Lattice based cryptography

Abderrahmane Nitaj

University of Caen Basse Normandie, France

Kuala Lumpur, Malaysia, June 23, 2014

Contents

- Introduction
- Introduction to lattices
- The LLL algorithm
- MTRU
- 5 LWE
- **6** GGH
- Thanks

Contents

- 1 Introduction
- Introduction to lattices
- The LLL algorithm
- 4 NTRU
- 5 LWE
- 6 GGH
- Thanks

Most known public key cryptosystems

- The RSA cryptosystem, 1978: based on factorization.
- The Diffie-Hellman key exchange protocol, 1976: based on the discrete logarithm problem.
- The El Gamal Cryptosystem, 1985: based on the discrete logarithm problem.
- The elliptic curve cryptosystems and protocols, 1985: based on elliptic curves.
- The NTRU cryptosystem, 1996: based on lattice hard problems.
- The Learner with error cryptosystem, 2005: based on lattice hard problems.

Most known public key cryptosystems

Vulnerability to quantum computers

- The RSA cryptosystem: vulnerable.
- The Diffie-Hellman key exchange protocol: vulnerable.
- The El Gamal Cryptosystem: vulnerable.
- The elliptic curve cryptosystems and protocols: vulnerable.
- NTRU and LWE cryptosystems: still resistant (post quantum cryptography).

Contents

- Introduction
- Introduction to lattices
- The LLL algorithm
- 4 NTRU
- 5 LWE
- 6 GGH
- Thanks

Definition

Let n and d be two positive integers. Let $b_1 \cdots, b_d \in \mathbb{R}^n$ be d linearly independent vectors. The lattice \mathcal{L} generated by $(b_1 \cdots, b_d)$ is the set

$$\mathcal{L} = \sum_{i=1}^{d} \mathbb{Z}b_i = \left\{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \right\}.$$

The vectors $b_1 \cdots, b_d$ are called a vector basis of \mathcal{L} . The lattice rank is n and the lattice dimension is d. If n = d then \mathcal{L} is called a full rank lattice.

Figure: A lattice with the basis (b_1, b_2)

Theorem

Let \mathcal{L} be a lattice of dimension d and rank n. Then \mathcal{L} can be written as the rows of an $n \times d$ matrix with real entries.

Let

$$b_i = \left[\begin{array}{c} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{array} \right].$$

Let $v = \sum_{i=1}^{d} x_i b_i$ for $x_i \in \mathbb{Z}$. Then

$$v = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1d} \\ a_{21} & a_{22} & \cdots & a_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}.$$

Theorem

Let $\mathcal{L} \subset \mathbb{R}^n$ be a lattice of dimension d. Let $(b_1 \cdots, b_d)$ and $(b'_1 \cdots, b'_d)$ be two bases of \mathcal{L} . Then there exists a $d \times d$ matrix U with entries in \mathbb{Z} and $\det(U) = \pm 1$ such that

$$\begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ b'_d \end{bmatrix} = U \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{bmatrix}.$$

Definition

Let \mathcal{L} be a lattice with a basis $(b_1 \cdots, b_d)$. The volume or determinant of \mathcal{L} is

$$\det(\mathcal{L}) = \sqrt{\det\left(BB^t\right)},$$

where *B* is the $d \times n$ matrix of formed by the rows of the basis.

Theorem

Let \mathcal{L} be a lattice of dimension d. Then the $\det(\mathcal{L})$ is independent of the choice of the basis.

Lemma

Let \mathcal{L} be a full-rank lattice (n = d) of dimension n. If $(b_1 \cdots, b_n)$ is a basis of \mathcal{L} with matrix B, then

$$\det(L) = |\det(B)|.$$

Definition

Let \mathcal{L} be a lattice with a basis $(b_1 \cdots, b_d)$. The fundamental domain or parallelepipede for \mathcal{L} is the set

$$\mathcal{P}(b_1 \cdots, b_d) = \left\{ \sum_{i=1}^d x_i b_i, \mid 0 \le x_i < 1 \right\}.$$

Figure: The fundamental domain for the basis (b_1, b_2)

Theorem

Let \mathcal{L} be a lattice with a basis (b_1, \ldots, b_d) . Then the volume \mathcal{V} of the fundamental domain $\mathcal{P}(b_1, \ldots, b_d)$ satisfies

$$\mathcal{V}(\mathcal{P}(b_1,\ldots,b_d)) = \det(\mathcal{L}).$$

Figure: The fundamental domain for the bases (b_1, b_2) and (u_1, u_2)

Definition

Let $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n)$ be two vectors of \mathbb{R}^n .

 \bigcirc The inner product of u and v is

$$\langle u, v \rangle = u^T v = \sum_{i=1}^n u_i v_i.$$

2 The Euclidean norm of u is

$$||u|| = (\langle u, u \rangle)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} u_i^2\right)^{\frac{1}{2}}.$$

Definition

Let L be a lattice. The minimal distance λ_1 of \mathcal{L} is the length of the shortest nonzero vector of \mathcal{L} :

$$\lambda_1 = \inf\{\|v\| \in \mathcal{L} \mid v \in \mathcal{L} \setminus \{0\}\} = \inf\{\|v - u\| \in \mathcal{L} \mid v, u \in \mathcal{L}, \ v \neq u\}.$$

Figure: The shortest vectors are v_0 and $-v_0$

Example

Let \mathcal{L} be a lattice with a basis (b_1, b_2) with

$$b_1 = \begin{bmatrix} 19239 \\ 2971 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 22961 \\ 3546 \end{bmatrix}.$$

Find the shortest vector.

The shortest vector is in the form

$$v_0 = x_1 b_1 + x_2 b_2 = \begin{bmatrix} 19239x_1 + 22961x_2 \\ 2971x_1 + 3546x_2 \end{bmatrix},$$

for some integers $(x_1, x_2) \neq (0, 0)$.

One can show that $v_0 = 37b_1 - 31b_2$ is the shortest vector in the lattice f

Example

Let \mathcal{L} be a lattice with a basis (b_1, b_2, b_3) with

$$b_1 = \begin{bmatrix} 124797 \\ 2971 \\ 4781 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 95874 \\ 3546 \\ 7895 \end{bmatrix}, \quad b_3 = \begin{bmatrix} 56871 \\ 35462 \\ 16539 \end{bmatrix}.$$

Find the shortest vector in the lattice

The shortest vector is in the form

$$v_0 = x_1b_1 + x_2b_2 + x_3b_3 = \begin{bmatrix} 124797x_1 + 95874x_2 + 56871x_3 \\ 2971x_1 + 3546x_2 + 35462x_3 \\ 4781x_1 + 7895x_2 + 16539x_3 \end{bmatrix},$$

for some integers $(x_1, x_2, x_3) \neq (0, 0, 0)$ for which the norm $||v_0||$ is as small as possible. Using the LLL algorithm, we can find that the shortest vector is $v_0 = -3b_1 + 4b_2$.

Definition

Let L be a lattice of dimension n. For i = 1, ..., n, the ith successive minimum of the lattice is

 $\lambda_i = \min\{\max\{\|v_1\|, \dots, \|v_i\|\} \mid v_1, \dots, v_i \in \mathcal{L} \text{ are linearly independent}\}.$

Figure: The first minima λ_1 and the second minima λ_2

Definition

Let \mathcal{L} be a full rank lattice of dimension n in \mathbb{Z}^n .

- **1** The Shortest Vector Problem (SVP): Given a basis matrix B for \mathcal{L} , compute a non-zero vector $v \in \mathcal{L}$ such that ||v|| is minimal, that is $||v|| = \lambda_1(\mathcal{L})$.
- **2 The Closest Vector Problem (CVP):** Given a basis matrix B for \mathcal{L} and a vector $v \notin \mathcal{L}$, find a vector $u \in \mathcal{L}$ such that $\|v u\|$ is minimal, that is $\|v u\| = \mathsf{d}(v, \mathcal{L})$ where $\mathsf{d}(v, \mathcal{L}) = \min_{u \in \mathcal{L}} \|v u\|$.

Definition

Let \mathcal{L} be a full rank lattice of dimension n in \mathbb{Z}^n .

- **1** The Shortest Independent Vectors Problem (SIVP): Given a basis matrix B for \mathcal{L} , find n linearly independent lattice vectors v_1, v_2, \ldots, v_n such that $\max_i \|v_i\| \leq \lambda_n$, where λ_n is the nth successive minima of \mathcal{L} .
- **2** The approximate SVP problem (γ SVP): Fix $\gamma > 1$. Given a basis matrix B for \mathcal{L} , compute a non-zero vector $v \in \mathcal{L}$ such that $||v|| \leq \gamma \lambda_1(\mathcal{L})$ where $\lambda_1(\mathcal{L})$ is the minimal Euclidean norm in \mathcal{L} .
- **3 The approximate CVP problem (\gammaSVP):** Fix $\gamma > 1$. Given a basis matrix B for \mathcal{L} and a vector $v \notin \mathcal{L}$, find a vector $u \in \mathcal{L}$ such that $\|v u\| \leq \gamma \lambda_1 \mathsf{d}(v, \mathcal{L})$ where $\mathsf{d}(v, \mathcal{L}) = \min_{u \in \mathcal{L}} \|v u\|$.

Figure: The closest vector to v is v_0

Theorem (Minkowski)

Let \mathcal{L} be a lattice with dimension n. Then there exists a nonzero vector $v \in \mathcal{L}$ satisfying

$$||v|| \le \sqrt{n} \det(L)^{\frac{1}{n}}.$$

The Gaussian Heuristic implies that the expected shortest non-zero vector in a lattice \mathcal{L} is approximately $\sigma(\mathcal{L})$ where

$$\sigma(\mathcal{L}) = \sqrt{\frac{n}{2\pi e}} \det(\mathcal{L})^{\frac{1}{n}}.$$

Contents

- Introduction
- Introduction to lattices
- 3 The LLL algorithm
- 4 NTRU
- 5 LWE
- 6 GGH
- Thanks

- Invented in 1982 by Lenstra, Lenstra and Lovász.
- Given an arbitrary basis B of a lattice \mathcal{L} , finds a "good" basis.
- Polynomial time algorithm.
- Various applications:
 - **1** Formulae for π , $\log 2$, ...
 - 2 Implemented in Mathematica, Maple, Magma, Pari/GP, ...
 - Solving diophantine equations.
 - Solving SVP and CVP problems in low dimensions.
 - Oryptanalysis of Knapsack cryptosystems.
 - Attacks on RSA and NTRU.

Gram-Schmidt orthogonalization method

Theorem

Let V be a vector space of dimension n and $(b_1 \cdots, b_n)$ a basis of V. Let $(b_1^* \cdots, b_n^*)$ be n vectors such that

$$b_1^* = b_1, \quad b_i^* = b_i - \sum_{i=1}^{i-1} \mu_{i,j} b_j^*,$$

where, for i < i

$$\mu_{i,j} = \frac{\langle b_i, b_j^* \rangle}{\langle b_i^*, b_i^* \rangle}.$$

Then $(b_1^* \cdots, b_n^*)$ is an orthogonal basis of V.

Gram-Schmidt orthogonalization method: n = 2

$$b_1^* = b_1, \quad b_2^* = b_2 - \frac{\langle b_2, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1,$$

$$\Rightarrow \langle b_1^*, b_2^* \rangle = \langle b_1, b_2 \rangle - \frac{\langle b_2, b_1 \rangle}{\langle b_1, b_1 \rangle} \langle b_1, b_1 \rangle = 0.$$

Figure: An orthogonal basis

Gram-Schmidt orthogonalization method: the determinant

Corollary (Hadamard)

Let $B = \{b_1, \dots, b_n\}$ be a basis of a lattice \mathcal{L} and let $B^* = \{b_1^*, \dots, b_n^*\}$ be the associated Gram-Schmidt basis. Then

$$\det(\mathcal{L}) = \prod_{i=1}^{n} ||b_i^*|| \le \prod_{i=1}^{n} ||b_i||.$$

LLL-reduced basis

Definition

Let \mathcal{L} be a lattice. A basis $(b_1 \cdots, b_n)$ of \mathcal{L} is LLL-reduced if the orthogonal Gram-Schmidt basis $(b_1^* \cdots, b_n^*)$ satisfies

$$\mu_{i,j}| \leq \frac{1}{2}$$
, pour $1 \leq j < i \leq n$, (1)

$$|\mu_{i,j}| \le \frac{1}{2}$$
, pour $1 \le j < i \le n$, (1)
 $\frac{3}{4} \|b_{i-1}^*\|^2 \le \|b_i^* + \mu_{i,i-1}b_{i-1}^*\|^2$, pour $1 < i \le n$, (2)

where, for i < i

$$\mu_{i,j} = \frac{\langle b_i, b_j^* \rangle}{\langle b_i^*, b_i^* \rangle}.$$

LLL-reduced basis: dimension 2

$$|\mu_{2,1}| = \left| \frac{\langle b_2, b_1^* \rangle}{\langle b_1^*, b_1^* \rangle} \right| \leq \frac{1}{2},$$
$$\frac{3}{4} ||b_1||^2 \leq ||b_2||^2.$$

Figure: A 2-dimension reduced basis

Figure: A lattice with *a bad* basis (b_1, b_2)

Figure: The same lattice with a good basis (u_1, u_2)

Figure: The same lattice with a good basis (u_1, u_2)

LLL-reduced basis: properties

Theorem

Let $(b_1 \cdots, b_n)$ be an LLL-reduced basis and (b_1^*, \cdots, b_n^*) be the Gram-Schmidt orthogonal associated basis. We have

- 1. $||b_i^*||^2 \le 2^{i-j} ||b_i^*||^2$ for $1 \le j \le i \le n$.
- 2. $\prod_{i=1}^{n} ||b_i|| \le 2^{\frac{n(n-1)}{4}} \det(L)$.
- 3. $||b_j|| \le 2^{\frac{i-1}{2}} ||b_i^*||$ for $1 \le j \le i \le n$.
- 4. $||b_1|| \leq 2^{\frac{n-1}{4}} \det(L)^{\frac{1}{n}}$.
- 5. For any nonzero vector $v \in L$, $||b_1|| \le 2^{\frac{n-1}{2}} ||v||$.

Comparison

- The LLL algorithm: $||b_1|| \le 2^{\frac{n-1}{4}} \det(L)^{\frac{1}{n}}$.
- Minkowski: $||v|| \leq \sqrt{n} \det(L)^{\frac{1}{n}}$.

Contents

- Introduction
- Introduction to lattices
- The LLL algorithm
- 4 NTRU
- 5 LWE
- 6 GGH
- Thanks

NTRU

NTRU

- Invented by Hoffstein, Pipher et Silverman in 1996.
- Security based on the Shortest Vector Problem (SVP).
- Various versions between 1996 and 2001.

Definition

The Shortest Vector Problem (SVP): Given a basis matrix B for \mathcal{L} , compute a non-zero vector $v \in \mathcal{L}$ such that ||v|| is minimal, that is $||v|| = \lambda_1(\mathcal{L})$.

NTRU: Ring of Convolution $\Pi = \mathbb{Z}[X]/(X^N - 1)$

Polynomials

$$f = \sum_{i=0}^{N-1} f_i X^i, \qquad g = \sum_{i=0}^{N-1} g_i X^i,$$

Sum

$$f+g=(f_0+g_0,f_1+g_1,\cdots,f_{N-1}+g_{N-1}).$$

Product

$$f * g = h = (h_0, h_1, \cdots, h_{N-1})$$
 with

$$h_k = \sum_{i+j \equiv k \pmod{N}} f_i g_j.$$

NTRU: Ring of Convolution $\Pi = \mathbb{Z}[X]/(X^N - 1)$

Polynomials

$$f = \sum_{i=0}^{N-1} f_i X^i, \qquad g = \sum_{i=0}^{N-1} g_i X^i,$$

Sum

$$f+g=(f_0+g_0,f_1+g_1,\cdots,f_{N-1}+g_{N-1}).$$

Product

$$f * g = h = (h_0, h_1, \cdots, h_{N-1})$$
 with

$$h_k = \sum_{i+j \equiv k \pmod{N}} f_i g_j.$$

NTRU: Ring of Convolution $\Pi = \mathbb{Z}[X]/(X^N - 1)$

Polynomials

$$f = \sum_{i=0}^{N-1} f_i X^i, \qquad g = \sum_{i=0}^{N-1} g_i X^i,$$

Sum

$$f+g=(f_0+g_0,f_1+g_1,\cdots,f_{N-1}+g_{N-1}).$$

Product

$$f * g = h = (h_0, h_1, \cdots, h_{N-1})$$
 with

$$h_k = \sum_{i+j \equiv k \pmod{N}} f_i g_j.$$

NTRU: Ring of Convolution $\Pi = \mathbb{Z}[X]/(X^N - 1)$

Convolution

$$\underbrace{f = (f_0, f_1, \cdots, f_{N-1}), \quad g = (g_0, g_1, \cdots, g_{N-1})}_{f * g = h = (h_0, h_1, \cdots, h_{N-1})}.$$

	1	X		X^k		X^{N-1}
	f_0g_0	f_0g_1		f_0g_k		f_0g_{N-1}
+	f_1g_{N-1}	f_1g_0		f_1g_{k-1}	• • •	f_1g_{N-2}
+	f_2g_{N-2}	f_2g_{N-1}	• • •	f_2g_{k-2}	• • •	f_2g_{N-3}
:	:	:			:	:
+	$f_{N-2}g_2$	$f_{N-2}g_3$		$\int_{N-2}g_{k+2}$		$f_{N-2}g_1$
+	$f_{N-1}g_1$	$f_{N-1}g_2$		$\int_{N-1}g_{k+1}$	• • •	$f_{N-1}g_0$
h =	h_0	h_1	• • •	h_k	• • •	h_{N-1}

NTRU Parameters

- N =a prime number (e.g. N = 167, 251, 347, 503).
- q = a large modulus (e.g. q = 128, 256).
- p = a small modulus (e.g. p = 3).

Key Generation:

- Randomly choose two private polynomials f and g.
- Compute the inverse of f modulo q: $f * f_q = 1 \pmod{q}$.
- Compute the inverse of f modulo p: $f * f_p = 1 \pmod{p}$.
- Compute the public key $h = f_q * g \pmod{q}$.

Encryption:

- m is a plaintext in the form of a polynomial mod q.
- Randomly choose a private polynomial r.
- Compute the encrypted message $e = m + pr * h \pmod{q}$.

Decryption:

- Compute $a = f * e = f * (m + pr * h) = f * m + pr * g \pmod{q}$.
- Compute $a * f_p = (f * m + pr * g) * f_p = m \pmod{p}$.

Encryption:

- m is a plaintext in the form of a polynomial mod q.
- Randomly choose a private polynomial r.
- Compute the encrypted message $e = m + pr * h \pmod{q}$.

Decryption:

- Compute $a = f * e = f * (m + pr * h) = f * m + pr * g \pmod{q}$.
- Compute $a * f_p = (f * m + pr * g) * f_p = m \pmod{p}$.

Encryption:

- m is a plaintext in the form of a polynomial mod q.
- Randomly choose a private polynomial r.
- Compute the encrypted message $e = m + pr * h \pmod{q}$.

Decryption:

- Compute $a = f * e = f * (m + pr * h) = f * m + pr * g \pmod{q}$.
- Compute $a * f_p = (f * m + pr * g) * f_p = m \pmod{p}$.

NTRU

Correctness of decryption

We have

$$\begin{array}{lll} a & \equiv & f*e \pmod{q} \\ a & \equiv & f*(p*r*h+m) \pmod{q} \\ a & \equiv & f*r*(p*g*f_q)+f*m \pmod{q} \\ a & \equiv & p*r*g*f_q+f*m \pmod{q} \\ a & \equiv & p*r*g+f*m \pmod{q}. \end{array}$$

If
$$p*r*g+f*m\in\left[-rac{q}{2},rac{q}{2}
ight]$$
, then

$$m \equiv a * f_p \mod p$$
.

Contents

- Introduction
- Introduction to lattices
- The LLL algorithm
- 4 NTRU
- 5 LWE
- 6 GGH
- Thanks

LWE

- Invented by O. Regev in 2005.
- Security based on the GapSVP problem.
- Provable Security.

Definition

The GapSVP problem: Let \mathcal{L} be a lattice with a basis B. Let $\lambda_1(\mathcal{L})$ be the length of the shortest nonzero vector of \mathcal{L} . Let $\gamma \in \mathbb{R}^+$. Decide whether $\lambda_1(\mathcal{L}) < 1$ or $\lambda_1(\mathcal{L}) > \gamma$.

LWE Key Generation

- Input: Integers n, m, l, q.
- Output: A private key S and a public key (A, P).
- **①** Choose $S \in \mathbb{Z}_q^{n \times l}$ at random.
- 2 Choose $A \in \mathbb{Z}_a^{m \times n}$ at random.
- **③** Choose $E \in \mathbb{Z}_q^{m \times l}$ according to a Gaussian character χ .
- **①** Compute $P = AS + E \pmod{q}$. Hence $P \in \mathbb{Z}_q^{m \times l}$.
- The private key is S.
- **1** The public key is (A, P).

LWE Encryption

- **Input:** Integers n, m, l, t, r, q, a public key (A, P) and a plaintext $M \in \mathbb{Z}_t^{l \times 1}$.
- Output: A ciphertext (u, c).
- **1** Choose $a \in [-r, r]^{m \times 1}$ at random.
- ② Compute $u = A^T a \pmod{q} \in \mathbb{Z}_q^{n \times 1}$.
- **3** Compute $c = P^T a + \left\lceil \frac{Mq}{t} \right\rceil \pmod{q} \in \mathbb{Z}_q^{l \times 1}$.
- **1** The ciphertext is (u, c).

LWE Decryption

- Input: Integers n, m, l, t, r, q, a private key S and a ciphertext (u, c).
- Output: A plaintext M.
- Compute $v = c S^T u$ and $M = \left[\frac{tv}{q}\right]$.

Correctness of decryption

We have

$$v = c - S^{T}u$$

$$= (AS + E)^{T}a - S^{T}A^{T}a + \left[\frac{Mq}{t}\right]$$

$$= E^{T}a + \left[\frac{Mq}{t}\right].$$

Hence

$$\left[\frac{tv}{q}\right] = \left[\frac{tE^Ta}{q} + \frac{t}{q}\left[\frac{Mq}{t}\right]\right].$$

With suitable parameters, the term $\frac{tE^{T}a}{q}$ is negligible. Consequently

$$\left\lceil \frac{tv}{q} \right\rceil = M.$$

Contents

- Introduction
- Introduction to lattices
- The LLL algorithm
- 4 NTRU
- 5 LWE
- **6** GGH
- Thanks

GGH

GGH

- Invented by Goldreich, Goldwasser and Halevi in 1996.
- Security based on the Closest Vector Problem (CVP).
- Brocken by Nguyen in 1999.

Definition (The Closest Vector Problem (CVP))

Given a basis matrix B for \mathcal{L} and a vector $v \notin \mathcal{L}$, compute a vector $v_0 \in \mathcal{L}$ such that $||v - v_0||$ is minimal.

GGH key generation

- **Input:** A lattice \mathcal{L} of dimension n.
- Output: A public key B and a private key A.
- Find a "good basis" A of \mathcal{L} .
- 2 Find a "bad basis" B of \mathcal{L} .
- Publish B as the public key.
- Keep A as the secret key.

GGH encryption

- Input: A lattice \mathcal{L} , a parameter $\rho > 0$, a public key B and a plaintext $m \in \mathbb{Z}^n$.
- Output: A ciphertext c.
- **①** Compute $v = mB \in \mathcal{L}$.
- ② Choose a small vector $e \in [-\rho, \rho]^n$.
- **3** The ciphertext is c = v + e.

GGH decryption

- **Input:** A lattice \mathcal{L} , a private key A and a ciphertext c.
- Output: A plaintext $m \in \mathbb{Z}^n$.
- Use an efficient reduction algorithm and the good basis A to find the closest vector $v \in \mathcal{L}$ of the ciphertext c.
- 2 Compute $m = vB^{-1}$.

Contents

- Introduction
- Introduction to lattices
- The LLL algorithm
- 4 NTRU
- 5 LWE
- 6 GGH
- Thanks

Thank you Terima kasih

