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Introduction to lattices

Definition
Let n and d be two positive integers. Let by --- , b5 € R™ be d linearly
independent vectors. The lattice £ generated by (b1 -+ ,by) is the set

d d
L= ZZ[)Z = {szbz ‘ x; € Z}
=1 =1

The vectors by - - - , by are called a vector basis of £. The lattice rank is n
and the lattice dimension is d. If n = d then L is called a full rank lattice.
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Introduction to lattices

Notation
Let by--- ,bg € R™ and

=1

We use vertical representation of the vectors.

d
Zb; = Zw,bz ‘ x; €7
=1

by | by b; by
ail | ai2 ai; 14
a21 | a22 a2 a24
ajl CLjQ CL]‘Z' ajd
L Gnl | Gn2 QAnj Gngd
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Introduction to lattices

Example
@ Rank n =3,
@ Dimension d = 2,
@ The basis is (b1, by) with

1 -2
bi=| V2|, bp=| ¥3
-3 _\/g

@ The lattice £ generated by (b1, b2) is the set

L= {'U, v = x1b1 + x2bs, (1‘1,1’2) € Z2} .
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Introduction to lattices

Example: Lattice with dimension 2

Exercice

Consider the lattice with basis (b1, ba) where

SHES]

Draw the lattice £ = {v, v = x1by + xabo, (21,22) € ZQ} )
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Introduction to lattices

Example: Lattice with dimension 2

b1:|:(1):|7 b2:|:015:|7£:{’0, U:ﬂj‘lb1+$2b27 ($1’$2)€Z2}.

A
[ ] [ ] [ ] [ ] [ ] L] ° L] [ ] [ ] [ ] [ ]

bz

by

Figure: The lattice with the basis (b1, b2)
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Introduction to lattices

Proposition

Let L be a lattice of dimension d and rank n, with a basis (by --- ,bg).

Then L can be written as the columns of a n X d matrix B with real
entries.

Exercice

Prove the proposition.
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Introduction to lattices

Proposition

Let L be a lattice of dimension d and rank n, with a basis (by -+ ,bg).
Then L can be written as the columns of a n x d matrix B with real
entries.

Proof.

Let (by---,bq) be a basis of £ such that, for 1 <i <d, b; =

Letve L. Thenwv = Z?:l x;b; for x; € Z. Hence v can be rewritten as

ail aid ailp a2

a1 azq a21 22
V=T ) + ...t 2y ) =

anl And Gn1 Aan2
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Introduction to lattices

Proposition

Let £L C R™ be a lattice of dimension d. Let (b1 --- ,bq) and (b} --- b))
be two bases of L. Then there exists a d X d matrix U with entries in Z
and det(U) = %1 such that

Exercice

Prove the proposition.
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Introduction to lattices
Proposition

Let £ C R™ be a lattice of dimension d. Let (by--- ,bq) and (b} --- b))

be two bases of L. Then there exists a d x d matrix U with entries in Z
and det(U) = £1 such that

V.. ) =U(by,. .., ba)".

Proof.
v urrby + ... 4+ uigbg u11 U1d b1
v, ug1by + ... + ugqbq U1 Udd ba
b b b,
Ul : |.Also, | : | =U"| : |. ThenUU =1, and
ba ba b,
det(U) = £1.

O
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Introduction to lattices
Definition

Let £ be a lattice with a basis (by - -+ ,bg). The volume or determinant of

Lis
det(L) = y/det (BT )B),

where B is the n x d matrix formed by the columns of the basis vectors.

Exercice

Let L be the lattice with basis (b1,b2) and

1 2
by = 3 |, b=|1
-2

Compute det(L).
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Introduction to lattices

Example
@ Rank n = 3,
@ Dimension d = 2,
1
@ The basis is (bl,bQ) with b; = 3 , by =
-2

1 2
@ Thematrixis B=| 3 1.
-2 0

@ Then BT = [1 3 _2] and (BT)B = [

14 5
21 0

5 5

@ The volume or determinant of £ is det(£) = /det ((BT) B) = v/45.
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Introduction to lattices

Proposition

Let £ be a full-rank lattice (n = d) with a basis (by - -- ,bgq). The volume
or determinant of L is

det(£) = \/det ( BT )B) = | det(B)|,

where B is the n X d matrix of formed by the rows of the basis.

Exercice

Prove the proposition.
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Introduction to lattices

Proposition

Let L be a full-rank lattice (n = d) with a basis (b1 --- ,bg). The volume
or determinant of L is

det(L) = y/det ((BT) B) = | det(B)|,

where B is the n X d matrix of formed by the rows of the basis.

Proof.
We have
det ((B") B) = det (BT) det(B) = (det(B))*.

Hence det(L) = +/(det(B))? = | det(B)|.

O
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Introduction to lattices

Exercice

Let L be the lattice with basis (b1,b2) and

1 2
SHESE

Compute det(L).

E
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Introduction to lattices

Example
@ Rank n =2,
@ Dimension d = 2,

o The basis is (by, b) with by = [ L ] by = [ 2 ]

. 1 2
@ The matrix is B = [3 1]

@ The volume or determinant of L is

det(L) = |det(L)| = |1 — 6] = 5.
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Introduction to lattices

Proposition

Let L be a lattice of dimension d. Then the det(L) is independent of the
choice of the basis.

Exercice

Prove the proposition.
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Introduction to lattices

Proposition

Let L be a lattice of dimension d. Then the det(L) is independent of the
choice of the basis.

Proof.

o Let (by---,by) be a basis of L. Then det(L) = /det ((BT) B).
o Let (b} --- b)) be another basis of L.
@ There exists U € Z4*? with det(U) = 41 such that B’ = UB.
@ Then
det ((B"") B') = det ((B"U") UB)
= det (U") det ((B") B) det (U)
= det ((BT) B) :
e Hence \/det ((BT) B') = \/det ((BT) B) = det(L).

L]
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Introduction to lattices

Definition

Let £ be a lattice with a basis (b1 --- ,b4). The fundamental domain or
parallelepipede for L is the set

d
P(bl ,bd): {thzbz, |0§1'z < 1}.

i=1

Proposition

Let L be a lattice with a basis (bi,...,bq). The determinant det(L) of the
lattice is the volume V of the fundamental domain P (b, ..., by), that is

det(L) = V(P(by,. .., ba)).
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Introduction to lattices

Lattice with dimension 2

[ ] [ ] [ [ ] [ ] [ ] [ [ ] [ ] [ ]
ba uz
[ ] [ ] [ ] [ ] [ [ ]
° ° ﬁo ° @ ° °
b1 up
[ ] [ J [ J [ ] [ ] [ ] [ ] [ ] [ ] [ J
Figure: The fundamental domain for the bases (b1,bs) and (uq,uz)
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Introduction to lattices

Figure: A lattice with two parallelepipeds and the same area
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Introduction to lattices

Proposition
Let L be a lattice. Then L has infinitely many bases.

o Let (by---,bg) and (b} --- , b)) be two bases of L. Then there exists
a dx d matrix U € Z9? and det(U) = +1 such that

@ The equation det(U) = +1 has infinitely many solutions in U € Z*¢

@ Example: if d=2and U = {3 o
y T

} , then det(U) = 3z — 5y = 1 has
infinitely many solutions (z,y) € Z>.
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Introduction to lattices

How to find v?

Figure: A lattice with a bad basis (b1, bs)
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Introduction to lattices

How to find v?

Figure: The same lattice with a good basis (u1,us2)
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Introduction to lattices

A good basis
@ In a lattice some bases are better than others.

@ A good basis is a basis with

@ Short vectors.
o Almost orthogonal vectors.
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Introduction to lattices

Comparison of bases
@ In a lattice some bases are better than others.

@ A good basis is a basis with

@ Short vectors.
e Almost orthogonal vectors.

[ ] [ ] L] L] L [ ] [ ] [ ] [ ] L] L] [ ] [ ] [ ]

Figure: Comparison of the two bases
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Short vectors

Inner product and Euclidean norm

Definition
Let u = (uq,- -
© The inner product of u and v is

n
(u,v) = ulv = Zuzvz
i=1

,Up) and v = (vy -+ ,v,) be two vectors of R™.

@ The Euclidean norm of u is

lull = ((u,u))?

1
n 2
E 2
u; .
i=1

30 / 134
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Short vectors

Shortest vector

Definition

Let £ be a lattice. The minimal distance Ay of L is the length of the
shortest nonzero vector of L:

A1 = inf{||v]| : v e L\{0}}.
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Short vectors

The shortest vector

Figure: The shortest vector

v
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Short vectors

Definition (The ith successive minimum)

Let L be a lattice of dimension n. For i = 1,...n, the ith successive
minimum of the lattice is

Ai = min{max{|lvi]],...,||vill} | v1,...,v; € L are linearly independent}.

Figure: The first minima A; and the second minima Ae
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Short vectors

Definition (The Shortest Vector Problem (SVP))

Given a basis matrix B for £, compute a non-zero vector v € L such that
lv]| is minimal, that is ||v]| = A1 (L).
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Short vectors

Theorem (Minkowski’s Theorem)

Let L be a lattice with dimension n. Then there exists a non-zero vector
v € L satisfying

lo]| < v/ det(L).

Example
@ Let £ be a lattice with a basis (b1, b2) with

, _ [ 19239 . _ | 22961
Y= 1 2971 |0 27| 3546 |-

@ The determinant is det(L) = 4363.

@ The shortest non-zero vector is v = 37b; — 31by = [ 512 ] .

@ The norm is ||v]| = V2705 ~ 52.

. o 1
@ Minkowski's bound /ndet(L)» = 93.
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Closest Vectors

Definition (The Closest Vector Problem (CVP))

Given a basis matrix B for £ and a vector v ¢€ L, compute a vector vg € L
such that ||v — vg|| is minimal.
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Closest Vectors

The closest vector

Figure: The closest vector to v is vg

v
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Lattice problems
Definition
Let £ be a full rank lattice of dimension n in Z".
© The Shortest Vector Problem (SVP): ||v|| = A\ (L£).
@ The Closest Vector Problem (CVP): |[v — u|| is minimal.

© The Shortest Independent Vectors Problem (SIVP): Given a
basis matrix B for £, find n linearly independent lattice vectors
V1,02, ..., U, such that max; ||v;|| < A, where )\, is the nth
successive minima of L.

© The approximate SVP problem (vSVP): Fix v > 1. Given a basis
matrix B for £, compute a non-zero vector v € L such that
llv]] < yA1(L) where A1 (L) is the minimal Euclidean norm in L.

© The approximate CVP problem (yCVP): Fix v > 1. Given a basis

matrix B for £ and a vector v ¢ L, find a vector u € £ such that
lv — ul| <~yAid(v, £) where d(v, £) = mingez [|[v — u||.
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The LLL algorithm

Contents

© The LLL algorithm
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The LLL algorithm

Mauritania

#eAd
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The LLL algorithm

@ Invented in 1982 by Lenstra, Lenstra and Lovasz.
@ Given an arbitrary basis B of a lattice £, LLL finds a "good" basis.
@ Polynomial time algorithm.
@ Various applications:
@ Formulae for 7, log2, ...
@ Implemented in Mathematica, Maple, Magma, Pari/GP, ...
© Solving diophantine equations.
@ Solving SVP and CVP problems in low dimensions.

©@ Cryptanalysis of Knapsack cryptosystems.
@ Attacks on RSA and NTRU.
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Gram-Schmidt orthogonalization method

Theorem

Let V' be a vector space of dimension n and (b --- ,by,) a basis of V. Let
(b3 ---,bk) ben vectors such that

1—1
b =b1, bf=0bi— Y bl
j=1

where, for j < i
Hid = T ey

71777

Then (b} --- ,b}) is an orthogonal basis of V.

Exercice
Prove the theorem.

v
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The LLL algorithm

Gram-Schmidt orthogonalization method

Proof.
o (by---,0b}) is a basis of V
[ by ] 1 0 0 0 o717 b3 i
b2 H2,1 1 0 0 s 0 b;
b3 31 3,2 1 0 0 bs
b1 Hnil Hn—1,2 MHn-1,3 - 1 0 by —1
L bn i L Hn,1 Hn,2 Hn,3 e Hn,n—1 1 4 L b;ky, i

@ Hence det(U) = 1.
© bt = by et b} = by — o1y, then (b3,b3) = 0.
@ By recursion, (b}, b}) =0 for k # 1.

0

v
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The LLL algorithm

Gram-Schmidt orthogonalization method
Proof.
The basis (b} --- ,b}) is orthogonal.

@ Since b] = by and b3 = by — 1,107, then

(b1,b3) = (b1,b2 — p2,1b1) = (b1, b2) — 2,1 (b1, b1)

<627b1>
= (by, by) — bi,b1) =0
(o bs) = 223 (o)
@ By recursion, if (b7 ---,b7 ;) is orthogonal for i > 3, then for
1<k<7-1,
<bk7b* = <bk7 Z,uZ] > bkvb > :U’i,k <b27bz>

* <b17blt> ko 7k
<bk7 bk>
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The LLL algorithm

Gram-Schmidt orthogonalization method

Gram-Schmidt orthogonalization method: n = 2

. . (b2, b1)
= b5 = by — b
bl bl, 2 2 <b17bl> 1
- (b2, b1)
= (b1, by) — b1,b1) = 0.
= (b1, b5) = (b1, b2) (bl,b1)< 1,01)

b5 by
[ ]

[ ]
by = b

Figure: An orthogonal basis (b7, b3)
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The LLL algorithm

Gram-Schmidt orthogonalization method

Gram-Schmidt orthogonalization method: the algorithm

Algorithm 1 : Gram-Schmidt process

Require: A basis (b - ,by,) of a space vector V' C R™.
Ensure: An orthogonal basis (b3 --- ,b}) of V.

1: Set bf =b1.
2. for i = 1,2,---n, do
3 forj=1,2,---i—1, do
<bub )
4 Compute p; ; = 058 b*>.
5:  end for
6: Compute by =b; — ZJ 1 13,507
7: end for
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The LLL algorithm

Gram-Schmidt orthogonalization method

Exercice

Give the associated orthogonal Gram-Schmidt vectors for :
Q b =(3,1), bo=(1,2).
Q b =(3,2,5), by =(2,4,-1), bg = (—2,—1,6).
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The LLL algorithm

Gram-Schmidt orthogonalization method

Exercice

Give the associated orthogonal Gram-Schmidt vectors for :
Q b =(3,1), b2=(1,2).
Q b =(3,2,5), by =(2,4,-1), bsg = (-2,—1,6).

We get
Q b1 = (3,1), jz1 = {45, 05 = b — by = (~5,3)
(2]
b = (3,2,5),
9 ” 49 67 83
H2,1 = 38’ by = <387 19’ _38> ,
11 730 . 1738 1027 632
H3,1 = 19’ H32 = o 3T (—7177717,717) )
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The LLL algorithm

Gram-Schmidt orthogonalization method

Proposition

Let B = {b1,...,b,} be a basis of a lattice L and B* = {b},..., b’} be
the associated Gram-Schmidt basis. Then for1 <i<n,

167 ] < 1183l

Exercice

Prove the Proposition

LATTICES AND CRYPTOGRAPHY 49/ 134



The LLL algorithm

Gram-Schmidt orthogonalization method

Proposition

Let B = {b1,...,b,} be a basis of a lattice L and B* = {b},...,b}} be
the associated Gram-Schmidt basis. Then for1 < i <n,

16711 < [1B]]-

Proof.
o Fori=1, |o7] = bl

o For 2 <i<n, by =0b+ >~} i jb}, Then

i—1

10411 = 16517 + > 42 511051 > 1165 1.
j=1

O

v
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The LLL algorithm

Gram-Schmidt orthogonalization method

Proposition

Let B = {b1,...,b,} be a basis of a lattice L and B* = {bj,..., b’} be
the associated Gram-Schmidt basis. Then for1 <i<n,

1671 < [13]]-

Gram-Schmidt orthogonalization method: the determinant

Corollary (Hadamard)

Let B = {b1,...,b,} be a basis of a lattice L and let B* = {b},...,b}}
be the associated Gram-Schmidt basis. Then

det(£) = [T Io;11 < T el
i=1 i=1

4
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The LLL algorithm

Definition
Let £ be a lattice. A basis (by--- ,by) of L is LLL-reduced if the
orthogonal Gram-Schmidt basis (b7 - - - , b,) satisfies
1 .
‘:ui,j’ < 55 pour 1< j<i<m, (1)
3, s )
Sl < b+ bl pour 1<i<m, (2)
where, for j < i
<bi7 b;k>
J>7
Condition (2) can be transformed into the inequality
3 X ¥
(5 - Heial? < e
52 /134
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The LLL algorithm

LLL-reduced basis: dimension 2

o (b2, b7) = [[bal[[b2]| cos(br, b2).
| {b2,b) | [[balll[b2]l] cos(by,ba)]
® Ineal = ‘(bf,bﬁ - [T
o |p21| < 5 means |cos(by,bo)| is small and by &L by.
o (3 —|u2,1]?) ||b5)1? < [|b3]|> means b} can be short.

b5 be
[ ]

by = b’

Figure: An 2-dimension reduced basis

v
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__ Thelitagortm |
The LLL algorithm

LLL-reduced basis: properties
Let (by---,by) be an LLL-reduced basis and (b7,--- ,b}) be the
Gram-Schmidt orthogonal associated basis.

Q b1 <2 b for 1< j<i<n.
@ TIL, Ilbil] < 2" det(L).

Q b <27 b for1<j<i<n.
Q byl <27 (det(L)).

Q [|b;]| < 277D (det L) 751,

@ For any nonzero vector v € L, ||b1]| < 2”T_1Hv||
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The LLL algorithm

Comparison

o | The LLL algorithm: [|b1] < 2"7 det(L).
o Minkowski ] < v/det(L)+

Theorem

Let (by,--- ,by) be a basis of a lattice L of dimension n. Define
B = max; ||b;|]|. The LLL algorithm computes an LLL-reduced basis with
running time

O (n4 log? B) .
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The LLL algorithm

Example

@ Let £ be a lattice with a basis (u1,u2) with
| 12104590255 | 509666982522
17| 16053445447 |° 27 | 675934577519 |-

The determinant is det(£) = 11.

o | The LLL algorithm: [|by|| < 21 det(L)2 ~ 3.

9.
. . 2 1
@ The LLL outputs the basis (b1, be with b; = [ 3 } , by = [ 4 ] .

The smallest norm is ||b1|| = V13 ~ 3.6.
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The LLL algorithm

Example

Find (x1, 29, 23) € Z3 such that F(x1,z2,73) # 0 is minimal where

F(x1,x2,x3)

= (23795990, + 2789321x5 + 6722230x3)>

+ (10618674239468197x1 + 4045209235436167 x5 + 30339069255245373?3)2

+ (175016190714715827x1 + 6667283455917942525 + 500046259176094162:3)2.

@ Consider the vector
23795990x1 + 2789321xo + 6722230x3
v = 10618674239468197x1 + 4045209235436167x2 + 3033906925524537x3
175016190714715827x1 + 66672834559179425x5 + 50004625917609416x3
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The LLL algorithm

Example

Find (21,72, 23) € Z3 such that F(z1, 9, 73) # 0 is minimal where

F(x1,x2,x3)

= (23795990, + 2789321a5 + 6722230x3)

+ (10618674239468197x1 + 4045209235436167 x5 + 3033906925524537173)2

+ (175016190714715827x1 + 6667283455917942525 + 50004625917609416333)2.

23795990
@ Then v = zyu1 + xo2us + x3u3z with up = 2789321
6722230
10618674239468197 175016190714715827
uo = | 4045209235436167 |, wuz= | 66672834559179425
3033906925524537 50004625917609416
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The LLL algorithm

Example

Find (21,72, 23) € Z3 such that F(z1,xe,73) # 0 is minimal where
F(x1, 2, 23)

= (23795990, + 2789321y + 6722230x5)

+ (10618674239468197x1 + 4045209235436167x5 + 3033906925524537x3)?
+ (175016190714715827x1 + 6667283455917942525 + 500046259176094162:3)2.

@ Apply the LLL algorithm to get

bp - —-23 11 12
bp - —2 =21 -16
bs — 20 -—-19 27
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The LLL algorithm

Example
Find (21,2, 23) € Z3 such that F(x1, 12, 23) # 0 is minimal where
F($17$2,1‘3)

= (23795990 + 27893215 + 6722230x5)>
+ (10618674239468197x1 + 4045209235436167 + 30339069255245373)>

+ (175016190714715827x1 + 6667283455917942525 + 500046259176094162:3)2.

@ Solve the equation

23795990x1 + 2789321z + 6722230x3 —23
10618674239468197x1 + 4045209235436167x2 + 3033906925524537x3 = 11
175016190714715827x1 + 66672834559179425x5 + 50004625917609416x3 12

o We get

(z1,z2,x3) = (—76189063333397798959, —3309671943642864303, 271074617596603292055).

@ The minimal is then F(z1, 79, 23) = (—23)% + 112 + 122 = 794.

v
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The LLL algorithm

The LLL algorithm
Algorithm 2 : The LLL algorithm

Require: A basis (u1, -+ ,up)
Ensure: An LLL reduced basis (b1,--- ,by)
1: Forizl,...,n,bi:ui.

2. k=2

3: while £ <n do

4 forj=1,...,k—1do

5 kj = gzkbi b, = b, — | 1k, 105

6: end for

7o R = (4 sy ) 5] then
8 k=k+1.

9: else

10: Swap bi—1 and by, k = max(k — 1,2).
11:  end if
12: end while
13: Return (by,---,by).
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Applications to RSA

Contents

9 Applications to RSA
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The RSA Cryptosystem

@ Invented in 1978 by Rivest, Shamir and Adleman.

@ The most widely used asymmetric cryptosystem.

@ The security of RSA is based on two hard problems:

@ The integer factorization problem.
@ The RSA Problem (the eth modular root).
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The RSA Cryptosystem

RSA

The Security Division of EMC

The most widely used cryptosystem

1. Encryption and digital signature.

Implemented in most Web servers and browsers.
Securing e-commerce and e-mail.

Authenticity of electronic documents.

LA ol o

Most commercially available security products.
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Applications to RSA

Cryptography and the Internet

Cryptographic Protocols

Identité du site web
Site web : webmail.unicaen.fr

Propriétaire : Ce site web ne fournit pas d'informations sur son propriétaire.

Vérifiée par: TERENA

Vie privée et historique

Ai-je déja visité ce site web auparavant ? Oui, 1 096 fois
Ce site wgb collecte-t-il des informations (cookies) sur Oui

mon ordinateur ?

Ai-je un mot de passe enregistré pour ce site web ? Non Voir les m
Détails techniques

Connexion chiffrée (clés TLS ECDHE_ RSA WITH_AES_256_CBC_SHA, 256 bits, TLS 1

La page actuellement affichée a été chiffrée avant d'avoir été envoyée sur Internet.

ras apica
Sujet
4lnfo clé publigue du sujet
Algorithme clé publigue du suje
Cle publigue du sujet

Valeur du champ

Chiffrement PECS §1 RSA
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Cryptography and the Internet

Cryptographic Protocols

dlnfo cle publique du sujet

Algorithme clé publique du sujet Algorithme clé publigue du sujet
Clé publique du sujet Ll el Gl i
aExtensions
Vajeur du Champ Identificateur de la clé d'autorité de certification
Module (2048 bits) - Valeur du champ
bd be 7e 50 5f b7 ac d0 12 68 c7 c6 1d fo 6c [9; o5 o3 o2 a2 31 1 o5 25 d¢ 5¢ a7 o2 3a
32 e8 d3 eb 97 39 f8 24 b6 ed 87 cd £5 0d 59 |17 Oe cb 10 &0 5d 10 1f la 86 4c 92 57 31
£1 el 186 56 48 bc 81 74 26 ce Za di d4 a7 |5 2o =b =1 1913 ee be 2l 03 of 28 Jf 88
30 e7 £f e€ la €6a 2a 08 a2 56 62 45 ae 42
a6 fa 7f 58 bd d2.78 fa:f0 To04:4k o3 73 22 | 4 55 53 41 3684 10 54 78 10 .41 Ta 70 ao
c3 1d 18 4c d0 2a 57 0d bc d2 34 84 £0 d& 87
cd 43 cb 94 £6 c5 b9 34 56 5c Of e3 35 9e 5a |Lipodent 23 bica)
90 c2 0d 7a Ge fa 9 d4 02 54 ee b3 B8b bf a3
32 ¢7 01 ba 99 a% b3 da b2 00 0d d5 68 22 9f 4b J
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Coppersmith’s method

Polynomial equation

Given a multivariate polynomial f and a modulus N, find a solution
(z1,...,2y) of the equation

f(z1,...,2,) =0 (mod N).

Principles of Coppersmith’s method
@ f is a polynomial with small roots.
@ Use f to build w polynomials sharing the roots.
© Use the new polynomials to build a lattice £ with a basis B.
Q Apply the LLL algorithm to reduce the basis B.

© Solve the polynomials of the reduced basis using Howgrave-Graham's
Theorem and resultant or Grobner Basis techniques.

v
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Coppersmith’s method

The attack of Boneh and Durfee
o Start withed —k(p—1)(¢—1) = 1.
@ Transform to k(N —p—q+1)+1=0 (mod e).
o Consider f(z,y) =2(N +y)+1=0 (mod e).
@ Then ’f(k, —p—q—1)=0 (mod e).‘

@ For m and t positive integers, 0 < k < m, define the polynomials

gk7i1 (:L‘a y) = xil_kf(:E?y)kem_ka k S il S m,
hiein (@, y) =y " f@,y)*e™ ", k+1<iy <k+t.
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Coppersmith’s method

Exercice

© Show that | gy, (k,—p—q—1) =0 (mod e™).

@ Show that | hy,(k,—p —q—1) =0 (mod e™).

© Letm=2andt=1. For 0 <k <m, compute g ;,(x,y) and
hk,iQ (.’I}, y)-
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Coppersmith’s method

Exercice
o We have’f(k:, —p—q—1)=0 (mod e). ‘
@ Then

G (ky—p—q—1) = k" F f(k,—p — g — 1)Fem*

= ki kgekem=k = pem,

Hence gy i, (k,—p—q—1) =0 (mod e™).
e Also,
hiis(k,—p—q—1) = (=p—q—1)2"*f(k,—p— g — 1)
— (_p —q— 1)i27ka/ek6m7k — ™.

Hence hy, ;o (k,—p —q—1) =0 (mod e™).
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Coppersmith’s method

Exercice

Let m =2 and t = 1. Compute gy, (z,y) = 21~ * f(z,y)ke™* for
0<k<mandk<i <m.

We have
gO,O(J:a y) = 627 gO,l(xay) = 621'3 90,2($7 y) = 621‘27
g11(z,y) = (xy+ Nz + 1)e = e+ Nex + exy,
g12(z,y) = z(vy + No + 1)e = e + Nex® + ex’y,
@2(x,y) = (xy + Nz +1)* = 1 + 2Nz + Na? 4 22y + 2N2%y + 22>

LATTICES AND CRYPTOGRAPHY 72/ 134



Applications to RSA

Coppersmith’s method

Exercice
Let m =2 and t = 1. Compute hy;,(z,y) =y~ f(z,y)*e™* for
0<k<mandk+1<iy <k+t.

We have

hoa(z,y) = ye,
hia(z,y) = y(ry + Nx + 1)e = Nexy + ey + exy?,
has(z,y) = y(oy + Na + 1)

=y + 2Nzy + N2y + 22y? + 2Nz2y? + 223
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Coppersmith’s method

Exercice
Letm=2andt=1. Fork=0,...

gk‘,il (:Ea y) and hk’,ig (.T, y)

,m, collect the monomials of

|+ Jgh] 1 | o [2® |y [ay|[ay]ay[a%®]a%]
k=01 goo olololololol] ol o
k=01 gos | 0 ololololol| ol o
k=0 g2 | 0] 0 ol ol o] o] ol o
k=0|ho1| O] 0] 0 0] 01 0 0 0
k=1[gi1 ] e [Ne[ 0 ] 0 0[]0 0 0
E=11 g12 e 0 | Ne| O 0 0 0 0
k=1|hao| 0 | 0 e | Ne| 0 0 0
k=2|go | 1 |2N 0| 2 [2N] 0 0
k=2|hes| O] 0] 012N N]| 2 |2N
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Coppersmith’s method

Proposition
Let N = pq be an RSA modulus with ¢ < p < 2q. Then

2
\2[\/N<q<\/ﬁ<p<\/§\/ﬁ, p+q<3VN.

Exercice

Prove the proposition.
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Coppersmith’s method

Proposition

Let N = pq be an RSA modulus and e < ¢(N) = (p—1)(q — 1) be a
public exponent such that ed — k¢(N) = 1. Then k < d.

Exercice
Prove the proposition.
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Applications to RSA

Coppersmith’s method

The attack of Boneh and Durfee

@ In the equation ed — k¢(N) = 1, suppose that .

o Let X = N%and Y = 3Nz,

° Thenk:<d<Xandp+q—1<3N% =Y.

@ Form a lattice £ with the coefficients of the polynomials
Gki (X, Yy) and hy 4, (X2, Yy). )
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Coppersmith’s method

The attack of Boneh and Durfee

Form a lattice £ with the coefficients of the polynomials g ;, (X, Yy)
and hy ;, (X, Yy).
H g, h “ 1 [ x 22 y Ty [ x“y :cy2 :r2y2 ac2y3 ”
90,0 0 0 0 0 0 0 0 0
90,1 0 Xe? 0 0 0 0 0 0 0
90,2 0 0 x2e? 0 0 0 0 0 0
ho.1 0 0 0 0 0 0 0 0
91,1 * * 0 0 XYe 0 0 0 0
91,2 * 0 * 0 0 X2ve 0 0 0
h12 0 0 0 * * 0 ‘ XY2e 0 0
92,2 * * * 0 * * 0 ‘ X2v? ‘ 0
ha 3 0 0 0 * * * * * ‘ Xx2y3 ‘
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Coppersmith’s method

The attack of Boneh and Durfee
e Consider f(z,y) =2(N +y)+1=0 (mod e).
@ Then ’f(k, —p—q—1)=0 (mod e).‘

@ For m and t positive integers, 0 < k < m, define the polynomials

gk,il (.’IJ, y) = xil_kf(xay)kem_ka 0 S k S m, k S Z.1 S m,
hiis(7,y) = Y2 F f(z, )™ %, 0<k<m, k+1<is<k+t.

@ Form a lattice £ with the coefficients of the polynomials
Gk (X, Yy) and hy 4, (X2, Yy).

Exercice

@ Prove that any polynomial P(Xx,Yy) € L satisfies
P(k,—p—q+1) =0 (mod e™).
o Give the general form for det(L).
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Coppersmith’s method

The attack of Boneh and Durfee

@ For m and t positive integers, form a lattice £ with the coefficients of
the polynomials g; ;, (Xz,Yy) and hy, (Xz,Yy) with

i (X, Yy) = (Xa) " f(Xz, Yy)re™ P,
0<k<m, k<ip<m,

hicir (X2, Yy) = (Yy)2 7% f (X, Yy)re™F,
0<k<m, k+1<ix<k+t.

@ Since g(k,—p—q+1)=0 (mod €™), h(k,—p—q+1)=0
(mod €™) and P(z,y) = ag(x,y) + bh(x,y) with a,b € Z, then
h(k,—p—q+1) =0 (mod ™).

@ The determinant of the lattice is

|det(L) = erexxy™ |

v
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Coppersmith’s method

The attack of Boneh and Durfee

@ For m and t positive integers, form a lattice £ with the coefficients of
the polynomials g; ;, (Xz,Yy) and hy, (Xz,Yy) with

Grir (X2, Yy) = (Xa) 7 f( Xz, YVy)kem ",
0<k<m, k<i<m,

iy (X2, Yy) = (V)2 " (X2, Yy)rem ™,
0<k<m, k+1<i3<k+t.

@ The determinant of the lattice is
’det(ﬁ) = el X"XY"Y, ‘

Exercice

Compute the dimension w of L and the exponents n., nx and ny.
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Coppersmith’s method

The attack of Boneh and Durfee

iy (X, Yy) = (Xa)"7F (X2, Yy)re™ ",
0<k<m, k<i <m,

hiein (X2, Yy) = (Yy)2 7" f (X, Yy)Fe™
0<k<m, k4+1<iy<k+t.

@ The dimension of L is

m k+t

UL m—+ 1)(m + 2t + 2
w:ZZI—i—ZZl:( +)(2+ +2).

k=01i1=k k=0i2=k+1
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S AT e |
Coppersmith’s method

The attack of Boneh and Durfee

in (X, Y9) = (Xa)1 ™4 (X, Yy e,
0<k<m, k<ip<m,

hiio (X, Yy) = (V) f(Xa, Yy)rem ™,
0<k<m, k+1<iz<k+t.

@ The exponent of e is m — k. Then

m m m k+t
m(m+1)2m + 3t + 4
=Y S m-p+Y. 3 (mok) = MOEDERERED,
k=0i1=k k=01i2=k+1
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S AT e |
Coppersmith’s method

The attack of Boneh and Durfee

in (X, Y9) = (Xa)1 ™4 (X, Yy e,
0<k<m, k<ip<m,

hiio (X, Yy) = (V) f(Xa, Yy)rem ™,
0<k<m, k+1<iz<k+t.

@ The exponents of X are i1 and k. Then

m(m+1)2m+ 3t +4
=YD uY 3 k= MOEHERIRED
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S AT e |
Coppersmith’s method

The attack of Boneh and Durfee

in (X, Y9) = (Xa)1 ™4 (X, Yy e,
0<k<m, k<ip<m,

hiio (X, Yy) = (V) f(Xa, Yy)rem ™,
0<k<m, k+1<iz<k+t.

@ The exponent of Y are k and i2. Then

mon m k4t
nY:ZZk+Z Z Z'2:(m+1)(m2+3tm+2m+3t2+3t)'
k

6
=01i1=k k=0 io=k+1
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Applications to RSA

Coppersmith’s method

The attack of Boneh and Durfee

° w— (m+1)(7;z+2t+2)‘
° n, = m(m+1)(§m+3t+4) )
° ny = m(m+1)(§m+3t+4)‘
2 2
° ny = (m+1)(m +3t7g+2m+3t +3t).
Exercice

Let t = 7m. Find the dominant part of w, n., nx and ny.
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Coppersmith’s method

The attack of Boneh and Durfee
@ Putt=m7. Then
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Coppersmith’s method

The attack of Boneh and Durfee
@ Apply the LLL algorithm to the lattice L.

@ It outputs a reduced basis
P (Xz,Yy), Po(Xx,Yy),...,P,(Xx,Yy). (LLL properties p. 54)

@ The first polynomials satisfy
1P (X, Yy)||| <277 det(L)n,
| Po(Xa, Yy)| < 2% det(C)7.

Definition
Let P(x,y) =2, a; jz'y’ € Z[z,y]. Then the Euclidean norm of

P(z,y) is
1P, )l = /35 25 05
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Applications to RSA

Coppersmith’s method
The attack of Boneh and Durfee
The polynomials P (Xz,Yy)|| and ||Po(Xx,Yy) satisfy
n 1
o [[P(Xz, Yy)||, [Pa(Xa,Yy)|| <27 det(L)nT.
@ Pi(k,—p—q+1)=0 (mod e™), Po(k,—p—q+1) =0 (mod e™).

Theorem (Howgrave-Graham)

v

Let P(x,y) € Zlz,y] be a polynomial with at most w monomials. Suppose
that

Q P(x0,y0) =0 (mod ™),
(2] |£Co| < X, |y0| <Y,
Q |P(Xz,Ya)| < %
Then P (xo,y0) = 0 holds over the integers.

Exercice
Prove the theorem.

v
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Coppersmith’s method

Howgrave-Graham
@ We have

|P(xo,y0)| = | aijaiyd| < ai,jxéyé‘ <> laig XYY

,J 1] ]

@ The Cauchy-Schwarz inequality asserts that for a, 8 € R, we have

2

2 2
E Oli,jﬁi,j < E Qg § rBz‘,j
1,7 2% 12

@ Using this, we get
(S loasx )< (52517) (S (s X'¥)?) =
W (ai XY7) = w|P(Xx,Ya)|2.
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Coppersmith’s method

Howgrave-Graham
o We have |P(z0,10) y < Vo||P(Xz,Y)].
o If |P(Xz,Ya) <% , then |P(z0,90)| < Vvw||P(Xz,Yy)| < e™.
o If P(xz0,90) =0 (mod e™), then P (xg,y0) = 0.
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Coppersmith’s method

Proposition

Let Pi(x,y), Po(z,y) € Z]x,y] be two polynomial with at most w
monomials. Suppose that

Q P(k,—p—q+1)=0 (mod e™) and P> (k,—p—q+1)=0

(mod e™),
Q |k <X,|-p-q+1]<Y,
Q [|A(Xz,Ya)| < % and ||Py(Xz,Yz)| < %

Py (z0,y0) =0

Then (k,—p — q+ 1) is a solution of the system
Ps (z0,90) = 0.

The attack of Boneh and Durfee
The first polynomials of the lattice £ satisfy condition (1) and (2) and

w 1
[P1(Xz, Yy)l, [[P(X,YVy)| <27 det(L)~-T.

y
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Coppersmith’s method
The attack of Boneh and Durfee
o Set 27 det(ﬁ)ﬁ <.
w

7
@ Then
1

e Since det(L) ~ ™ X"x Y™ (p. 87) with X = N%, Y = 3Nz and
e ~ N, then

det(L < emw=l) < emw,

Nn’eNn'XéN%n'Y < ™ wa’
o Taking logarithms, we get n. + n’y§ + in}. < mw’. Then

LS U WPENS WS U NPT 0 WD SHRS U
377 )M 3" )Mo g Tt TR ™

<1+ 3
—4+7)m
2
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Coppersmith’s method

The attack of Boneh and Durfee
We have

11 AN U VRFTORS 5 WS S O
32Tm 3T )M OT o\ TaT T a7

<1+ 3
—TT7T |m
2

>m3

Exercice

Rearrange the inequality in terms of T.
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Applications to RSA

Coppersmith’s method

The attack of Boneh and Durfee
We have

1 1 1 1 1/1 1 1
<3+27)m3+<3+27>m35—|—2<6+2T+T2>m3

Rearranging, we get

1 1 1 1 1 9
6(_2+25>+2(—2+5>T+4T < 0.

Exercice
@ Find the optimal value 1.
© Plug 19 and find a new inequality.
© Solve for §.
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Coppersmith’s method

The attack of Boneh and Durfee
Rearranging, we get

1 1 1 1 1 9
6<—2+25>+2<—2+5>T+4T < 0.

© This is optimized for 7y = % —9.

@ Plugging 79, we get —126% +286 — 7 < 0.

© Solving for §, we get

~ 0.284.

0< -+ —~2048, o6<

(@ REEN|
o S
\]
SNIIEN
|,
N

Qo Hence5<%—

o

~ 0.284.

v
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Coppersmith’s method

The attack of Boneh and Durfee
@ Suppose that ed — k(N —p — g+ 1) = 1 with d < N? with
§< I YT~0284,
e Find Pi(z,y) and Py(z,y) such that

w 1
[P1(Xz, Yy, [[P( X, Yy)|| <27 det(L) =T

@ Solve Pi(x,y) = 0 and Py(z,y) = 0 over Z? using resultants or
Grobner basis techniques to get zg = k and yo = —p — g+ 1.

o Then d = MN—p—atl) 1

@ Using yo = —p—q+ 1 and N = pq, we can find p and gq.

Exercice
Prove the last assertion. )
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NTRU

NTRU
@ Invented by Hoffstein, Pipher et Silverman in 1996.
@ Security based on the Shortest Vector Problem (SVP).

@ Various versions between 1996 and 2001.

Definition

The Shortest Vector Problem (SVP): Given a basis matrix B for L,
compute a non-zero vector v € L such that ||v|| is minimal, that is

ol = Au(£).
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NTRU: Ring of Convolution 11 = Z[X]/(X" — 1)

Polynomials
f Zz 0 1 g = Ziial giXiy J
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NTRU: Ring of Convolution 11 = Z[X]/(X" — 1)

Polynomials

f Zz 0 1 g = Ziial giXiy

Sum
f+g9g=(fo+g0, fit+g1, -, fn-1+9gn-1).
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NTRU: Ring of Convolution 11 = Z[X]/(X" — 1)

Polynomials

f Zz 0 1 g = Ziial giXiy

Sum
f+g9g=(fo+g0, fit+g1, -, fn-1+9gn-1).

Product
f*g:h: (ho,hl,--- 7hN—1) with

hy = Z fig;.

i+j=k (mod N)

LATTICES AND CRYPTOGRAPHY 101 / 134



NTRU: Ring of Convolution 11 = Z[X]/(X" — 1)

Convolution

f: (f07f17"' 7fN—1)7 g = (907917”' 7gN—l)‘
f*g:h: (h()ahla"' 7hN—1)

1 X .. Xk .. X N-1

fogo fogt e Jogk | Jogn -1

+ || Jign—1 f190 o J19k—1 |l fign—2

+ || fogn—2 || fogn-1 || -+ Jogk—2 || - || Jegn—3

+ || fv—292 || Iv—293 || 00 || SveGrye || || Sv—291

+ | fvo1gr || fv—ige || o || NGk || o0 || Sv—190
7 — ho Ay i o Ay
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NTRU Parameters

@ N = a prime number (e.g. N =167, 251, 347, 503).
@ ¢ = a large modulus (e.g. ¢ = 128, 256).

@ p = a small modulus (e.g. p = 3).
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NTRU Algorithms

Key Generation:

Randomly choose two private polynomials f and g.

Compute the inverse of f modulo ¢: f * f, =1 (mod q).

°
e Compute the inverse of f modulo p: f * f, =1 (mod p).
°

Compute the public key h = f, * g (mod q).
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NTRU Algorithms
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NTRU Algorithms

Encryption:
@ m is a plaintext in the form of a polynomial mod gq.
@ Randomly choose a private polynomial 7.

@ Compute the encrypted message e = m + pr x h (mod q).
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NTRU Algorithms

Encryption:
@ m is a plaintext in the form of a polynomial mod gq.
@ Randomly choose a private polynomial 7.

@ Compute the encrypted message e = m + pr x h (mod q).

Decryption:
o Computea= fxe= f*x(m+pr+h)=fxm+pr*g (mod q).

e Compute a x f, = (f *m+pr=g) * f, =m (mod p).
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NTRU

Correctness of decryption
We have

= fxe (mod q)

f*(pxrxh+m) (mod q)
[xr*(p*xgx*fy)+ f+m (mod q)
pxrxgxfxfo+ fxm (mod q)
pxrxg+ f*m (mod q).

2 2 2 2o 8
Il

MAPLE p. 24
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NTRU

Example

Key generation
@ Public parameters N =13, p =3, ¢ = 8.
@ Private keys f = X2 4+ X1 4 X104 X9 4 X8 4 X7 41,
g=X24+X° - X+ X3 -X2+X -1
o fxf,=1 (mod p) with f, =
2X 1242 x 42X 104 2X9 42 X8 42X T+2X542X44+2X3+2X242X.
o fxf,=1 (mod q) with f, =
X2 XM X104 X940 X84 X7T42X0 4 X504 X4+ X3+ X2+ X +2.
@ The public key is h = g * f,
(mod q) = 2X*2 +2X M +2X% + 2X7 +3X5 4+ 2X3 + 2X.
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NTRU

Example

Encryption
@ Message m = X0+ X% + X7+ X4 + X3 + 1.
@ Random error r = X12 + X1 + X8 4 X7 1 1.

@ The ciphertext e == p*x 7 * h+m (mod q) =
5X12+2X11—|—3X10—|—2X9—|—5X8+3X7+2X6+5X5+6X4—|—4X3+2X.)
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NTRU

NTRU
Example
Decryption
o
a = fxe (modq)
= 6X24+3x146x1042X% 4+ 3X8 44X
+6X5 4+ 6X5 +4X* +7X3 + X2 46X + 3.
()]
m = fpxa (mod p)
= XU+ X8+ XT+ X4+ X341,
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Application of LLL to NTRU
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GGH

GGH
@ Invented by Goldreich, Goldwasser and Halevi in 1996.
@ Security based on the Closest Vector Problem (CVP).
@ Brocken by Nguyen in 1999.

Definition (The Closest Vector Problem (CVP))

Given a basis matrix B for £ and a vector v ¢ L, compute a vector vg € L
such that ||v — vg|| is minimal.

v
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GGH

Key generation

Algorithm 3 : GGH key generation

Require: A lattice £ of dimension n.
Ensure: A public key B and a private key A.

1:

Find a “good basis” A of L.

2: Find a “bad basis” B of L.
3:
4. Keep A as the secret key.

Publish B as the public key.
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GGH

Encryption

Algorithm 4 : GGH encryption

Require: A lattice £, a parameter p > 0, a public key B and a plaintext
m e Z".

Ensure: A ciphertext c.

1: Compute v =mB € L.
2: Choose a small vector e € [—p, p]™.
3: The ciphertext is c = v +e.
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GGH

Encryption

Algorithm 5 : GGH decryption
Require: A lattice £, a private key A and a ciphertext c.
Ensure: A plaintext m € Z".
1: Use A to compute w = cA~ ' & L.
2: Use Babai's algorithm to find the closest vector v € L to w.
3: Compute m = (vA)B~ !,

MAPLE p. 20
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GGH

Example

Key generation

12 12 19
@ The private key Ais A= |—-1 —-15 24
66 —24 -—23

@ The public key B is
829379706506153221 669655507050961029 1561586631160012960
B = | —75608494755828433 —61047642221214795 —142358398544196058
1196833256327636 966344402656182 2253440840184453
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GGH

Example

Encryption
@ The message is m = [51, —27,97].

e v=mB=
[44455887216084962654,35894452606629461698,8370317871135184646T

@ The error term is e = [5,2,4].

@ The encrypted message is c =mB 4+ e =
[44455887216084962659, 35894452606629461600, 83703178711351846471]
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GGH

Example

Decryption

@ The encrypted message is c =mB + e =
[44455887216084962659, 35894452606629461600, 83703178711351846471]

o Compute w =cA™! =

[ 181850135858273612488133 305320675791351385134 391492401074328685279 ]
49050 ’ 545 ’ 49050

@ Use Babai's algorithm to find v = |w] =
[3707444156131979867,560221423470369514, 7981496454114754]
e Compute m = (vA)B~! = [51,-27,97].
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GGH

Correctness of GGH
@ B =UA for some U € Z"*" with det(U) = +1.
@ The encrypted message isc=mB +e=mUA +e.
ew=cA = (mUA+e)A™ =mU + eA™!, where eA~! is "small”.
o Use Babai's algorithm to find v = |w] = mU, if [eA™}| < 3.
e (WA)B™l = (mUA)B™! = (mB)B~! =m.

Hard Problem: CVP
@ The encrypted message is c = mB + e.
@ The Attack: Find mB as the closest vector to c.
@ The security is based on the hardness of CVP.

@ Solved by Nguyen when the error term e is small enouph.
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LWE

Contents
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LWE

Learning With Errors

LWE
@ Invented by O. Regev in 2005.
@ Security based on the GapSVP problem.

@ Provable Security.

Definition

The GapSVP problem: Let £ be a lattice with a basis B. Let A\{(£) be
the length of the shortest nonzero vector of £. Let v > 0 and r > 0.
Decide whether A\;(£) < r or A1 (L) > r.
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LWE

Learning With Errors

Example

@ Easy: solve the system

17 42 —127| |z —3265
24 3 71 To| = | 246
-7 =23 45 3 1202

@ Harder: solve the system

117 422 —127)| [z el —4718
214 23 71 To| + |e2| = 4177
—-17 =223 45 3| + |e3| = 2485

—— —— N——
A S E P

o AS + FE = P: LWE equation over Z.
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LWE

Learning With Errors

Example

@ Hard: solve the system

17 42 127 (= 116
24 3 71 xo| = | 158
7T 23 45| |z3 271
@ Much harder: solve the system
117 422 127| |xy el
214 23 71 2| + |e2| =
17 223 45 €T3 + €3 =
—— ——
A S E

o AS + E = P: LWE equation over Zs3.

(mod 503)
(mod 503)
(mod 503)

144
229
503

(mod 503)
(mod 503)
(mod 503)

P
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LWE

Learning With Errors

LWE Key Generation

Algorithm 6 : LWE Key Generation

Require: Integers n, m, [, q.
Ensure: A private key S and a public key (A, P).

1: Choose S € ZZXZ at random.

2: Choose A € Zy**™ at random.

3: Choose [ € Z™*! according to x(E) = eI EI*/™ for some r > 0.
4: Compute P = AS + E (mod q). Hence P € ZZ’”Z.
5. The private key is S.
6: The public key is (4, P).
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LWE

Learning With Errors

LWE: Encryption

Algorithm 7 : LWE Encryption

Require: Integers n, m, I, t, v, q, a public key (A, P) and a plaintext
M e zZ}*.
Ensure: A ciphertext (u,c).

1: Choose a € [—r,7]™*! at random.
2: Compute u = ATa (mod q) € Zp**.

3: Compute ¢ = PTa + {@} (mod q) € ZL**.

4: The ciphertext is (u, c).
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LWE

Learning With Errors

LWE: Decryption

Algorithm 8 : LWE Decryption

Require: Integers n, m, [, t, r, q, a private key S and a ciphertext (u, c).
Ensure: A plaintext M.

1: Compute v =c¢— STu and M = [%}
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LWE

Learning With Errors

Correctness of decryption

We have
v = c¢c—STu
= (AS+E)Ta—-8TATa + [qu}
= Ela+ [Mq] .
t
Hence

[tv} [tETa t [Mq”

| = 4+ - | —= .

q q gl t

With suitable parameters, the term % is negligible and 3 [@]

Consequently [%’} =M.

M.

v
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LWE

LWE
Hard Problem
Equations

@ The public equation P = AS + FE (mod q).
¢

@ Can be reduced to the approximate-SVP and GapSVP.
g-ary lattices

@ The public ciphertext ¢ = PTa + [M} (mod q).

Let A € Z*! for some integers ¢, n, 1.
@ The g-ary lattice:

Ay(A) = {y ez': y=ATs (modgq) forsome se Z”} .
@ The orthogonal g-ary lattice:

A;‘(A) = {y eZ': Ay=0 (mod q)}
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Conclusion

Conclusion
Lattice cryptography
@ Can be used to build cryptographic schemes (GGH, NTRU, LWE,...).

@ Can be used to build fully homomorphic encryption, Digital
signatures, identity based encryption IBE, hash functions.

@ Many hard problems (SVP, CVP, ....).
@ Fast implementation.

@ Resistance to quantum computers and NSA..

Oppose NSA Mass Spying!

v
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Conclusion

Merci

Thank you
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