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The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.
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Main objects of a lattice (I)

Two reference parameters :

– the determinant and the successive minima.

– The first minimum λ(L) is the norm of a shortest non-zero vector.

– The determinant detL := detG(b) with G(b) := ((bi, bj))i,j .

independent of the basis b.

When the lattice is given by a basis b, it is

– easy to compute the determinant.

– (probably) difficult to compute a shortest non zero vector.

Minkowski’s Theorem relates λ(L) and detL:

For any n, there is a constant γn, s.t, for any L of dimension n,

λ(L)2 ≤ γn [det(L)]
1/n

γn has a polynomial growth wrt n.
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Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}



Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}



Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}



Main objects of a lattice (II)

Successive minima

λi(L) := min{r | the ball B(0, r) contains at least i independent vectors of L }

Second theorem of Minkowski:

For any n, there is a constant γn, s.t, for any L of dimension n,

n∏
i=1

λi(L)2 ≤ γnn det(L)

γn has a polynomial growth wrt n.

For n ≥ 4, a lattice L does not always admit a minimal basis.

Example of such a lattice

L := {(xi)1≤i≤5 | x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 mod 2}



Algorithmic difficulty of main lattice problems.

Algorithmic framework:

– A lattice L of dimension n is given by an integer basis b of length

M := max ‖bi‖2. The input size is O(n logM).

– It is easy to compute detL in polynomial-time in O(n logM).

– However, it is probably difficult to compute a shortest non zero vector.

Shortest Vector Problem [SVP]. Given a basis b of a lattice L, find a

non-zero vector v of L that satisfies ‖v‖ = λ(L).

– This problem is only known to be NP–hard for randomized reductions

– It is closely surrounded by problems that are proven to be NP–hard

This leads to consider approximate versions of the SVP Problem:

Problem γ–SVP. Given a basis b of a lattice L, find a short enough vector

v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when

the approximation factor is γ = 2O(n).

The LLL algorithm is such an approximation algorithm.
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What can be expected about a good basis?

Important role played by the Gram-Schmidt orthogonalized system :

B? = (b?1, b
?
2, . . . , b

?
n) with b?i := proj. of bi orth. to < b1, b2, . . . bi−1 >

– together with the matrix P which expresses B as a function of B?

– its coefficients mi,j :=
(bi, b

?
j )

‖b?j‖

P :=



b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?n

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
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...
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...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...
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. . .
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bn mn,1 mn,2 . . . mn,i−1 mn,i mn,i+1 . . . 1
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What can be expected about a good basis? (III)

The lengths `i := ||b?i ||, the ratios yi :=
`i+1

`i
, the interval [a := min `i, A := max `i].

For any basis, the interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√n, an ≤ detL ≤ An

Two actions performed by the algorithm.

– It size-reduces the basis P: the final coefficients satisfies |m̂i,j | ≤ 1/2

– It narrows the interval [a,A] and increases the Siegel ratios :

the final ratios ŷi satisfy ŷi ≥ σ with σ ≤
√

3/2

Two properties for the output basis.

Length defect: ‖b̂1‖ ≤
(

1

σ

)n−1

λ(L)

Orthogonality defect:
n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)n(n−1)
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The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system B?

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=



b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1



LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

( b?i b?i+1

ui 1 0

vi mi+1,i 1

)
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Main principles for the LLL Algorithm

The LLL algorithm performs the A-Gauss algorithm on local bases

Ui = (ui, vi) associated with a complex zi with three differences

(a) The output test is weaker: with a fixed τ ≤ 1

the test |vi| > |ui| is replaced by the test |vi| > τ |ui|.
Then the output domain for zi is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,

(b) The operations are decided on the system (ui, vi)

– then reflected on the system (bi, bi+1).

(c) The algorithm is performed on the local basis Ui step by step.

More precisely, the algorithm computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) for which the complex zi fulfill the Lovász conditions Lτ (i) : |ẑi| ≥ τ
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Two main types of operations performed on the system Ui

(i) Translation bi+1 := bi+1 − bmi+1,iebi. also called size-reduction

This does not change `i+1, and entails the inequality |mi+1,i| ≤ (1/2).

(ii) Exchange between bi and bi+1 when Lτ (i) is not satisfied

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

ρ2 := |zi|2 =
|vi|2

|ui|2
=
`2i+1

`2i
+m2

i+1,i ≤ τ2 < 1

The exchange modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1, y̌i satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

During the exchange: `i is decreasing, both `i+1 and yi are increasing.
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Description of the LLL Algorithm.

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

LLL(τ) Algorithm (τ ≤ 1)

Input. A basis b = (b1, . . . , bn) of a lattice L.

Output. A LLL(τ)-reduced basis b̂ of L

Compute the vector b? and the matrix P ;

Size reduce b;

While the set Jτ (b) is not empty, do

Choose an index i ∈ Jτ (b);

Exchange bi and bi+1;

Update b? and P ;

Size-reduce b

Jτ (b) := {i ∈ [1..d−1]; Lτ (i) is not fulfilled} = {i ∈ [1..d−1]; x2i+y
2
i < τ2} ,

Various strategies for the choice of the index i ∈ Jτ (b)



Description of the LLL Algorithm.

Important role of the potential P (b)

P (b) =

n−1∏
i=1

detL(b1, b2, . . . , bi) =
n∏
i=1

`n−ii

At each step of the while,

P (b) is decreased with the factor ρ < 1.

Number of iterations.

K(b) ≤
1

| log ρ0|
log

P (b)

P (b̂)
,

where ρ0 is the maximal value of ρ.
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Siegel conditions.

We consider two parameters τ ≤ 1 and σ ≤
√

3/2

with the relation τ2 = σ2 + 1/4.

We replace the Lovász condition Lτ (i) : |zi| ≥ τ
by the weaker Siegel condition Sσ(i) : |yi| ≥ σ

The Siegel condition is indeed weaker...

(due to the size reduction |xi| ≤ 1/2)

|zi|2 ≥ τ2 =⇒ y2i = |zi|2 − x2i ≥ τ2 − (1/4) = σ2

One has another version of the LLL algorithm,

the Siegel algorithm, denoted as the Σ(σ) Algorithm.
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Siegel version –An additive point of view.

Σ(σ) Algorithm (σ ≤
√

3/2)

Input. A basis b = (b1, . . . , bn) of a lattice L.

Output. A Siegel(σ)-reduced basis b̂ of L

Compute the vector b? and the matrix P ;

Size reduce b;

While the set Kσ(b) is not empty, do

Choose an index i ∈ Kσ(b);

Exchange bi and bi+1;

Update b? and P ;

Size-reduce b

With an additive point of view

ti = − logσ yi, α = − logσ ρ,

and only viewed on the vector t,

the Σ(σ) algorithm is written as:

While ∃ti > 1, do

ťi := ti − 2α;

ťi−1 := ti−1 + α;

ťi+1 := ti+1 + α;

Kσ(b) := {i ∈ [1..d−1]; Sσ(i) is not fulfilled} = {i ∈ [1..d−1]; yi < σ},



An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α, ].
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If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α, ].



An additive point of view on the LLL algorithm.

qi := logσ `i, ci := − logσ yi = qi − qi+1, α := − logσ ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].
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Examples of problems that are solved with the LLL Algorithm.















Simplified models for the LLL Algorithm.
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Simplified models for the LLL algorithm (I).

In the dynamical system underlying the LLL algorithm,

the crucial parameter in the analysis of the LLL algorithm is the factor ρ

ρ =
`2i+1

`2i
+ {{mi+1,i}}2, {{x}} := centered fractional part of x

Its analysis seems very difficult. We then introduce simplified models:

First model : the model M1.

The decreasing factor ρ (and its logarithm α := − logs ρ) are constant.

Then, the equation

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α, ]

defines a chip firing game.

A very well studied dynamical system....
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Simplified models for the LLL algorithm (II): the model M2

There are two terms in the decreasing factor ρ =
`2i+1

`2i
+ {{mi+1,i}}2,

the ratio yi := `i+1/`i and the subdiagonal coefficient xi := {{mi+1,i}}.

In the model M2(σ), with σ ≤ 3/4

– the main variables are yi := `i+1/`i,

– the coefficients xi := {{mi+1,i}} play an auxiliary role

– they are chosen unif. at random in [0, 1/2] and indep. of yi’s.

– the algorithm stops as soon as all the variables yi satisfy yi ≥ σ.

when it runs, there is an index i for which xi + yi < 1.

While there exists an index i for which yi < σ,

choose such an index i and xi ∈ [0, 1/2],

yi−1 := yi−1(y2i + x2i )
1/2, yi+1 := yi+1(y2i + x2i )

1/2, yi :=
yi

(y2i + x2i )
;

The model M2(σ) is a simplified model for the LLL(
√
σ) algorithm.
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