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Abstract

The introduction of summation polynomials by Semaev has opened up new avenues of investigation
in index calculus type algorithms for the ECDLP, and several recent papers have explored their use.
Most of these papers use Gröbner basis computations at some point. We propose an algorithm to
solve the ECDLP using summation polynomials that does not involve Gröbner basis computations.
Our algorithm makes use of a technique for fast evaluation of the summation polynomials.

Let E be an elliptic curve over a finite field Fq, where q is a prime power. In practice, q is often a prime
number or a large power of 2. Let P and Q be points on E. The Elliptic Curve Discrete Logarithm
Problem (ECDLP) is finding an integer l (if it exists) such that Q = lP . The integer l is called the
discrete logarithm of Q to base P . The ECDLP is a hard problem that underlies many cryptographic
schemes and is thus an area of active research. The introduction of summation polynomials by [Sem04]
has led to algorithms that resemble the index calculus algorithm of the DLP over finite fields.

Definition: [Sem04] Let E be an elliptic curve over a field K. For n ≥ 2, we define the summation
polynomial Sn = Sn(X1, X2, . . . , Xn) of E by the following property. Let x1, x2, . . . , xn ∈ K, then
Sn(x1, x2, . . . , xn) = 0 if and only if there exist y1, y2, . . . , yn ∈ K such that (xi, yi) ∈ E(K) and (x1, y1)+
(x2, y2) + . . . + (xn, yn) = O, where O is the identity element of E.

Most papers have focused on elliptic curves over an extension field Fqn , and use subfields in the algorithm,
see e.g. [Gau09] or [FHJ+14]. The case of elliptic curves over prime order fields seems to be much harder
to tackle. Our algorithm is aimed at prime order fields, although it is valid for any finite field. A recent
article [APS17] has shown how to simplify the index calculus algorithm using summation polynomials
to avoid the linear algebra step and reduce the number of Gröbner basis computations. Unlike previous
algorithms, they choose a random factor base. Our algorithm is based on theirs but does not involve a
Gröbner basis computation. This leads to a significant speedup over other prime field algorithms. It uses
a method for fast evaluation of summation polynomials, which we have developed for this project.

We propose the following algorithm to solve the ECDLP.

Algorithm:

Input: elliptic curve E over Fp, points P and Q on E, integers m, s, summation polynomial Sm

Output: logP (Q)

1. Compute random integers a1, ..., as, b1, ..., bs. The factor base F consists of all points {a1P +
b1Q, ..., asP + bsQ}. The corresponding set containing only the x-coordinates of the factor base
points is denoted V = {x|(x, y) ∈ F}.

2. Choose {x1, . . . , xm} a multiset of size m with each xi ∈ V and check if Sm(x1, . . . , xm) = 0. If
not, repeat with another multiset. If Sm is non-zero for all multisets of size m, go back to step 1.

3. If Sm(x1, . . . , xm) = 0 for some {x1, . . . , xm}, then there exist yi such that (x1, y1)+. . .+(xm, ym) =
O where either (xi, yi) or −(xi, yi) are in F . Substituting each ±(xi, yi) with the corresponding

∗Research supported by Science Foundation Ireland Grant 13/IA/1914.
†Research supported by a Postgraduate Government of Ireland Scholarship from the Irish Research Council.

1



±(aiP + biQ), we get a relation of the form
∑m

i=1±aiP +
∑m

i=1±biQ = O and can solve for the
discrete logarithm of Q, provided

∑m
i=1±bi is invertible modulo the order of E.

Steps 1 and 3 agree with the algorithm proposed in [APS17]. In step 2 we make use of a fast evaluation
technique for summation polynomials.

In the following, we outline our complexity analysis for this algorithm. Full details can be found in our
article [MM17].

Lemma: The probability of obtaining a relation of length m with each point coming from a different

partition of the factor base of size s
m is 2m−1sm

p·mm .

We would like the probability of finding a relation in the factor base to be close to 1, i.e. we want
2m−1sm

mm ≈ p, so we should choose the factor base size s accordingly.

Lemma: The complexity of computing a factor base of size s is O(s log3 p).

Proposition: Evaluating Sm at a point (x1, . . . , xm) can be done in O(log2 p) steps for m� p.

Sketch of proof: It follows directly from [Sem04] that S3 can be evaluated with at most 8 multiplications
and 11 additions. For larger m, we make use of the fact that ResX(f(a,X), g(a,X)) = ResX(f, g)(a)
whenever the leading coefficients are non-zero. We can write S4(x1, x2, x3, x4) = a2(b0(a2b0 − 2a0b2 −
a1b1) + a0b

2
1) + b2(a1(a1b0 − a0b1) + a20b2), where S3(x1, x2, X) = a2X

2 + a1X + a0 and S3(x3, x4, X) =
b2X

2 + b1X + b0, and thus can evaluate it with at most 21 multiplications and 24 additions. For m ≥ 5,
Sm(x1, . . . , xm) = ResX(S3(x1, x2, X), Sm−1(x3, . . . , xm, X)). We replace the Sylvester matrix in the
resultant computation by six smaller matrices, and evaluate S3 and Sm−1 recursively. We arrive at a
complexity of (17m− 47)O(log2 p) + (17m− 44)O(log p) + 6(O(23(m−3)) + O(23(m−4)) + . . . + O(23·2)).

Theorem: The complexity of our algorithm is O(p log2 p) for m� s, m� p and sm−1

m! ≥ log p.

The described evaluation technique is significantly faster than first computing Sm and then evaluating
it, and allows us to evaluate S9 and S10, although nobody has actually computed them yet as far as we
know. We have run extensive experiments in Magma V2.21-6 [BCP97], which agree with our complexity
analysis and show that our algorithm is faster than other prime field algorithms.
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