relatively to r is the smallest integer k such that $r|p^k - 1$.

Properties

An important property is that:

$$E[r] \subset E(\mathbb{F}_{p^k})$$

Generality on Pairings

What is a Pairing?

Let G_1 , G_2 , G_3 three abelian groups of order r. G_1 and G_2 are additive groups, G_3 is a multiplicative group. A pairing is the following application:

 $e: \textit{G}_1 \times \textit{G}_2 \rightarrow \textit{G}_3$

verifying:

- Non degeneracy,
- Bilinearity.

Using Pairings in Cryptography

- Simplification of existing protocols (Joux's protocol).
- Identity based Cryptography, Short Signature.
- Cryptanalysis.

Example

Tate Pairing

The following pairing:

$$e_{\mathcal{T}} : E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k})[r] \longrightarrow \mathbb{F}_{p^k}^*$$

 $(P, Q) \longmapsto e_{\mathcal{T}}(P, Q) = (f_{r,P}(Q))^{\frac{p^k-1}{r}}$

is a bilinear and non-degenerate pairing.

This pairing requires the computation of:

• Miller function $f_{r,P}(Q)$ defined by:

$$div(f_{r,P}) = r(P) - (rP) - (r-1)(P_{\infty})$$

2 The final exponentiation
$$\frac{p^k-1}{r}$$

$$\text{Miller equality:} \qquad f_{[i+j],P} = f_{[i],P} \times f_{[j],P} \times \frac{l_{[i]P,[j]P}}{v_{[i+j]P}}.$$

Example: the computation of $f_{5,P}$

• W write 5 = 4 + 1 then, we apply Miller's equality: • $f_{5,P} = f_{1,P} \times f_{4,P} \times \frac{l_{[4]P,P}}{v_{[5P]}} = f_{4,P} \times \frac{l_{[4]P,P}}{v_{[5P]}}.$

Solution We decompose 4 en $4 = 2 \times 2$, and then:

•
$$f_{4,P} = f_{2,P}^2 \times \frac{I_{[2]P,[2]P}}{V_{[4P]}}.$$

3 By the same way, we find:

•
$$f_{2,P} = f_{1,P} \times f_{1,P} \times \frac{I_{P,P}}{V_{[2P]}} = \frac{I_{P,P}}{V_{[2P]}}$$
.

Then,

$$f_{5,P} = \left(\frac{I_{P,P}}{v_{[2P]}}\right)^2 \times \frac{I_{[2]P,[2]P}}{v_{[4P]}} \times \frac{I_{[4]P,P}}{v_{[5P]}}$$

Miller algorithm

Input: $P \in G_1, Q \in G_2, r = (r_{n-1}, \dots, r_0)$: with $r_{n-1} = 1$ **Output**: $f_{r,P}(Q) \in \mathbb{F}_{p^k}^*$ 1 : $f \leftarrow 1$ 2 : $T \leftarrow P$ 3 : For i = n - 2 to 0 do $4 : \qquad f \leftarrow f^2 \cdot \frac{I_{T,T}(Q)}{v_{2[T]}(Q)}$ $5 : \qquad T \leftarrow [2]T$ 6 : **if** $r_i = 1$ **then** 7 : $f \leftarrow f \cdot \frac{I_{T,P}(Q)}{v_{T+P}(Q)}$ 8 : $T \leftarrow T + P$ 9 : end if 10: return f 11: end for

Final exponentiation:

$$\frac{p^k-1}{r} = \frac{(p^k-1)}{\phi_k(p)} \times \frac{\phi_k(p)}{r},$$

- $\frac{(p^k-1)}{\phi_k(p)}$: the first part of the final exponentiation.
- $\frac{\phi_k(p)}{r}$: the hard part of the final exponentiation.
- $\phi_k(p)$ is the cyclotomic polynomial.

Security levels:

Security level	size of <i>r</i>	size of p^k
80	160	1024
128	256	3072
192	384	7680
256	512	15360

Table: Security levels according to NIST

Introduction

2 Optimal Ate pairing for the 128 bits security level

3 New security Levels

- 4 Miller algorithm Optimizations
- 5 Implementation Results

BN (Barreto and Naehrig) elliptic curve

Definition

A BN elliptic curve is an elliptic curve defined over \mathbb{F}_p by the equation $E: y^2 = x^3 + b$ and by the parameter u such that: $r(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1$ and $p(u) = r(u) + 6u^2$. $u = -2^{62} - 2^{55} - 1$

This curve has an embedding degree k = 12.

Optimal Ate on BN

$$\begin{split} E(\mathbb{F}_p)[r] \times \Psi_6\left(E'(\mathbb{F}_{p^2})[r]\right) &\longrightarrow & \mathbb{F}_{p^{12}}^* \\ (P,Q) &\longmapsto & e_{BN}(P,Q) \end{split}$$

avec, $e_{BN}(P,Q) = \left((f_{6u+2,Q}(P)I_{[6u+2]Q,\pi(Q)}(P)I_{[6u+2]Q,\pi^2(Q)}(P)) \right)^{\frac{p^{1/2}-1}{r}}$

Comparison before and after **SexTNFS**:

BN Curve	Parameter <i>u</i>	Size of p	Size of p^k
Before SexTNFS	$u = -2^{62} - 2^{55} - 1$	256	3072
After SexTNFS	$u = 2^{114} + 2^{101} - 2^{14} - 1$	461	5534

Table: BN parameterization

BN curve	Miller loop	Final expo
Parameter <i>u</i>	6780 M	4364 M+ I (Cyc)
of Nogami <i>et al.</i>		3372 M+ 4I (Com)
Parameter <i>u</i> of	12068 M	7485 M+I (Cyc)
Barbulescu and Duquesne		5706+4 I (Com)

Table: Cost of Optimal Ate pairing in BN curves

Introduction

2 Optimal Ate pairing for the 128 bits security level

3 New security Levels

- 4 Miller algorithm Optimizations
- 5 Implementation Results

Is the BN elliptic curve always the most suitable elliptic curve for computing the Optimal Ate pairing for the 128 bits security level?

Others curves

- The BLS12 curve,
- The KSS16 curve,
- The KSS18 curve.

Which curve ?

Results of Barbulescu and Duquesne.

Elliptic curve	Cost	Cost
	Opt Ate (Cyc squaring)	Opt Ate (omp. squaring)
BN	4399425 + I	3999150 + 4l
BLS12	3600675 + I	3156300 + 61
KSS16	3155196 + I	
KSS18	3578212 + I	3298702 + 8l

Table: Cost of Opt. Ate pairing on KSS16, BLS12, KSS18 et BN

1 Introduction

2 Optimal Ate pairing for the 128 bits security level

3 New security Levels

- 4 Miller algorithm Optimizations
 - 5 Implementation Results

Our aim:

- Optimizing the computation of Optimal Ate pairing.
- Software implementation of the Optimal Ate pairing in BN, BLS12 and KSS16 curves.
- Concluding.

KSS16 elliptic curve

Definition

Kachisa, Schafer et Scott proposed a family of pairing friendly elliptic curves defined over \mathbb{F}_p by the equation :

$$y^2 = x^3 + ax$$

With:

•
$$r = u^8 + 48u^4 + 625$$

• $p = \frac{1}{980}(u^{10} + 2u^9 + 5u^8 + 48u^6 + 152u^5 + 240u^4 + 625u^2 + 2398u + 3125)$

The choice of the parameter

The parameter proposed by Barbulescu and Duquesne is:

$$u = -2^{34} + 2^{27} - 2^{23} + 2^{20} - 2^{11} + 1$$

This parameter u is sparse and gives r and p of sizes 333 and 340 bits.

Opimal Ate on KSS16

Definition

The Optimal Ate pairing over KSS16 elliptic curve is the following map:

$$e_{opt}: E(\mathbb{F}_p)[r] imes \Psi_4(E'(\mathbb{F}_{p^4})[r]) \longrightarrow \mathbb{F}_{p^{16}}$$

 $(P,Q) \longmapsto e_{KSS16}(P,Q)$

with

$$e_{KSS16}(P,Q) = \left((f_{u,Q}(P)I_{[u]Q,[p]Q}(P))^{p^3}I_{Q,Q}(P) \right)^{\frac{p^{10}}{r}}$$

 Ψ_4 is the morphism defined by:

$$\begin{split} \Psi_4: E'\left(\mathbb{F}_{p^4}
ight) & o \quad E(\mathbb{F}_{p^{16}}) \ (x,y) & \mapsto \quad (x\zeta^{1/2}, y\zeta^{3/4}). \end{split}$$

Optimized Miller algorithm

Input: $P \in G_1, Q \in G_2, u = (u_{n-1}, \dots, u_0)$: with $u_{n-1} = 1$ **Output**: $f_{u,Q}(P) \in \mathbb{F}_{p^k}^*$ $1 \cdot f \leftarrow 1$ 2 : $T \leftarrow Q$ 3 : For i = n - 2 to 0 do 4 : $f \leftarrow f^2 \cdot I_{T,T}(P)$ 5 : $T \leftarrow [2]T$ 6 : **if** $u_i = 1$ **then** 7 : $f \leftarrow f \cdot I_{T,Q}(P)$ 8 : $T \leftarrow T + Q$. g · end if 10: return f 11: end for

The extension tower of $\mathbb{F}_{p^{16}}$

For KSS-16 curve, $p \equiv 5 \mod 8$ and c = 2 is a quadratic non-residue in \mathbb{F}_p , then, the construction of $\mathbb{F}_{p^{16}}$ given as follows:

$$\begin{cases} \mathbb{F}_{p^2} = \mathbb{F}_p[\alpha]/(\alpha^2 - c), \\ \mathbb{F}_{p^4} = \mathbb{F}_{p^2}[\beta]/(\beta^2 - \alpha), \\ \mathbb{F}_{p^8} = \mathbb{F}_{p^4}[\gamma]/(\gamma^2 - \beta), \\ \mathbb{F}_{p^{16}} = \mathbb{F}_{p^8}[\omega]/(\omega^2 - \gamma), \end{cases}$$

Let f be an element of $\mathbb{F}_{p^{16}}$, then

$$f = f_0 + f_1 \gamma + f_2 \omega + f_3 \gamma \omega,$$

with f_0 , f_1 , f_2 and f_3 elements of \mathbb{F}_{p^4} .

Computations in Miller algorithm

In the Miller's algorithm we have to compute:

f ← f² · I_{T,T}(P),
f ← f · I_{T,Q}(P) (also, the computation of f ← f · I_{T,-Q}(P))

f, $I_{T,T}$, and $I_{T,Q}$ are elements of $\mathbb{F}_{p^{16}}$ and $I_{T,T}$, and $I_{T,Q}$ are two sparse elements.

Sparse Multiplication

However, thanks to twist property of E', $I_{T,T}$, $I_{T,Q}$ et $I_{T,-Q}$ can be obtained in sparse form which will led us more efficient multiplication called **sparse multiplication**.

Aim: Improving the sparse multiplication.

The Calculation of $I_{T,Q}(P)$

The addition step of Miller algorithm consists in:

- computing $I_{T,Q}(P)$ and updating T; $T + Q = R(x_R, y_R)$,
- Performing the sparse multiplication $f \times I_{T,Q}(P)$.

The line equation passing through T and Q evaluated on P is:

$$I_{T,Q}(P) = y_P + F\omega + E\gamma\omega$$

with:

$$A = \frac{1}{x_{Q'} - x_{T'}}, B = y_{Q'} - y_{T'}, C = AB, D = x_{T'} + x_{Q'},$$
$$x_{R'} = C^2 - D, E = Cx_{T'} - y_{T'}, y_{R'} = E - Cx_{R'}, F = -Cx_P$$

In the addition step of Miller algorithm we have to compute

 $f \times I_{T,Q}(P)$

So, the computation of

 $I_{T,Q}(P) = y_P + F\omega + E\gamma\omega.$

 \times $f = f_0 + f_1 \gamma + f_2 \omega + f_3 \gamma \omega,$

₩

Sparse multiplication to perform!

 \Downarrow

7-Sparse-Multiplication.

Aim?

How to reduce the cost of the sparse multiplication?

Efficient Optimal Ate Pairing at 128-bit Security Level

$$I_{T,Q}(P) = y_P - C x_P \omega + E \gamma \omega$$

Multiplying by y_P^{-1} , we obtain:

$$y_{P}^{-1}I_{T,Q}(P) = 1 - C x_{P} y_{P}^{-1} \omega + E y_{P}^{-1} \gamma \omega,$$

we have:

- y_P⁻¹ can be precomputed. Therefore, the overhead calculation of Ey_P⁻¹ will cost only 4 F_p-multiplications.
- $y_P^{-1}I_{T,T}(P)$ does not effect the pairing calculation cost.
- $x_P y_P^{-1}$ will be omitted by applying further isomorphic mapping of $P \in G_1$.

Pseudo 8-sparse multiplication

Consider the following isomorphic map between $E(\mathbb{F}_{p^4})$ and $\overline{E}(\mathbb{F}_{p^4})$:

$$\Psi: \overline{E}(\mathbb{F}_{p^4})[r] \longmapsto E(\mathbb{F}_{p^4})[r],$$

 $(x,y) \longmapsto (z^{-1}x, z^{-3/2}y),$

With $\bar{E}: y^2 = x^3 + az^{-2}x$, and $z, z^{-1}, z^{-3/2} \in \mathbb{F}_p$.

Let $\bar{P} = (x_{\bar{P}}, y_{\bar{P}}) = (z^{-1}x_{P}, z^{-3/2}y_{P}), z =?$ verifies $x_{\bar{P}}y_{\bar{P}}^{-1} = 1$

$$\begin{aligned} x_{\bar{P}} y_{\bar{P}}^{-1} &= 1\\ z^{-1} x_{P} (z^{-3/2} y_{P})^{-1} &= 1\\ z^{1/2} (x_{P}. y_{P}^{-1}) &= 1 \end{aligned}$$

Ainsi, $z = (x_P^{-1} y_P)^2$. $\bar{P}(x_{\bar{P}}, y_{\bar{P}}) = (x_P z^{-1}, y_P z^{-3/2}) = (x_P^3 y_P^{-2}, x_P^3 y_P^{-2}).$ For the same isomorphic map Ψ , we obtain \overline{Q} in \overline{E} defined over $\mathbb{F}_{p^{16}}$ by:

$$ar{Q}(x_{ar{Q}},y_{ar{Q}})=(z^{-1}x_{Q'}\gamma,z^{-3/2}y_{Q'}\gamma\omega),$$

 $\bar{Q}'(x_{\bar{Q}'}, y_{\bar{Q}'})$ is obtained in **quartic twisted curve** \bar{E}' as follows:

$$\begin{split} \bar{E}': \ y_{\bar{Q}'}^2 &= \ x_{\bar{Q}'}^3 + a(z^2\beta)^{-1}x_{\bar{Q}'}.\\ \bar{Q}'(x_{\bar{Q}'}, y_{\bar{Q}'}) &= \ (z^{-1}x_{Q'}, z^{-3/2}y_{Q'}),\\ &= \ (x_{Q'}x_P^2y_P^{-2}, y_{Q'}x_P^3y_P^{-3}). \end{split}$$

The computation of $I_{T,Q}(P)$

$$y_P^{-1}I_{T,Q}(P) = 1 - C x_P y_P^{-1} \omega + E y_P^{-1} \gamma \omega$$

Now, applying \bar{P} and $\bar{Q'}$, the line evaluation becomes:

$$y_{\bar{P}}^{-1} I_{\bar{T}',\bar{Q}'}(\bar{P}) = 1 - C(x_{\bar{P}}y_{\bar{P}}^{-1})\gamma + Ey_{\bar{P}}^{-1}\gamma\omega,$$

$$\bar{I}_{\bar{T}',\bar{Q}'}(\bar{P}) = 1 - C\gamma + E(x_{\bar{P}}^{-3}y_{\bar{P}}^{2})\gamma\omega,$$

where, $x_{\bar{P}}y_{\bar{P}}^{-1} = 1$ and $y_{\bar{P}}^{-1} = z^{3/2}y_{P}^{-1} = (x_{P}^{-3}y_{P}^{2})$.

Pseudo 8-sparse multiplication

Doubling Step.

 \Downarrow

The computation of $I_{T,T}(P)$

The doubling step of Miller algorithm consists on :

- computing $I_{T,T}(P)$ and up-dating T.
- Performing the sparse multiplication $f^2.I_{T,T}(P)$.

By the same way, we optimize the sparse multiplication : **Pseudo** 8-Sparse multiplication.

> ↓ More efficient Miller algorithm

Comparison

The following table compares the complexity of Miller's algorithm: **This work** vs Barbulescu et al.'s estimation.

The result of	KSS-16	BN	BLS-12
Barbulescu et al.	7534 <i>M_p</i>	12068 <i>M</i> _p	7708 <i>M</i> _p
This work	7209 <i>M_p</i>	11114 <i>M</i> _p	7202 <i>M</i> _p

Table: Complexity comparison of Miller's algorithm

Remark

The Pseudo 8-sparse multiplication is more efficient than the 7-sparse multiplication.

1 Introduction

- 2 Optimal Ate pairing for the 128 bits security level
- 3 New security Levels
- 4 Miller algorithm Optimizations
- 5 Implementation Results

Miller algorithm

The Curve	KSS-16	BN	BLS-12
Miller Algorithm	4.41	7.53	4.91

Table: Comparative results of Miller's Algorithm in [ms].

Final Exponentiation

Curve	KSS-16	BN	BLS-12
Final Exponentiation	17.32	11.65	12.03

Table: Comparative results of Final Exponentiation in [ms].

- BLS12 curve is better than BN curve.
- We found an efficient Miller's loop calculation for KSS-16 than theoretical estimations of previous works.

Merci!

- ▲ 🖓 🕨 - ▲ 🖻

э