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Abstract The KMOV scheme is a public key cryptosystem based on an RSA mod-
ulus n = pq where p and q are large prime numbers with p ≡ q ≡ 2 (mod 3). It uses
the points of an elliptic curve with equation y2 ≡ x3 + b (mod n). In this paper, we
propose a generalization of the KMOV cryptosystem with a prime power modulus
of the form n = prqs and study its resistance to the known attacks.
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1 Introduction

In 1978, Rivest, Shamir and Adleman [23] proposed RSA, the first and widely used
cryptosystem. The RSA scheme is composed by an RSA modulus of the form n = pq
and a pair of keys (e, d) where e is the public exponent and d is the private exponent,
related by the congruence ed ≡ 1 (mod (p−1)(q−1)). The security of RSA is based
on the difficulty factoring large integers n = pq, especially when p and q are large
prime numbers of the same bit-size.

Since its invention, RSA has been intensively studied for vulnerability and for
efficiency (see [1,7]). In order to gain a faster decryption, Takagi [27] proposed a
variant of RSA with a modulus n = prq. For similar reasons, Lim et al. [17] presented
a variant of RSA and Takagi schemes with a modulus n = prqs. Such variants are
used in cryptography for various applications such as electronic cash [6] and the
design of Okamoto-Uchiyama scheme [22]. The exponents in the modulus n = prqs

should be carefully chosen to resist the factorization methods such as the Number
Field Sieve and the Elliptic Curve Method. Table 1 presents the optimal number of
primes in the modulus n = prqs according to the study in [4].
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Modulus size in bits Form of the modulus
2048 pq, p2q
3072 pq, p2q
3584 pq, p2q
4096 pq, p2q, p3q
8192 pq, p2q, p3q, p3q2

Table 1 Optimal number of prime factors for a specific modulus size [4].

In 1985, Miller [20] and Koblitz [11] independently proposed to use elliptic curves
for cryptography (ECC). The security of the ECC systems is based on the discrete
logarithm problem. Nowadays, ECC is gaining interests and various applications in
cryptography are based on ECC schemes such as the elliptic curve digital signature
algorithm (ECDSA) and the elliptic curve Diffie-Hellman (ECDH) protocol for key
exchange. We refer to [24] for more details.

In 1992, Koyama, Maurer, Okamoto and Vanstone [13] proposed a scheme, called
KMOV, based on the elliptic curve with equation y2 ≡ x3 + b (mod n) over the ring
Z/nZ where n = pq is an RSA modulus with p ≡ q ≡ 2 (mod 3). KMOV was
extended in various ways, especially to singular cubic curves by Koyama [12] with
the equation y2 + axy = x3 (mod n) and by Kuwakado, Koyama and Tsuruoka [14]
with the singular cubic curve with equation y2 = x3 + bx2 (mod n). Demytko [5]
proposed a similar scheme where only one coordinate of a point on an elliptic curve
is used. The security of the former systems is based on the difficulty of factoring
large composite numbers, especially RSA moduli n = pq where p and q are large
prime numbers of the same bit-size.

In this paper, we propose a generalization of the KMOV cryptosystem by con-
sidering a prime power RSA modulus n = prqs and the elliptic curve with equation
y2 ≡ x3+b (mod n) over the ring Z/nZ where b is an integer such that gcd(b, pq) = 1.
When p ≡ q ≡ 2 (mod 3), we show that the number of points on the curve is
pr−1qs−1(p + 1)(q + 1). Then, we use this to build a generalized KMOV cryptosys-
tem with key generation, encryption and decryption schemes. We give a detailed
study of the security of the new generalization of the KMOV cryptosystem.

The paper is organized as follows. In Section 2, we first give an introduction
to elliptic curves over the finite field Fp where p ≥ 5 is a prime number, then we
present some results on the elliptic curves over a ring Z/nZ with n = pq and finally we
present the KMOV cryptosystem. In Section 3, we study the number of solutions of
the modular multivariate polynomial equation f(x1, . . . , xk) ≡ 0 (mod n) for n = pr

and n = prqs. In Section 4, we give our generalization of the KMOV system with a
modulus of the form n = prqs. We study the security of the new system in Section
5. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we present some facts on elliptic curves defined over a finite field
Fp as well as over a ring Z/nZ where n = pq is an RSA modulus, and present the
KMOV cryptosystem.
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2.1 Elliptic curves over a finite field

Let p ≥ 5 be a prime number and a, b ∈ Fp with 4a3 + 27b2 6≡ 0 (mod p). An elliptic
curve Ep(a, b) over Fp with parameters a and b is the set of points P = (x, y) ∈ Fp×Fp

satisfying the equation

y2 ≡ x3 + ax+ b (mod p). (1)

together with an extra point O, called the point at infinity (see [26,24,9] for more
details). A very important task in the theory of elliptic curves is counting the number
of points. For a curve Ep(a, b), the number of points is usually denoted #Ep(a, b)
and can be computed as

#Ep(a, b) = p+ 1 +
p−1∑
x=0

(
x3 + ax+ b

p

)
,

where
(

.
p

)
is the Legendre symbol which is defined as

(
a

p

)
=


0 if a ≡ 0 (mod p),
1 if a is a quadratic residue modulo p,
−1 if a is a quadratic non-residue modulo p.

When Ep(a, b) is defined over Fp for a prime number p, #Ep(a, b) can be approxi-
mated by p+ 1 according to Hasse Theorem (see [26,24]).

Theorem 1 Let Ep(a, b) be an elliptic curve over Fp. Then number of points on
Ep(a, b) is #Ep(a, b) = p+ 1− t with

t ≤ 2√p.

In [25], Schoof presented an algorithm to compute the number of points on an elliptic
curve with a running time of O

(
log(p)8) but this algorithm is not efficient for large

primes. The following result gives a more precise value for #Ep(a, b) when ab = 0
(see [9,24]).

Theorem 2 Let Ep(a, b) be an elliptic curve over Fp with the equation the y2 ≡
x3 + ax+ b (mod p). The number of points on Ep(a, b) is

#Ep(a, b) =

{
p+ 1 if a = 0, b 6= 0, p ≡ 2 (mod 3),
p+ 1 if a 6= 0, b = 0, p ≡ 3 (mod 4).

It is well known that the chord-and-tangent rule [26,24] performs the addition of
two points on the elliptic curve Ep(a, b) and represents Ep(a, b) as an Abelian group.
Indeed, the addition of two points P1 = (x1, y1) and P2 = (x2, y2) on an elliptic
curve Ep(a, b) is defined as follows.

– If P1 = O, then P1 + P2 = P2 + P1 = P2.
– If x1 = x2 and y1 = −y2, then P1 + P2 = P2 + P1 = O.
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– Otherwise P1 + P2 = P2 + P1 = P3 = (x3, y3) where{
x3 ≡ λ2 − x1 − x2 (mod p)
y3 ≡ λ(x1 − x3)− y1 (mod p),

with

λ ≡

{
y2−y1
x2−x1

(mod p) if x1 6≡ x2 (mod p),
3x2

1+a
2y1

(mod p) if x1 ≡ x2 (mod p).

The multiplication by an integer k of a point P on the curve is defined as

kP = P + P + . . .+ P.

If P is a point of the elliptic curve Ep(a, b), then we have (#E)P = O and for any
integer k (1 + k#E)P = P . For the specific situations p ≡ 2 (mod 3) and p ≡ 3
(mod 4), we have the following result.

Lemma 1 Let Ep(a, b) be an elliptic curve over Fp with the equation y2 ≡ x3+ax+b
mod p. Then for any integer k

(1 + k(p+ 1))P =

{
P if a = 0, b 6= 0, p ≡ 2 (mod 3),
P if a 6= 0, b = 0, p ≡ 3 (mod 4).

2.2 Elliptic curves over a ring Z/nZ

In this section, we give an overview on the theory of elliptic curves over the ring
Z/nZ where n = pq is the product of two prime numbers p ≥ 5 and q ≥ 5. Let
a, b ∈ Z/nZ such that gcd

(
4a3 + 27b2, n

)
= 1. As for finite fields, an elliptic curve

En(a, b) is the set of points P = (x, y) satisfying the equation

y2 ≡ x3 + ax+ b (mod n), (2)

together with a point O called the point at infinity. We can define an addition on
En(a, b) using the same rules as in the addition operation on Ep(a, b). However, the
addition of two points P1 = (x1, y1) and P2 = (x2, y2) is not always defined as in the
following situations

– if x1 6≡ x2 (mod n) and gcd(x2 − x1, n) 6= 1,
– if x1 ≡ x2 (mod n) and gcd(2y1, n) 6= 1.

This problem can be reduced by the Chinese Remainder Theorem. The point O
is represented by the pair (Op,Oq) of points at infinity of Ep(a, b) and Eq(a, b)
and every point P = (x, y) 6= O on En(a, b) can be uniquely represented by a
couple (Pp, Pq) ∈ Ep(a, b)×Eq(a, b) with Pp = (x (mod p), y (mod p)) and Pq = (x
(mod q), y (mod q)). Conversely, the points of the form (O, Pq) and (Pp,O) can not
be represented by this method. When the primes p and q in n = pq are large, it is
unlikely that the addition of two points on En(a, b) is of the form (O, Pq) or (Pp,O).
In the two cases, this will find the factorization of n since gcd(x2 − x1, n) is p or q
or similarly gcd(2y1, n) is p or q with inconsiderable probability.

Since every point P = (x, y) on En(a, b) can be uniquely represented by a couple
(Pp, Pq) ∈ Ep(a, b)× Eq(a, b), then using Theorem 2, we get the following result.
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Lemma 2 Let n = pq be the product of two large prime numbers p and q. Let
En(a, b) be an elliptic curve over Z/nZ with equation y2 ≡ x3 + ax + b (mod p).
Then for any integer k,

(1 + k(p+ 1)(q + 1))P =

{
P if a = 0, b 6= 0, p ≡ q ≡ 2 (mod 3),
P if a 6= 0, b = 0, p ≡ q ≡ 3 (mod 4).

Proof Let n = pq be the product of two distinct primes such that p ≡ q ≡ 2 (mod 3)
or p ≡ q ≡ 3 (mod 4). If P = O = (Op,Oq), then

(1 + k(p+ 1)(q + 1))O = O

Now, suppose that P 6= O with P = (x, y). Then, by the Chinese remainder theorem,
P can be represented as a pair of points (Pp, Pq) with Pp = (x (mod p), y (mod p))
and Pq = (x (mod q), y (mod q)). If k is an integer, then

(1 + k(p+ 1)(q + 1))P = ((1 + k(p+ 1)(q + 1))Pp, (1 + k(p+ 1)(q + 1))Pq)
= (Pp + k(q + 1)(p+ 1)Pp, Pq + k(p+ 1)(q + 1)Pq)
= (Pp, Pq)
= P,

where we used (p+ 1)Pp = Op and (q + 1)Pq = Oq according to Theorem 2. ut

2.3 The KMOV Cryptosystem

In 1991, Koyama, Maurer, Okamoto and Vanstone [13] proposed three cryptosystems
based on elliptic curves over the ring Z/nZ where n = pq is an RSA modulus. In
this section, we describe their Type 1 scheme. This scheme is based on a modulus
of the form n = pq with p ≡ q ≡ 2 (mod 3) and on an elliptic curve with equation
y2 ≡ x3 + b (mod n) with b 6≡ 0 (mod p) and b 6≡ 0 (mod q).

– Key generation.
1. Choose two large primes p and q with the same bit length, such that p ≡ q ≡ 2

(mod 3).
2. Compute the RSA modulus n = pq.
3. Choose an integer e such that gcd(e, (p+ 1) (q + 1)) = 1. The pair (n, e)

represents the public key.
4. Compute d ≡ e−1 (mod (p+1)(q+1)). The pair (n, d) represents the private

key.
– Encryption.

1. Represent the message as M = (xM , yM ) ∈ Z/nZ× Z/nZ.
2. Compute b ≡ y2

M −x3
M (mod n). The elliptic curve En(0, b) is defined by the

equation y2 ≡ x3 + b (mod n).
3. Compute (xC , yC) = e(xM , yM ) on En(0, b). The point (xC , yC) is the en-

crypted message.
– Decryption.

1. Compute b ≡ y2
C − x3

C (mod n). The elliptic curve En(0, b) is defined by the
equation y2 ≡ x3 + b (mod n).
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2. Compute M = (xM , yM ) = d(xC , yC) on En(0, b). The point (xM , yM ) is the
original message.

The correctness of the KMOV scheme is obvious since d ≡ e−1 (mod (p+ 1)(q+ 1)),
then ed− k(p+ 1)(q + 1) = 1 for some integer k. Also, we have

b ≡ y2
M − x3

M ≡ y2
C − x3

C (mod n).

Then, by Lemma 2,

d(xC , yC) = deM = (1 + k(p+ 1)(q + 1))M = M.

In [8] and [21], two attacks on KMOV have been presented, especially when d is
sufficiently small. As a consequence, the private key d in the KMOV should be
carefully chosen.

3 Multivariate Polynomial Equations

In this section, we study the number of solutions of a multivariate polynomial equa-
tion modulo a prime power of the form pr. We start with the following lemma.

Lemma 3 Let f(t1, . . . , tk) ∈ Z [t1, . . . , tk] be a polynomial with integer coefficients.
For any integers p and r ≥ 2, we have

f
(
t1 + pr−1h1, . . . , tk + pr−1hk

)
= f (t1, . . . , tk) + pr−1

k∑
i=1

∂f

∂ti
(t1, . . . , tk)hi (mod pr).

Proof Since every polynomial is a finite sum of monomials, it is sufficient to prove
the lemma for f(t1, . . . , tk) = tm1

1 . . . tmk

k . We have

f
(
t1 + pr−1h1, . . . , tk + pr−1hk

)
=
(
t1 + pr−1h1

)m1
. . .
(
tk + pr−1hk

)mk
.

Observe that for i = 1, . . . , k, by a binomial expansion, we get(
ti + pr−1hi

)mi ≡ tmi

i +mit
mi−1
i pr−1hi (mod pr).

Then

f
(
t1 + pr−1h1, . . . , tk + pr−1hk

)
≡
(
t1 + pr−1h1

)m1
. . .
(
tk + pr−1hk

)mk

≡ tm1
1 . . . tmk

k + pr−1

(
k∑

i=1

mit
m1
1 . . . tmi−1

i . . . tmk

k hi

)
(mod pr)

≡ f (t1, . . . , tk) + pr−1
k∑

i=1

∂f

∂ti
(t1, . . . , tk)hi (mod pr).

This proves the lemma. ut
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Let p be an integer and r ≥ 1. For a multivariate polynomial f(t1, . . . , tk), we consider
the curve defined by the equation f(t1, . . . , tk) ≡ 0 (mod pr). Every integer solution
(t1, . . . , tk) will be considered as a point on the curve. In the following definition, we
introduce the notion of a singular point.

Definition 1 Let f(t1, . . . , tk) ∈ Z [t1, . . . , tk] be a polynomial and pr be a prime
power integer. A point (t1, . . . , tk) on the curve f(t1, . . . , tk) ≡ 0 (mod pr) is called
a singular point if for all i = 1, . . . , k, we have

∂f

∂ti
(t1, . . . , tk) ≡ 0 (mod p).

A non singular point is called a regular point.

In the following definition, we define the number of singular and regular points on a
curve.

Definition 2 Let f(t1, . . . , tk) ∈ Z [t1, . . . , tk] be a polynomial and pr be a prime
power integer. The number of points on the curve f(t1, . . . , tk) ≡ 0 (mod pr) is
denoted cpr with

cpr = #
{

(t1, . . . , tk) ∈ (Z/prZ)k | f(t1, . . . , tk) ≡ 0 (mod pr)
}

and the number of singular points is denoted spr with

spr = #{(t1, . . . , tk) ∈ (Z/prZ)k |f(t1, . . . , tk) ≡ 0 (mod pr),
∂f

∂ti
(t1, . . . , tk) ≡ 0 (mod p), i = 1, . . . , k}.

A non-singular point is called a regular point. The number of regular points modulo
pr is Rpr = cpr − spr .

The following result gives an inductive relationship between Rpr and Rpr−1 .

Theorem 3 Let Rpr be the number of regular points on the curve f(t1, . . . , tk) ≡ 0
(mod pr) and Rpr−1 be the number of regular points on the curve f(t1, . . . , tk) ≡ 0
(mod pr−1). Then

Rpr = pk−1Rpr−1 .

Proof Suppose that f (w1, . . . , wk) ≡ 0 (mod pr). Then f (w1, . . . , wk) ≡ 0 (mod pr−1).
Hence, any solution (w1, . . . , wk) of the modular equation

f(w1, . . . , wk) ≡ 0 (mod pr)

is of the form

(w1, . . . , wk) = (t1, . . . , tk) + pr−1 (h1, . . . , hk) (mod pr), (3)

where (t1, . . . , tk) is a modular root of f(t1, . . . , tk) ≡ 0 (mod pr−1) and (h1, . . . , hk) ∈
(Z/pZ)k. Also note that, since for i = 1, . . . , k, we have

∂f

∂wi
(w1, . . . , wk) ≡ ∂f

∂ti
(t1, . . . , tk) (mod p),
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then (w1, . . . , wk) is regular if and only if (t1, . . . , tk) is regular. Using (3) in Lemma 3,
we get

f (w1, . . . , wk) ≡ f (t1, . . . , tk) + pr−1
k∑

i=1

∂f

∂wi
(w1, . . . , wk)hi (mod pr).

Since f (t1, . . . , tk) ≡ 0 (mod pr−1), then f (t1, . . . , tk) = upr−1 for some integer
u ∈ Z/pZ. This implies that if f (w1, . . . , wk) ≡ 0 (mod pr), then

u+
k∑

i=1

∂f

∂wi
(w1, . . . , wk)hi ≡ 0 (mod p). (4)

If (w1, . . . , wk) is a regular point, then ∂f

∂wi
(w1, . . . , wk) 6= 0 for some i ∈ 1, . . . , k.

Hence (4) is an affine equation over the field Z/pZ, which has pk−1 solutions (h1, . . . , hk).
Consequently, using (3), we see that any regular point (w1, . . . , wk) on the curve
modulo pr is determined by a regular point (t1, . . . , tk) modulo pr−1 and pk−1 points
(h1, . . . , hk) modulo p. This leads to

Rpr = pk−1Rpr−1 .

This terminates the proof. ut

As a consequence of Theorem 3, we have the following result.

Corollary 1 Let Rpr be the number of regular points on the curve f(t1, . . . , tk) ≡ 0
(mod pr). Then

Rpr = p(k−1)(r−1)Rp.

An important consequence concerns curves without any singular points.

Corollary 2 If a curve f(t1, . . . , tk) ≡ 0 (mod pr) has no singular point, then the
number of points on the curve is

cpr = p(k−1)(r−1)cp.

Remark 1 For a univariate polynomial equation with non singular point, we have
k = 1 and cpr = cp, which retrieves Hensel’s Lemma.

Let pr be a prime power and b be an integer with gcd(p, b) = 1. The following result
allows to compute the number of solutions of the equation y2 ≡ x3 + b (mod pr) in
terms of the number of solution of the equation y2 ≡ x3 + b (mod p).

Corollary 3 Let pr be a prime power and b be an integer with gcd(p, b) = 1. Then

#
{

(x, y) ∈ (Z/prZ)2 | y2 ≡ x3 + b (mod pr)
}

= pr−1#
{

(x, y) ∈ (Z/pZ)2 | y2 ≡ x3 + b (mod p)
}
.

Proof If y2 ≡ x3 + b (mod pr), then f(x, y) ≡ 0 (mod pr) where f(x, y) = y2 −
x3 − b. Since there is no singular point on the curve f(x, y) ≡ 0 (mod pr), then by
Corollary 1, we get cpr = pr−1cp and proves the corollary. ut
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In the special case p ≡ 2 (mod 3), we have the following explicit result.

Corollary 4 Let pr be a prime power with p ≡ 2 (mod 3) and b be an integer such
that gcd(p, b) = 1. Then

#
{

(x, y) ∈ (Z/prZ)2 | y2 ≡ x3 + b (mod pr)
}

= pr.

Proof This follows Theorem 2 and Corollary 3. ut

Also, when p ≡ 2 (mod 3), we have an explicit result about the number of solutions
of the projective curve with equation y2z ≡ x3 + bz3 (mod p).

Corollary 5 Let p be a prime number with p ≡ 2 (mod 3) and b be an integer with
gcd(p, b) = 1. Then

#
{

(x, y, z) ∈ (Z/pZ)3 | y2z ≡ x3 + bz3 (mod p)
}

= p2.

Proof Suppose that p ≡ 2 (mod 3) and b is an integer with gcd(p, b) = 1. If z 6≡ 0
(mod p), then the equation y2z ≡ x3 + bz3 (mod p) can be reduced to y2 ≡ x3 + b
(mod p). By Theorem 2, the number of points of this elliptic curve is p+1. Removing
the point O, we find that the number of solutions of the equation y2 ≡ x3+b (mod p)
is p. If z = 0, then x = 0 and y is any integer with 0 ≤ y ≤ p− 1. Hence, the number
of solutions of the equation y2z ≡ x3 + bz3 (mod p) is (p− 1)p+ p = p2. ut

The former result can be extended to the equation y2z ≡ x3 + bz3 (mod pr). In the
following, we put (x : y : z) to represent the projective point with gcd(p, xyz) = 1
which satisfies the following property

(x : y : z) = {(λx, λy, λz) ∈ (Z/prZ)3
, | λ ∈ Z/prZ, , gcd(p, λ) = 1}.

We denote by Ppr the set of such projective points.

Theorem 4 Let p be a prime number with p ≡ 2 (mod 3) and b be an integer with
gcd(p, b) = 1. Then the number of non singular points on the curve y2z ≡ x3 + bz3

(mod pr) is

#
{

(x : y : z) ∈ Ppr | y2z ≡ x3 + bz3 (mod pr)
}

= pr−1(p+ 1).

Proof Suppose that p ≡ 2 (mod 3) and b is an integer with gcd(p, b) = 1. Since the
only singular point of the curve with equation y2z ≡ x3 + bz3 (modpr) is (0, 0, 0)
which is not represented in Ppr , then by combining Corollary 1 and Corollary 5, the
number of regular points is

cpr − 1 = p2(r−1)(cp − 1) = p2(r−1)(p2 − 1).

Also, since each tuple (x : y : z) represents φ (pr) = pr−1(p − 1) tuples (u, v, w) ∈
(Z/pZ)3, then the number of regular solutions (x : y : z) of the equation y2z ≡
x3 + bz3 (mod pr) is

p2(r−1)(p2 − 1)
pr−1(p− 1) = pr−1(p+ 1).

This terminates the proof. ut
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We can use the former result to find the number of points on the elliptic curve defined
by the equation y2 ≡ x3 + b (mod prqs) by splitting the curve in two pieces. The
next result concerns the polynomial equation f(t1, . . . , tk) ≡ 0 (mod prqs) where p
and q are integers with gcd(p, q) = 1.

Theorem 5 Let cprqs be the number of points on the curve f(t1, . . . , tk) ≡ 0 (mod prqs)
where gcd(p, q) = 1. Then

cprqs = cpr × cqs .

Proof Since gcd(p, q) = 1, then by the Chinese Remainder Theorem, there is a one
to one correspondence from the set of solutions of the equation f(t1, . . . , tk) ≡ 0
(mod prqs) to the set of the solutions of the system

f(t1, . . . , tk) ≡ 0 (mod pr), f(t1, . . . , tk) ≡ 0 (mod qs).

Hence cprqs = cpr × cqs . ut

As a corollary of Theorem 5 and Corollary 4, we have the following result.

Corollary 6 Let pr and qs be two prime powers such that gcd(p, q) = 1, with p ≡
q ≡ 2 (mod 3). Then the number of points on the elliptic curve with equation y2 ≡
x3 + b (mod prqs) is

#
{{

(x, y) ∈ (Z/prqsZ)2 | y2 ≡ x3 + b (mod prqs)
}
∪ O

}
= prqs + 1.

Proof This is immediate since, by Corollary 4, we have

#
{

(x, y) ∈ (Z/prZ)2 | y2 ≡ x3 + b (mod pr)
}

= pr

and

#
{

(x, y) ∈ (Z/qsZ)2 | y2 ≡ x3 + b (mod qs)
}

= qs

Then, by the Chinese Remainder Theorem, we get

#
{

(x, y) ∈ (Z/prqsZ)2 | y2 ≡ x3 + b (mod prqs)
}

= prqs.

Adding the point at infinity O, we get the result. ut

Remark 2 Notice that
{{

(x, y) ∈ (Z/prqsZ)2 | y2 ≡ x3 + b (mod prqs)
}
∪ O

}
is the

set of points that we use for encryption in practice.
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4 The Proposed Generalization of the KMOV Cryptosystem

In this section, we propose a generalization of the KMOV cryptosystem to elliptic
curves with equation y2 ≡ x3 + b (mod prqs) where gcd(b, pq) = 1. We will need the
following lemma which is a consequence of Theorem 4 combined with the Chinese
Remainder Theorem.

Lemma 4 Let n = prqs be a prime power RSA modulus. Then, for any point P on
the elliptic curve with equation y2 ≡ x3 + b (mod prqs) and any integer k, we have(

1 + kpr−1qs−1(p+ 1)(q + 1)
)
P = O.

Recall that the previous lemma reveals why we have used the projective points rather
that the affine ones, since :

1. The projective coordinates give the cardinality pr−1 (p+ 1) of the curve modulo
pr, which satisfies pr−1 (p+ 1)P = O, while the affine coordinates fail to do that
because the number of points of the elliptic curve with equation y2 ≡ x3 + b
(mod pr) is pr and we have pr < pr−1 (p+ 1).

2. There is no need to add the point at infinity in the cardinality, since it is counted
in Ppr from the beginning.

Next, we describe the generalization of the KMOV cryptosystem by presenting the
key generation, the encryption and the decryption.

4.1 Key generation

1. Choose two large primes p and q such that p ≡ q ≡ 2 (mod 3).
2. Choose two integers r and s from the Table 1 and compute n = prqs.
3. Choose an integer e such that gcd

(
e, pr−1 (p+ 1) qs−1 (q + 1)

)
= 1. The pair

(n, e) represents the public key.
4. Compute the private exponent d ≡ e−1 (mod pr−1 (p+ 1) qs−1 (q + 1)).

4.2 Encryption

1. Represent the message as a point M = (xM , yM ) ∈ (Z/nZ)2.
2. Compute b ≡ y2

M − x3
M (mod n).

3. Compute C = eM = (xC , yC) on the elliptic curve y2 = x3 + b (mod n).
4. Send the encrypted message C.

4.3 Decryption

1. Compute b ≡ y2
C − x3

C (mod n).
2. Compute the message M = dC on the elliptic curve y2 = x3 + b (mod n).

The decryption is exact since de ≡ 1 (mod pr−1 (p+ 1) qs−1 (q + 1)) and there exists
an integer k such that de = 1 + kpr−1 (p+ 1) qs−1 (q + 1). Hence, using Lemma 4,
we get

dC = deM =
(
1 + kpr−1(p+ 1)qs−1(q + 1)

)
M = M.
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5 Security of the New Cryptosystem

In this section, we discuss the security of the proposed scheme.

5.1 Factoring the modulus

In our scheme, the modulus is of the form n = prqs where p and q are two prime
numbers with p ≡ q ≡ 2 (mod 3). When p and q are large and the exponents r and
s are chosen according to Table 1, the problem is believed hard (see [4,3]) as for
the RSA situation where the modulus is n = pq. The factoring methods such as the
Elliptic Curve Method [15] and the Number Field Sieve [16] are ineffective for large
primes p and q.

5.2 Finding the order

For an elliptic curve curve with equation

y2 ≡ x3 + ax+ b (mod p),

where p is a large prime number, there is no known method to find the number of
solutions of the underlying equation. This is valid when the equation is in the form

y2 ≡ x3 + ax+ b (mod n),

where n is the product of large unknown prime factors. This shows that finding the
order ψ(n) = pr−1qs−1(p+ 1)(q + 1) in the new scheme is unfeasible.

Comparatively, in the original KMOV, the modulus is n = pq and the order is
(p + 1)(q + 1) while in the standard RSA the modulus is similar and the order is
(p−1)(q−1). Finding one of these orders is known to be computationally equivalent
to factoring the modulus n = pq. In our new scheme, the modulus is n = prqs and
the order is ψ(n) = pr−1qs−1(p + 1)(q + 1). Hence, finding the order ψ(n) will lead
to p and q. It follows that finding the order in the new scheme is also equivalent to
factoring the modulus.

On the other hand, note that the order ψ(n) represents the number of points on
the elliptic curve with equation

y2z ≡ x3 + bz3 (mod n),

where the factorization of n is unknown. It is known that by the Chinese Remainder
Theorem, finding a solution modulo n can be done by finding a solution modulo pr

and modulo qs. Since the factorization of n is unknown, this is infeasible.

5.3 Solving the elliptic curve discrete logarithm

In the new scheme, the public parameters are the modulus n = prqs, the exponent
e, the ciphertext C = (xC , yC) which is computed as C = eM = e(xM , yM ) on the
elliptic curve with equation

y2 ≡ x3 + b (mod n), b ≡ y2
M − x3

M (mod n).
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Solving the equation C = eM for M is equivalent to solving the discrete logarithm
problem since if P is a point on the elliptic curve such that M = uP , then C =
eM = euP and finding u is computationally infeasible since the elliptic curve discrete
logarithm problem is hard (see [10]).

5.4 Solving the key equation

In the new scheme, the public exponent e and the private exponent d are related
with the modular equation ed ≡ 1 (mod pr−1qs−1(p+ 1)(q + 1)), or equivalently by
the equation

ed− kpr−1qs−1(p+ 1)(q + 1) = 1.
This equation is related to the prime power RSA key equation

ed− kpr−1qs−1(p− 1)(q − 1) = 1,

which has been intensively studied. In [18], it is shown that if r, s > 1, and

d < n
1− 3r+s

(r+s)2 ,

then one can find d and factor the modulus n = prqs. In [19], for s = 1, the bound is

d < n
r(r−1)
(r+1)2 .

Observe that the key equation in our scheme is slightly different from the prime power
RSA key equation, nevertheless, the techniques are similar and we conclude that
when d is sufficiently large, then the equation is not vulnerable to the former attacks.
For comparison, in the standard RSA and KMOV, the bound for vulnerability is
d < n0.292 (see [2,8]).

5.5 Impossible addition on the elliptic curve method

As the elliptic curve is defined over the ring Z/prqsZ, then the addition is not always
defined if one of the inversion modulo pr or modulo qs is not possible. This situation
can be used to factor the modulus n = prqs. On the other hand, this scenario is very
unlikely to happen and the following result gives a precise probability.

Corollary 7 The probability that the sum of two points on the elliptic curve with
equation y2 ≡ x3 + b (mod prqs) is not defined is approximately

pr−1 (p+ 1) qs−1 (q + 1)− (prqs + 1)
pr−1 (p+ 1) qs−1 (q + 1) ≈ p+ q

(p+ 1)(q + 1) .

Proof We first give an estimation of solutions (x : y : z) of the equation

y2z ≡ x3 + bz3 (mod prqs),

with gcd(pq, z) = 1. Notice that{
(x : y : z) ∈ Pprqs , p - z, q - z | zy2 ≡ x3 + bz3 (mod prqs)

}
=
{

(x : y : 1) ∈ Pprqs , | zy2 ≡ x3 + bz3 (mod prqs)
}

=
{

(x, y) ∈| y2 ≡ x3 + b (mod prqs)
}



14 Maher Boudabra, Abderrahmane Nitaj

therefore

#
{

(x : y : z) ∈ (Z/prqsZ)3 | gcd(pq, z) = 1, zy2 = x3 + bz3
}
∪ O = prqs + 1

We know that the sum of two points on the curve zy2 ≡ x3 + bz3 (mod prqs) is not
defined if and only if the third coordinate of the sum is divisible by p or q but not
divisible by prqs. The probability of such situations is

pr−1(p+ 1)qs−1(q + 1)− (prqs + 1)
pr−1(p+ 1)qs−1(q + 1) = p+ q

(p+ 1) (q + 1) + pr−1qs−1 − 1
pr−1 (p+ 1) qs−1 (q + 1)

≈ p+ q

(p+ 1)(q + 1)

This shows that the probability that the sum of two points is not defined is very low
since when p and q are large and of the same bit size, then p+q

(p+1)(q+1) ≈
1√
pq . ut

6 Conclusion.

We presented a generalization of the KMOV cryptosystem by using an elliptic curve
defined on the ring Z/nZ where n = prqs is a prime power modulus. We described the
theory for computing the number of points on the elliptic curve y2 ≡ x3 +b (mod n)
and gave an explicit estimation when p ≡ q ≡ 2 (mod 3). Finally, we studied the
security of the new system and showed that it is mainly based on factoring the
modulus.
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