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RSA

The RSA Cryptosystem

Invented in 1978 by Rivest, Shamir and Adleman.
The most widely used asymmetric cryptosystem.
Many applications such as encryption and digital signatures.
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RSA

The RSA Cryptosystem

Key Generation

1. Generate two large primes p and q of the same bit size.

2. Compute N = pq and φ(N) = (p− 1)(q − 1).

3. Choose a random e with 1 ≤ e ≤ φ(N) such that gcd(e, φ(N)) = 1.

4. Compute d ≡ e−1 (mod φ(N)).

5. Publish the public key (N, e).

6. The private key is (N, d).

Encryption

1. Compute c ≡ me (mod N).

2. Send the ciphertext c.

Decryption

1 Compute m ≡ cd (mod N).
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RSA

RSA: The hard problems

The equations

N = pq, φ(N) = (p− 1)(q − 1) = N + 1− (p+ q),
ed− kφ(N) = 1, c ≡ me (mod N).

The Integer Factorization Problem

Let N = pq be an RSA modulus with unknown factorization. The Integer
Factorization Problem is to find p and q.

The Key Equation Problem

Given N = pq and e satisfying ed− kφ(N) = 1. Find d, k and φ(N).

The RSA Problem

Given N = pq, e and c. Find an integer m ∈ Z∗
N such that

me ≡ c (mod N).
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RSA

Some variants of the RSA Cryptosystem
1. KMOV, based on elliptic curves, 1991: Modulus N = pq, key equation

ed− k (p+ 1) (q + 1) = 1.

2. Takagi RSA, 1998: Modulus N = prq, key equation
ed− k(p− 1)(q − 1) = 1.

3. Prime Power RSA, 1998: Modulus N = prqs, key equation
ed− kpr−1qs−1(p− 1)(q − 1) = 1.

4. LUC, KKT cryptosystems, 1993: Modulus N = pq, key equation
ed− k

(
p2 − 1

) (
q2 − 1

)
= 1.

5. RSA with Gaussian integers, 2002: Modulus N = PQ, key equation
ed− k

(
|P |2 − 1

) (
|Q|2 − 1

)
= 1.

6. Generalization of KMOV and Edwards curves: Modulus N = prqs, key
equation ed− kpr−1qs−1 (p+ 1) (q + 1) = 1.

7. Cubic Pell curve 2018, 2024: Modulus N = pq, key equation
ed− k

(
p2 + p+ 1

) (
q2 + q + 1

)
= 1.
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Quantum attacks on RSA

Shor’s algorithm

Facts

Presented by Peter Shor in 1994.

Complexity of factorization on a classical computer

O
(
ec ln(n)

1
3 ln ln(n)

2

3

)
.

Complexity of factorization on a quantum computer

O
(
(ln(n))2(ln ln(n))2 ln ln ln(n)

)
.
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Quantum attacks on RSA

Consequences of Shor’s algorithm

Vulnerability to quantum computers

The RSA cryptosystem and its variants: vulnerable.

The Diffie-Hellman key exchange protocol: vulnerable.

The El Gamal Cryptosystem: vulnerable.

The elliptic curve cryptosystems and protocols: vulnerable.

Digital Signature Algorithm (DSA):vulnerable.

Elliptic Curve Digital Signature Algorithm (ECDSA):vulnerable.
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Quantum attacks on RSA

Shor’s algorithm, 1994Reduction to Order Finding

INPUT : A positive integer n.
1 Choose an integer x at random with 2 ≤ x ≤ n− 1.
2 Compute the order r of x modulo n, that is

the smallest r ≥ 1 such that xr ≡ 1 (mod n).

3 Compute gcd
(
n, xr/2 − 1

)
.

OUTPUT : A factor of n.

The quantum part is Step 2.

The (quantum) polynomial time: O
(
(log n)3

)
.

Example

n = 3301033176670071726715065074773; x = 24571215787981.

Then r = 550172196111676677823842611058 with r ≈ n0.97.

gcd
(
n, xr/2 + 1

)
= 11369429095174399 and

gcd
(
n, xr/2 − 1

)
= 290342914234027.
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Quantum attacks on RSA
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Quantum attacks on RSA

The Chinese attack, 2024

Analysis of the attack

D Wave Advantage: 5000 qubits, 2 million variables, unknown price.

Based on quantum annealing: combinatorial optimization problems,
not on Shor’s algorithm.

Factor an integer up to 250.

Far from 22048 ≈
(
250
)41

.
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Quantum attacks on RSA
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Quantum attacks on RSA

Analysis of the attack

D-Wave 2000Q: 2000 qubits, 15 000 000 $.

Quantum annealing: based combinatorial
optimization problems, not Shor’s algorithm.

Factor an integer N = pq ≈ 22048.

|p− q| < 10 =⇒ q = PrevPrime
(√

N
)
, p =

NextPrime
(√

N
)
.
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Classical attacks on RSA

Wiener’s attack, 1990

The RSA equation

ed− (p− 1)(q − 1)k = 1.

Wiener’s attack, 1990

I

f d <
1

3
N

1
4 then

k

d
is among the convergents of the continued fraction

expansion of
e

N
and the factorization of N = pq can be found.

The method

k

d
≈ e

N
.

The continued fraction algorithm.
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Classical attacks on RSA

Coppersmith’s lattice based attack

Polynomial equation

Given a multivariate polynomial f and a modulus N , find a solution
(x1, . . . , xn) of the equation

f(x1, . . . , xn) ≡ 0 (mod N).

Coppersmith’s method

1. Lattices.

2. The LLL algorithm.

3. Jochemz-May strategy.

4. Howgrave-Graham’s method.

5. Gröbner basis or resultant computation techniques.
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Classical attacks on RSA

Boneh and Durfee attack, 1999

The RSA equation

ed− (p− 1)(q − 1)k = 1.

Boneh-Durfee’s attack, 1999

If d < N0.292, then the factorization of N = pq can be found.

The method

k(N + 1− x) ≡ 1 (mod e), where x = p+ q.

Lattice reduction techniques and Coppersmith’s method for finding
small roots of modular polynomial equations.
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Progress in the cryptanalysis of RSA

Factoring algorithms with the General Number Field
Sieve

The RSA equation: N = pq

Name Decimal size of N Year Authors
RSA-576 174 2003 Franke et al.

RSA200 200 2005 Bahr et al.

RSA768 232 2013 Kleinjung et al.

RSA-240 240 2019 Boudot et al.

RSA-250 250 2020 Boudot et al.
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Progress in the cryptanalysis of RSA

Boneh and Durfee attack, 1999

The RSA equation: ed− (p− 1)(q − 1)k = 1.

Main attacks: One can factor N = pq

1 Wiener 1990: If d < 1
3N

0.25.

2 Boneh Durfee 1998: If d < N0.292.

Improvements

Partial prime attacks: p and q share their least significant bits (LSBs).

Partial prime attacks: p and q share their most significant bits (LSBs).

Partial prime attacks: MSBs or LSBs of p is known.

Partial key attacks: MSBs or LSBs of d is known.
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Progress in the cryptanalysis of RSA

Achieving the upper bound 0.292 for N ≥ 21000

Year Bound Condition Time Authors
2000 0.265 − 45 minutes Boneh, Durfee

2002 0.277 − 2,5 hours Durfee

2021 0.28 − ? Miller, Narayanan

2023 0.285 − 1 month Li, Zheng, Qi

2023 0.292 18 MSBs of p 1 month Li, Zheng, Qi

2024 0.292 14 MSBs of p+ q 23 hours Feng, Liu, Nitaj, Pan∗

∗ Y. Feng, Z., Liu, A. Nitaj, Y. Pan: Practical Small Private Exponent
Attacks against RSA, Cryptology ePrint Archive, Paper 2024/1331, 2024
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New Variants of RSA

Murru and Saetton variant of RSA

Proposed by Murru and Saetton in 2018.

Modulus N = pq.

A parameter: r ∈ Z/NZ, cubic non-residue modulo p, q, and N .

The arithmetic operations are performed on the ring

Z/NZ[t]/
(
t3 − r

)
=
{
a0 + a1t+ a2t

2, ai ∈ Z/NZ
}
.

The generalized Euler totient function

ψ(N) =
(
p2 + q + 1

) (
q2 + q + 1

)
.

Public key: (N, e, r).

Private key: (N, d, p, q, r).

Key equation ed− kψ(N) = 1.
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New Variants of RSA

Murru and Saetton variant of RSA

Public key (N, e, r).

Private key (N, d, p, q, r) with ed ≡ 1 (mod ψ(N)).

To encrypt a message (m1,m2) ∈ (Z/NZ)2, compute

(c1, c2) ≡ (m1,m2)
e (mod N).

To decrypt (c1, c2) ∈ (Z/NZ)2, compute

(m1,m2) ≡ (c1, c2)
d (mod N).

Abderrahmane Nitaj (Caen, France) THE LAST DECADE OF THE RSA CRYPTOSYSTEM 29 / 37



New Variants of RSA

Murru and Saetton variant of RSA

RSA vs Murru and Saetton variant

Modulus N = pq

Public exponent e

Private exponent d

Euler’s function
φ(N) = (p− 1)(q − 1)

Ring Z/NZ
Encryption c ≡ me

(mod N)

Decryption m ≡ cd
(mod N)

Key equation
ed− k(p− 1)(q − 1) = 1.

Modulus N = pq

Public exponent e, non-cubic residue r

Private exponent d

Euler’s generalized function
ψ(N) =

(
p2 + p+ 1

) (
q2 + q + 1

)
.

Ring Z/NZ
Encryption c ≡ me (mod N) on the
Pell curve

Decryption m ≡ cd (mod N) on the
Pell curve

Key equation
ed− k

(
p2 + p+ 1

) (
q2 + q + 1

)
= 1.
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New Variants of RSA

Seck and Nitaj variant of RSA

Key generation

Proposed by Seck and N. in 2024.

Modulus N = pq.

The generalized Euler totient function is ψ(n) with one of the values

ψ1(N) = p2(r−1)q2(s−1)
(
p2 + p+ 1

) (
q2 + q + 1

)
,

ψ2(N) = p2(r−1)q2(s−1)(p− 1)2(q − 1)2,

ψ3(N) = p2(r−1)q2(s−1)
(
p2 + p+ 1

)
(q − 1)2,

ψ4(N) = p2(r−1)q2(s−1)(p− 1)2
(
q2 + q + 1

)
.

Public key: (N, e).

Private key: (N, di, p, q), i = 1, 2, 3, 4 with eidi ≡ 1 (mod ψi(N)).

Key equations edi − kψi(N) = 1.
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New Variants of RSA

Seck and Nitaj variant of RSA

Encryption

Public key (N, e).

Private key (N, d, p, q) with ed ≡ 1 (mod ψ(N)).

To encrypt a message (m1,m2) ∈ (Z/NZ)2, compute a ≡ 1−m3
1

m3
2

mod N .

Compute the ciphertext

(c1, c2, c3) ≡ e · (m1,m2, 0) (mod N),

on the curve with the equation x3 + ay3 + a2z3 − 3axyz ≡ 1
(mod N).
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New Variants of RSA

Seck and Nitaj variant of RSA
Decryption

Private key: (N, di, p, q) with edi ≡ 1 (mod ψi(N)), i = 1, 2, 3, 4.

Ciphertext (c1, c2, c3) ∈ (Z/NZ)3.

Find the four solutions aj , j = 1, 2, 3, 4, of the equation
c31 + ac32 + a2c33 − 3ac1c2c3 ≡ 1 (mod N).

Let R3(p) be the set of cubic residues modulo p. For i = 1, 2, 3, 4, set

D =


d1 if ai /∈ R3(p) and ai /∈ R3(q),

d2 if ai ∈ R3(p) and ai ∈ R3(q),

d3 if ai /∈ R3(p) and ai ∈ R3(q),

d4 if ai ∈ R3(p) and ai /∈ R3(q),

Compute (m1,m2,m3) ≡ D · (c1, c2, c3) (mod N) on the curve with
the equation x3 + aiy

3 + a2i z
3 − 3aixyz ≡ 1 (mod N).

The plaintext is the triple (m1,m2,m3) with m3 = 0.
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New Variants of RSA

Seck and Nitaj variant of RSA

Security

Public key (N, e).

Private key (N, d, p, q).

Euler’s generalized: ψ(N) =
(
p2 + q + 1

) (
q2 + q + 1

)
.

Public message: (c1, c2, c3) ∈ (Z/NZ)3.

Hard problem: Solve ed− kψ(N) = 1.

Hard problem: Solve c31 + ac32 + a2c33 − 3ac1c2c3 ≡ 1 (mod N)
This is equivalent to factoring (à la Rabin)

Abderrahmane Nitaj (Caen, France) THE LAST DECADE OF THE RSA CRYPTOSYSTEM 34 / 37



Conclusion

Contents

1 RSA

2 Quantum attacks on RSA

3 Classical attacks on RSA

4 Progress in the cryptanalysis of RSA

5 New Variants of RSA

6 Conclusion

Abderrahmane Nitaj (Caen, France) THE LAST DECADE OF THE RSA CRYPTOSYSTEM 35 / 37



Conclusion

Conclusion

Le roi est mort, vive le roi

RSA deprecated by
2030

RSA disallowed by
2035

45 years of
applications

45 years of attacks

Future? Academic
interest

Crystals-Kyber KEM: FIPS 203
Module-LatticeBased Key-Encapsulation
Mechanism Standard

Crystals-Dilithium: FIPS 204
Module-LatticeBased Digital Signature
Standard

SPHINCS+:FIPS 205 Stateless HashBased
Digital Signature Standard

Falcon: FIPS 206
FFT-Over-NTRULattice-Based Digital
Signature Standard

Installation before 2030.
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Conclusion

Thank you − Merci

Source: Medium
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