
Lattice Reduction Algorithms:

EUCLID, GAUSS, LLL

Description and Probabilistic Analysis

Brigitte Vallée

(CNRS and Université de Caen, France)

Mauritanie, February 2016

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

Lattice reduction algorithms in the two dimensional case.

III- The LLL algorithm.

III-1. The main objects of a lattice.

III-2. Principles of the LLL algorithm

III-3. Description and analysis of the algorithm

III-4. Properties of the output

III-5. Examples of problems solved by the LLL algorithm

III-6. Simplified models.

Main objects of a lattice (I)

Two reference parameters :

– the determinant and the successive minima.

– The first minimum λ(L) is the norm of a shortest non-zero vector.

– The determinant detL := detG(b) with G(b) := ((bi, bj))i,j .

independent of the basis b.

When the lattice is given by a basis b, it is

– easy to compute the determinant.

– (probably) difficult to compute a shortest non zero vector.

Minkowski’s Theorem relates λ(L) and detL:

For any n, there is a constant γn, s.t, for any L of dimension n,

λ(L)2 ≤ γn [det(L)]
1/n

γn has a polynomial growth wrt n.

Main objects of a lattice (I)

Two reference parameters :

– the determinant and the successive minima.

– The first minimum λ(L) is the norm of a shortest non-zero vector.

– The determinant detL := detG(b) with G(b) := ((bi, bj))i,j .

independent of the basis b.

When the lattice is given by a basis b, it is

– easy to compute the determinant.

– (probably) difficult to compute a shortest non zero vector.

Minkowski’s Theorem relates λ(L) and detL:

For any n, there is a constant γn, s.t, for any L of dimension n,

λ(L)2 ≤ γn [det(L)]
1/n

γn has a polynomial growth wrt n.

Main objects of a lattice (I)

Two reference parameters :

– the determinant and the successive minima.

– The first minimum λ(L) is the norm of a shortest non-zero vector.

– The determinant detL := detG(b) with G(b) := ((bi, bj))i,j .

independent of the basis b.

When the lattice is given by a basis b, it is

– easy to compute the determinant.

– (probably) difficult to compute a shortest non zero vector.

Minkowski’s Theorem relates λ(L) and detL:

For any n, there is a constant γn, s.t, for any L of dimension n,

λ(L)2 ≤ γn [det(L)]
1/n

γn has a polynomial growth wrt n.

Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}

Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}

Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}

Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}

Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.

Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.

Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.

Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.

Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.

Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.

What can be expected about a good basis?

Important role played by the Gram-Schmidt orthogonalized system :

B? = (b?1, b
?
2, . . . , b

?
n) with b?i := proj. of bi orth. to < b1, b2, . . . bi−1 >

– together with the matrix P which expresses B as a function of B?

– its coefficients mi,j :=
(bi, b

?
j)

‖b?j‖

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?n

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bn mn,1 mn,2 . . . mn,i−1 mn,i mn,i+1 . . . 1

What can be expected about a good basis?

Important role played by the Gram-Schmidt orthogonalized system :

B? = (b?1, b
?
2, . . . , b

?
n) with b?i := proj. of bi orth. to < b1, b2, . . . bi−1 >

– together with the matrix P which expresses B as a function of B?

– its coefficients mi,j :=
(bi, b

?
j)

‖b?j‖

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?n

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bn mn,1 mn,2 . . . mn,i−1 mn,i mn,i+1 . . . 1

What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)

What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)

What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)

What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)

What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)

What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)

The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system B?

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1

LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

(b?i b?i+1

ui 1 0

vi mi+1,i 1

)

The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system B?

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1

LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

(b?i b?i+1

ui 1 0

vi mi+1,i 1

)

The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system B?

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1

LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

(b?i b?i+1

ui 1 0

vi mi+1,i 1

)

The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system B?

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1

LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

(b?i b?i+1

ui 1 0

vi mi+1,i 1

)

The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system B?

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1

LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

(b?i b?i+1

ui 1 0

vi mi+1,i 1

)

Main principles for the LLL Algorithm

The LLL algorithm performs the A-Gauss algorithm on local bases

Ui = (ui, vi) associated with a complex zi with three differences

(a) The output test is weaker: with a fixed τ ≤ 1

the test |vi| > |ui| is replaced by the test |vi| > τ |ui|.
Then the output domain for zi is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,

(b) The operations are decided on the system (ui, vi)

– then reflected on the system (bi, bi+1).

(c) The algorithm is performed on the local basis Ui step by step.

More precisely, the algorithm computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) for which the complex zi fulfill the Lovász conditions Lτ (i) : |ẑi| ≥ τ

Main principles for the LLL Algorithm

The LLL algorithm performs the A-Gauss algorithm on local bases

Ui = (ui, vi) associated with a complex zi with three differences

(a) The output test is weaker: with a fixed τ ≤ 1

the test |vi| > |ui| is replaced by the test |vi| > τ |ui|.
Then the output domain for zi is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,

(b) The operations are decided on the system (ui, vi)

– then reflected on the system (bi, bi+1).

(c) The algorithm is performed on the local basis Ui step by step.

More precisely, the algorithm computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) for which the complex zi fulfill the Lovász conditions Lτ (i) : |ẑi| ≥ τ

Main principles for the LLL Algorithm

The LLL algorithm performs the A-Gauss algorithm on local bases

Ui = (ui, vi) associated with a complex zi with three differences

(a) The output test is weaker: with a fixed τ ≤ 1

the test |vi| > |ui| is replaced by the test |vi| > τ |ui|.
Then the output domain for zi is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,

(b) The operations are decided on the system (ui, vi)

– then reflected on the system (bi, bi+1).

(c) The algorithm is performed on the local basis Ui step by step.

More precisely, the algorithm computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) for which the complex zi fulfill the Lovász conditions Lτ (i) : |ẑi| ≥ τ

Main principles for the LLL Algorithm

The LLL algorithm performs the A-Gauss algorithm on local bases

Ui = (ui, vi) associated with a complex zi with three differences

(a) The output test is weaker: with a fixed τ ≤ 1

the test |vi| > |ui| is replaced by the test |vi| > τ |ui|.
Then the output domain for zi is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,

(b) The operations are decided on the system (ui, vi)

– then reflected on the system (bi, bi+1).

(c) The algorithm is performed on the local basis Ui step by step.

More precisely, the algorithm computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) for which the complex zi fulfill the Lovász conditions Lτ (i) : |ẑi| ≥ τ

Main principles for the LLL Algorithm

The LLL algorithm performs the A-Gauss algorithm on local bases

Ui = (ui, vi) associated with a complex zi with three differences

(a) The output test is weaker: with a fixed τ ≤ 1

the test |vi| > |ui| is replaced by the test |vi| > τ |ui|.
Then the output domain for zi is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,

(b) The operations are decided on the system (ui, vi)

– then reflected on the system (bi, bi+1).

(c) The algorithm is performed on the local basis Ui step by step.

More precisely, the algorithm computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) for which the complex zi fulfill the Lovász conditions Lτ (i) : |ẑi| ≥ τ

Two main types of operations performed on the system Ui

(i) Translation bi+1 := bi+1 − bmi+1,iebi. also called size-reduction

This does not change `i+1, and entails the inequality |mi+1,i| ≤ (1/2).

(ii) Exchange between bi and bi+1 when Lτ (i) is not satisfied

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

ρ2 := |zi|2 =
|vi|2

|ui|2
=
`2i+1

`2i
+m2

i+1,i ≤ τ2 < 1

The exchange modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1, y̌i satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

During the exchange: `i is decreasing, both `i+1 and yi are increasing.

Two main types of operations performed on the system Ui

(i) Translation bi+1 := bi+1 − bmi+1,iebi. also called size-reduction

This does not change `i+1, and entails the inequality |mi+1,i| ≤ (1/2).

(ii) Exchange between bi and bi+1 when Lτ (i) is not satisfied

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

ρ2 := |zi|2 =
|vi|2

|ui|2
=
`2i+1

`2i
+m2

i+1,i ≤ τ2 < 1

The exchange modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1, y̌i satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

During the exchange: `i is decreasing, both `i+1 and yi are increasing.

Two main types of operations performed on the system Ui

(i) Translation bi+1 := bi+1 − bmi+1,iebi. also called size-reduction

This does not change `i+1, and entails the inequality |mi+1,i| ≤ (1/2).

(ii) Exchange between bi and bi+1 when Lτ (i) is not satisfied

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

ρ2 := |zi|2 =
|vi|2

|ui|2
=
`2i+1

`2i
+m2

i+1,i ≤ τ2 < 1

The exchange modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1, y̌i satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

During the exchange: `i is decreasing, both `i+1 and yi are increasing.

Two main types of operations performed on the system Ui

(i) Translation bi+1 := bi+1 − bmi+1,iebi. also called size-reduction

This does not change `i+1, and entails the inequality |mi+1,i| ≤ (1/2).

(ii) Exchange between bi and bi+1 when Lτ (i) is not satisfied

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

ρ2 := |zi|2 =
|vi|2

|ui|2
=
`2i+1

`2i
+m2

i+1,i ≤ τ2 < 1

The exchange modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1, y̌i satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

During the exchange: `i is decreasing, both `i+1 and yi are increasing.

Two main types of operations performed on the system Ui

(i) Translation bi+1 := bi+1 − bmi+1,iebi. also called size-reduction

This does not change `i+1, and entails the inequality |mi+1,i| ≤ (1/2).

(ii) Exchange between bi and bi+1 when Lτ (i) is not satisfied

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

ρ2 := |zi|2 =
|vi|2

|ui|2
=
`2i+1

`2i
+m2

i+1,i ≤ τ2 < 1

The exchange modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1, y̌i satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

During the exchange: `i is decreasing, both `i+1 and yi are increasing.

Description of the LLL Algorithm.

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

LLL(τ) Algorithm (τ ≤ 1)

Input. A basis b = (b1, . . . , bn) of a lattice L.

Output. A LLL(τ)-reduced basis b̂ of L

Compute the vector b? and the matrix P ;

Size reduce b;

While the set Jτ (b) is not empty, do

Choose an index i ∈ Jτ (b);

Exchange bi and bi+1;

Update b? and P ;

Size-reduce b

Jτ (b) := {i ∈ [1..d−1]; Lτ (i) is not fulfilled} = {i ∈ [1..d−1]; x2i+y
2
i < τ2} ,

Various strategies for the choice of the index i ∈ Jτ (b)

Description of the LLL Algorithm.

Important role of the potential P (b)

P (b) =

n−1∏
i=1

detL(b1, b2, . . . , bi) =
n∏
i=1

`n−ii

At each step of the while,

P (b) is decreased with the factor ρ < 1.

Number of iterations.

K(b) ≤
1

| log ρ0|
log

P (b)

P (b̂)
,

where ρ0 is the maximal value of ρ.

LLL(τ) Algorithm (τ ≤ 1)

Input. A basis b = (b1, . . . , bn) of a lattice L.

Output. A LLL(τ)-reduced basis b̂ of L

Compute the vector b? and the matrix P ;

Size reduce b;

While the set Jτ (b) is not empty, do

Choose an index i ∈ Jτ (b);

Exchange bi and bi+1;

Update b? and P ;

Size-reduce b

Jτ (b) := {i ∈ [1..d−1]; Lτ (i) is not fulfilled} = {i ∈ [1..d−1]; x2i+y
2
i < τ2} ,

Description of the LLL Algorithm.

Important role of the potential P (b)

P (b) =

n−1∏
i=1

detL(b1, b2, . . . , bi) =
n∏
i=1

`n−ii

At each step of the while,

P (b) is decreased with the factor ρ < 1.

Number of iterations.

K(b) ≤
1

| log ρ0|
log

P (b)

P (b̂)
,

where ρ0 is the maximal value of ρ.

LLL(τ) Algorithm (τ ≤ 1)

Input. A basis b = (b1, . . . , bn) of a lattice L.

Output. A LLL(τ)-reduced basis b̂ of L

Compute the vector b? and the matrix P ;

Size reduce b;

While the set Jτ (b) is not empty, do

Choose an index i ∈ Jτ (b);

Exchange bi and bi+1;

Update b? and P ;

Size-reduce b

Jτ (b) := {i ∈ [1..d−1]; Lτ (i) is not fulfilled} = {i ∈ [1..d−1]; x2i+y
2
i < τ2} ,

Siegel conditions.

We consider two parameters τ ≤ 1 and σ ≤
√

3/2

with the relation τ2 = σ2 + 1/4.

We replace the Lovász condition Lτ (i) : |zi| ≥ τ
by the weaker Siegel condition Sσ(i) : |yi| ≥ σ

The Siegel condition is indeed weaker...

(due to the size reduction |xi| ≤ 1/2)

|zi|2 ≥ τ2 =⇒ y2i = |zi|2 − x2i ≥ τ2 − (1/4) = σ2

One has another version of the LLL algorithm,

the Siegel algorithm, denoted as the Σ(σ) Algorithm.

Siegel conditions.

We consider two parameters τ ≤ 1 and σ ≤
√

3/2

with the relation τ2 = σ2 + 1/4.

We replace the Lovász condition Lτ (i) : |zi| ≥ τ
by the weaker Siegel condition Sσ(i) : |yi| ≥ σ

The Siegel condition is indeed weaker...

(due to the size reduction |xi| ≤ 1/2)

|zi|2 ≥ τ2 =⇒ y2i = |zi|2 − x2i ≥ τ2 − (1/4) = σ2

One has another version of the LLL algorithm,

the Siegel algorithm, denoted as the Σ(σ) Algorithm.

Siegel conditions.

We consider two parameters τ ≤ 1 and σ ≤
√

3/2

with the relation τ2 = σ2 + 1/4.

We replace the Lovász condition Lτ (i) : |zi| ≥ τ
by the weaker Siegel condition Sσ(i) : |yi| ≥ σ

The Siegel condition is indeed weaker...

(due to the size reduction |xi| ≤ 1/2)

|zi|2 ≥ τ2 =⇒ y2i = |zi|2 − x2i ≥ τ2 − (1/4) = σ2

One has another version of the LLL algorithm,

the Siegel algorithm, denoted as the Σ(σ) Algorithm.

Siegel conditions.

We consider two parameters τ ≤ 1 and σ ≤
√

3/2

with the relation τ2 = σ2 + 1/4.

We replace the Lovász condition Lτ (i) : |zi| ≥ τ
by the weaker Siegel condition Sσ(i) : |yi| ≥ σ

The Siegel condition is indeed weaker...

(due to the size reduction |xi| ≤ 1/2)

|zi|2 ≥ τ2 =⇒ y2i = |zi|2 − x2i ≥ τ2 − (1/4) = σ2

One has another version of the LLL algorithm,

the Siegel algorithm, denoted as the Σ(σ) Algorithm.

Siegel version –An additive point of view.

Σ(σ) Algorithm (σ ≤
√

3/2)

Input. A basis b = (b1, . . . , bn) of a lattice L.

Output. A Siegel(σ)-reduced basis b̂ of L

Compute the vector b? and the matrix P ;

Size reduce b;

While the set Kσ(b) is not empty, do

Choose an index i ∈ Kσ(b);

Exchange bi and bi+1;

Update b? and P ;

Size-reduce b

With an additive point of view

ti = − logσ yi, α = − logσ ρ,

and only viewed on the vector t,

the Σ(σ) algorithm is written as:

While ∃ti > 1, do

ťi := ti − 2α;

ťi−1 := ti−1 + α;

ťi+1 := ti+1 + α;

Kσ(b) := {i ∈ [1..d−1]; Sσ(i) is not fulfilled} = {i ∈ [1..d−1]; yi < σ},

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

Examples of problems that are solved with the LLL Algorithm.

Simplified models for the LLL Algorithm.

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,].

Simplified models for the LLL algorithm (I).

In the dynamical system underlying the LLL algorithm,

the crucial parameter in the analysis of the LLL algorithm is the factor ρ

ρ =
`2i+1

`2i
+ {{mi+1,i}}2, {{x}} := centered fractional part of x

Its analysis seems very difficult. We then introduce simplified models:

First model : the model M1.

The decreasing factor ρ (and its logarithm α := − logs ρ) are constant.

Then, the equation

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,]

defines a chip firing game.

A very well studied dynamical system....

Simplified models for the LLL algorithm (I).

In the dynamical system underlying the LLL algorithm,

the crucial parameter in the analysis of the LLL algorithm is the factor ρ

ρ =
`2i+1

`2i
+ {{mi+1,i}}2, {{x}} := centered fractional part of x

Its analysis seems very difficult. We then introduce simplified models:

First model : the model M1.

The decreasing factor ρ (and its logarithm α := − logs ρ) are constant.

Then, the equation

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,]

defines a chip firing game.

A very well studied dynamical system....

Simplified models for the LLL algorithm (I).

In the dynamical system underlying the LLL algorithm,

the crucial parameter in the analysis of the LLL algorithm is the factor ρ

ρ =
`2i+1

`2i
+ {{mi+1,i}}2, {{x}} := centered fractional part of x

Its analysis seems very difficult. We then introduce simplified models:

First model : the model M1.

The decreasing factor ρ (and its logarithm α := − logs ρ) are constant.

Then, the equation

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α,]

defines a chip firing game.

A very well studied dynamical system....

Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i)
1/2, yi+1 := yi+1(y2i + x2i)

1/2, yi :=
yi

(y2i + x2i)
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.

Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i)
1/2, yi+1 := yi+1(y2i + x2i)

1/2, yi :=
yi

(y2i + x2i)
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.

Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i)
1/2, yi+1 := yi+1(y2i + x2i)

1/2, yi :=
yi

(y2i + x2i)
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.

Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i)
1/2, yi+1 := yi+1(y2i + x2i)

1/2, yi :=
yi

(y2i + x2i)
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.

Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i)
1/2, yi+1 := yi+1(y2i + x2i)

1/2, yi :=
yi

(y2i + x2i)
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.

Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i)
1/2, yi+1 := yi+1(y2i + x2i)

1/2, yi :=
yi

(y2i + x2i)
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.

