
Lattice Reduction Algorithms:

EUCLID, GAUSS, LLL

Description and Probabilistic Analysis

Brigitte Vallée

(CNRS and Université de Caen, France)

Ecole du CIMPA en Mauritanie

Nouakchott, Février 2016

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

Lattice reduction algorithms in the two dimensional case.

Three main cases,

according to the increasing dimension n of the lattice.

n = 1 : the Euclid algorithm

computes the greatest common divisor gcd(u, v)

n = 2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

n ≥ 3 : the LLL algorithm

computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed

as an extension of the previous one

Three main cases,

according to the increasing dimension n of the lattice.

n = 1 : the Euclid algorithm

computes the greatest common divisor gcd(u, v)

n = 2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

n ≥ 3 : the LLL algorithm

computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed

as an extension of the previous one

Three main cases,

according to the increasing dimension n of the lattice.

n = 1 : the Euclid algorithm

computes the greatest common divisor gcd(u, v)

n = 2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

n ≥ 3 : the LLL algorithm

computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed

as an extension of the previous one

Part I – The Euclidean Algorithms

I-1. Two main Euclid algorithms

I-2. Many variants

I-3.- Algorithmic study

I-4. Some extensions

The (classical) Euclid Algorithm: the grand father of all the algorithms.

On the input (u, v), it computes the gcd of u and v, together with the

Continued Fraction Expansion of u/v. u0 := v; u1 := u;u0 ≥ u1 > 0

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

CFE of
u

v
:

u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

,

The (classical) Euclid Algorithm: the grand father of all the algorithms.

On the input (u, v), it computes the gcd of u and v, together with the

Continued Fraction Expansion of u/v. u0 := v; u1 := u;u0 ≥ u1 > 0

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

CFE of
u

v
:

u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

,

The (classical) Euclid Algorithm: the grand father of all the algorithms.

On the input (u, v), it computes the gcd of u and v, together with the

Continued Fraction Expansion of u/v. u0 := v; u1 := u;u0 ≥ u1 > 0

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

CFE of
u

v
:

u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

,

Three main outputs for any Euclidean Algorithm

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the Continued Fraction Expansion CFE (u/v)

often used directly in computation over rationals.

– For its extended version (with computation of Bezout coefficients)

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

or more generally

– the algorithmic version of the Chinese Remainder Theorem

A basic algorithm ... Perhaps the fifth main operation?
With many variants....

Extensively used in cryptography

Three main outputs for any Euclidean Algorithm

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the Continued Fraction Expansion CFE (u/v)

often used directly in computation over rationals.

– For its extended version (with computation of Bezout coefficients)

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

or more generally

– the algorithmic version of the Chinese Remainder Theorem

A basic algorithm ... Perhaps the fifth main operation?
With many variants....

Extensively used in cryptography

Three main outputs for any Euclidean Algorithm

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the Continued Fraction Expansion CFE (u/v)

often used directly in computation over rationals.

– For its extended version (with computation of Bezout coefficients)

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

or more generally

– the algorithmic version of the Chinese Remainder Theorem

A basic algorithm ... Perhaps the fifth main operation?
With many variants....

Extensively used in cryptography

An important variant : The centered Euclid Algorithm.

On the input (u, v), with the Centered division,

v = mu+ εr, ε = ±1, 0 ≤ r ≤ u/2
it computes gcd (u, v),

together with the Centered Continued Fraction Expansion of u/v.

if v ≥ 2u, then u0 := v; u1 := u

u0 = m1u1 + ε1 u2 0 < u2 ≤ u1/2, ε1 = ±1

u1 = m2u2 + ε2 u3 0 < u3 ≤ u2/2, ε2 = ±1

. . . = . . . +

up−2 = mp−1up−1 + εp−1 up 0 < up ≤ up−1/2, εp−1 = ±1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the (mi, εi) are the digits. p is the depth.

C-CFE of
u

v
:

u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1
mp

,

An important variant : The centered Euclid Algorithm.

On the input (u, v), with the Centered division,

v = mu+ εr, ε = ±1, 0 ≤ r ≤ u/2
it computes gcd (u, v),

together with the Centered Continued Fraction Expansion of u/v.

if v ≥ 2u, then u0 := v; u1 := u

u0 = m1u1 + ε1 u2 0 < u2 ≤ u1/2, ε1 = ±1

u1 = m2u2 + ε2 u3 0 < u3 ≤ u2/2, ε2 = ±1

. . . = . . . +

up−2 = mp−1up−1 + εp−1 up 0 < up ≤ up−1/2, εp−1 = ±1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the (mi, εi) are the digits. p is the depth.

C-CFE of
u

v
:

u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1
mp

,

An important variant : The centered Euclid Algorithm.

On the input (u, v), with the Centered division,

v = mu+ εr, ε = ±1, 0 ≤ r ≤ u/2
it computes gcd (u, v),

together with the Centered Continued Fraction Expansion of u/v.

if v ≥ 2u, then u0 := v; u1 := u

u0 = m1u1 + ε1 u2 0 < u2 ≤ u1/2, ε1 = ±1

u1 = m2u2 + ε2 u3 0 < u3 ≤ u2/2, ε2 = ±1

. . . = . . . +

up−2 = mp−1up−1 + εp−1 up 0 < up ≤ up−1/2, εp−1 = ±1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the (mi, εi) are the digits. p is the depth.

C-CFE of
u

v
:

u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1
mp

,

Underlying dynamical systems for the Euclid algorithm

pause

To better understand the algorithms,

a good idea to study the map which “extends” the division

– the properties of the iterations of the map

– and thus the underlying dynamical system

Input.- A discrete algorithm.

Step 1.- Extend the discrete algorithm into a continuous process,

i.e. a dynamical system. (X,V) X compact, V : X → X,

where the discrete alg. gives rise to particular trajectories.

Step 2.- Study this dynamical system, via its generic trajectories.

Step 3.- Coming back to the algorithm: we need proving that

“the discrete trajectories behaves like the generic trajectories”.

Output.- Analysis of the Algorithm.

Underlying dynamical systems for the Euclid algorithm

pause

To better understand the algorithms,

a good idea to study the map which “extends” the division

– the properties of the iterations of the map

– and thus the underlying dynamical system

Input.- A discrete algorithm.

Step 1.- Extend the discrete algorithm into a continuous process,

i.e. a dynamical system. (X,V) X compact, V : X → X,

where the discrete alg. gives rise to particular trajectories.

Step 2.- Study this dynamical system, via its generic trajectories.

Step 3.- Coming back to the algorithm: we need proving that

“the discrete trajectories behaves like the generic trajectories”.

Output.- Analysis of the Algorithm.

Underlying dynamical systems for the Euclid algorithm

pause

To better understand the algorithms,

a good idea to study the map which “extends” the division

– the properties of the iterations of the map

– and thus the underlying dynamical system

Input.- A discrete algorithm.

Step 1.- Extend the discrete algorithm into a continuous process,

i.e. a dynamical system. (X,V) X compact, V : X → X,

where the discrete alg. gives rise to particular trajectories.

Step 2.- Study this dynamical system, via its generic trajectories.

Step 3.- Coming back to the algorithm: we need proving that

“the discrete trajectories behaves like the generic trajectories”.

Output.- Analysis of the Algorithm.

Underlying dynamical systems for the Euclid algorithm

pause

To better understand the algorithms,

a good idea to study the map which “extends” the division

– the properties of the iterations of the map

– and thus the underlying dynamical system

Input.- A discrete algorithm.

Step 1.- Extend the discrete algorithm into a continuous process,

i.e. a dynamical system. (X,V) X compact, V : X → X,

where the discrete alg. gives rise to particular trajectories.

Step 2.- Study this dynamical system, via its generic trajectories.

Step 3.- Coming back to the algorithm: we need proving that

“the discrete trajectories behaves like the generic trajectories”.

Output.- Analysis of the Algorithm.

For instance : The C-Euclid dynamical system (I).

The trace of the execution of the Euclid Algorithm on (u1, u0) is:

(u1, u0)→ (u2, u1)→ (u3, u2)→ . . .→ (up−1, up)→ (up+1, up) = (0, up)

Replace the integer pair (ui, ui−1) by the rational xi :=
ui
ui−1

.

The division ui−1 = miui + εi ui+1 is then written as

xi+1 = ε

(
1

xi

)(
1

xi
−
⌊

1

xi

⌉)
with ε(x) := sign(x− bxe),

or xi+1 = U(xi), with

U(x) = ε

(
1

x

) (
1

x

) (
1

x
−
⌊

1

x

⌉)
for x 6= 0, U(0) = 0

An execution of the Euclidean Algorithm (x, U(x), U2(x), . . . , 0)

= A rational trajectory of the Dynamical System ([0, 1], U)

= a trajectory that reaches 0.

For instance : The C-Euclid dynamical system (I).

The trace of the execution of the Euclid Algorithm on (u1, u0) is:

(u1, u0)→ (u2, u1)→ (u3, u2)→ . . .→ (up−1, up)→ (up+1, up) = (0, up)

Replace the integer pair (ui, ui−1) by the rational xi :=
ui
ui−1

.

The division ui−1 = miui + εi ui+1 is then written as

xi+1 = ε

(
1

xi

)(
1

xi
−
⌊

1

xi

⌉)
with ε(x) := sign(x− bxe),

or xi+1 = U(xi), with

U(x) = ε

(
1

x

) (
1

x

) (
1

x
−
⌊

1

x

⌉)
for x 6= 0, U(0) = 0

An execution of the Euclidean Algorithm (x, U(x), U2(x), . . . , 0)

= A rational trajectory of the Dynamical System ([0, 1], U)

= a trajectory that reaches 0.

For instance : The C-Euclid dynamical system (I).

The trace of the execution of the Euclid Algorithm on (u1, u0) is:

(u1, u0)→ (u2, u1)→ (u3, u2)→ . . .→ (up−1, up)→ (up+1, up) = (0, up)

Replace the integer pair (ui, ui−1) by the rational xi :=
ui
ui−1

.

The division ui−1 = miui + εi ui+1 is then written as

xi+1 = ε

(
1

xi

)(
1

xi
−
⌊

1

xi

⌉)
with ε(x) := sign(x− bxe),

or xi+1 = U(xi), with

U(x) = ε

(
1

x

) (
1

x

) (
1

x
−
⌊

1

x

⌉)
for x 6= 0, U(0) = 0

An execution of the Euclidean Algorithm (x, U(x), U2(x), . . . , 0)

= A rational trajectory of the Dynamical System ([0, 1], U)

= a trajectory that reaches 0.

The Euclidean dynamical system (II).

A dynamical system with a denumerable system of branches (U[m,ε])(m,ε)≥(2,1),

U[m,ε] :

]
1

m
,

2

2m+ ε

[
−→]0, 1[, U[(m,ε)](x) := ε

(
1

x
−m

)
The set H of the inverse branches of U is

H :=

{
h[m,ε] :

]
0,

1

2

[
−→

]
1

m
,

2

2m+ ε

[
; h[m,ε](x) :=

1

m+ εx

}
The set H builds one step of the CF’s.

The set Hn of the inverse branches of Un builds CF’s of depth n.

The set H? :=
⋃
Hn builds all the (finite) CF’s.

u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1

mp

= h[m1,ε1] ◦ h[m2,ε2] ◦ . . . ◦ h[mp](0)

The Euclidean dynamical system (II).

A dynamical system with a denumerable system of branches (U[m,ε])(m,ε)≥(2,1),

U[m,ε] :

]
1

m
,

2

2m+ ε

[
−→]0, 1[, U[(m,ε)](x) := ε

(
1

x
−m

)
The set H of the inverse branches of U is

H :=

{
h[m,ε] :

]
0,

1

2

[
−→

]
1

m
,

2

2m+ ε

[
; h[m,ε](x) :=

1

m+ εx

}
The set H builds one step of the CF’s.

The set Hn of the inverse branches of Un builds CF’s of depth n.

The set H? :=
⋃
Hn builds all the (finite) CF’s.

u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1

mp

= h[m1,ε1] ◦ h[m2,ε2] ◦ . . . ◦ h[mp](0)

The Euclidean dynamical system (II).

A dynamical system with a denumerable system of branches (U[m,ε])(m,ε)≥(2,1),

U[m,ε] :

]
1

m
,

2

2m+ ε

[
−→]0, 1[, U[(m,ε)](x) := ε

(
1

x
−m

)
The set H of the inverse branches of U is

H :=

{
h[m,ε] :

]
0,

1

2

[
−→

]
1

m
,

2

2m+ ε

[
; h[m,ε](x) :=

1

m+ εx

}
The set H builds one step of the CF’s.

The set Hn of the inverse branches of Un builds CF’s of depth n.

The set H? :=
⋃
Hn builds all the (finite) CF’s.

u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1

mp

= h[m1,ε1] ◦ h[m2,ε2] ◦ . . . ◦ h[mp](0)

Part I – The Euclidean Algorithms

I-1. Two main Euclid algorithms

I-2. Many variants

I-3.- Algorithmic study

I-4. Some extensions

Many variants of the Euclid Algorithm.
A Euclidean algorithm:=

any algorithm which performs a sequence of divisions v = mu+ ε2kr.

There are various possible types of Euclidean divisions

– MSB divisions [directed by the Most Significant Bits]

shorten integers on the left,

and provide a remainder r smaller than u,

(w.r.t the usual absolute value), i.e. with more zeroes on the left.

– LSB divisions [directed by the Least Significant Bits]

shorten integers on the right,

and provide a remainder r smaller than u

(w.r.t the dyadic absolute value), i.e. with more zeroes on the right.

– Mixed divisions

shorten integers both on the right and on the left,

with new zeroes both on the right and on the left.

Many variants of the Euclid Algorithm.
A Euclidean algorithm:=

any algorithm which performs a sequence of divisions v = mu+ ε2kr.

There are various possible types of Euclidean divisions

– MSB divisions [directed by the Most Significant Bits]

shorten integers on the left,

and provide a remainder r smaller than u,

(w.r.t the usual absolute value), i.e. with more zeroes on the left.

– LSB divisions [directed by the Least Significant Bits]

shorten integers on the right,

and provide a remainder r smaller than u

(w.r.t the dyadic absolute value), i.e. with more zeroes on the right.

– Mixed divisions

shorten integers both on the right and on the left,

with new zeroes both on the right and on the left.

Many variants of the Euclid Algorithm.
A Euclidean algorithm:=

any algorithm which performs a sequence of divisions v = mu+ ε2kr.

There are various possible types of Euclidean divisions

– MSB divisions [directed by the Most Significant Bits]

shorten integers on the left,

and provide a remainder r smaller than u,

(w.r.t the usual absolute value), i.e. with more zeroes on the left.

– LSB divisions [directed by the Least Significant Bits]

shorten integers on the right,

and provide a remainder r smaller than u

(w.r.t the dyadic absolute value), i.e. with more zeroes on the right.

– Mixed divisions

shorten integers both on the right and on the left,

with new zeroes both on the right and on the left.

Many variants of the Euclid Algorithm.
A Euclidean algorithm:=

any algorithm which performs a sequence of divisions v = mu+ ε2kr.

There are various possible types of Euclidean divisions

– MSB divisions [directed by the Most Significant Bits]

shorten integers on the left,

and provide a remainder r smaller than u,

(w.r.t the usual absolute value), i.e. with more zeroes on the left.

– LSB divisions [directed by the Least Significant Bits]

shorten integers on the right,

and provide a remainder r smaller than u

(w.r.t the dyadic absolute value), i.e. with more zeroes on the right.

– Mixed divisions

shorten integers both on the right and on the left,

with new zeroes both on the right and on the left.

Instances of MSB Algorithms.

– Variants according to the position of remainder r,

By Default: v = mu+ r with 0 ≤ r < u

By Excess: v = mu− r with 0 ≤ r < u

Centered: v = mu+ εr with ε = ±1, 0 ≤ r ≤ u/2

– Subtractive Algorithm :

A division with quotient m can be replaced by m subtractions

While v ≥ u do v := v − u

Instances of MSB Algorithms.

– Variants according to the position of remainder r,

By Default: v = mu+ r with 0 ≤ r < u

By Excess: v = mu− r with 0 ≤ r < u

Centered: v = mu+ εr with ε = ±1, 0 ≤ r ≤ u/2

– Subtractive Algorithm :

A division with quotient m can be replaced by m subtractions

While v ≥ u do v := v − u

Four Euclidean dynamical systems (related to MSB divisions)

Two different classes

Fast Class

Slow Class

Four Euclidean dynamical systems (related to MSB divisions)

Two different classes

Fast Class

Slow Class

Four Euclidean dynamical systems (related to MSB divisions)

Two different classes

Fast Class

Slow Class

Dynamical Systems relative to MSB Algorithms.

Key Property : Expansiveness of branches of the shift U

|U ′(x)| ≥ A > 1 for all x in I
When true, this implies a chaotic behaviour for trajectories.

The associated algos are Fast and belong to the Good Class

When this condition is violated at only one indifferent point,

this leads to intermittency phenomena.

The associated algos are Slow.

Chaotic Orbit [Fast Class], Intermittent Orbit [SlowClass].

An instance of a Mixed Algorithm.

The Subtractive Algorithm,

where the zeroes on the right are removed from the remainder

defines the Binary Algorithm.

Subtractive Gcd Algorithm. Binary Gcd Algorithm.

Input. u, v; v ≥ u Input. u, v odd; v ≥ u
While (u 6= v) do While (u 6= v) do

While v > u do While v > u do

k := ν2(v − u);

v := v − u v :=
v − u

2k
;

Exchange u and v. Exchange u and v.

Output. u (or v). Output. u (or v).

The 2-adic valuation ν2 counts the number of zeroes on the right

An instance of a LSB Algorithm.

On a pair (u, v) with v odd and u even,

with ν2(u) = k, of the form u := 2k u′

the LSB division writes v = a · u′ + 2k · r′,

with ν2(r′) > ν2(u′) = 0 and gcd(u, v) = gcd(r′, u′).

The pair (u′, r′) will be the new pair for the next step.

An execution of the LSB Algorithm:
the Tortoise and the Hare

0 10001100101000001

1 111101011000000101000

2 11001001101101010000

3 110000110001010000000

4 10011000111100000000

5 111010010101000000000

6 110000010010000000000

7 100010001100000000000

8 1000001011000000000000

9 1100000000000000

10 1000001000000000000000

11 100010000000000000000

12 110000000000000000000

13 10000000000000000000000

Two Euclidean dynamical systems, related to mixed or LSB divisions:

the Binary Algorithm and the LSB Algorithm.

These algorithms use the 2–adic valuation ν only defined on rationals.

The 2–adic valuation ν is extended to a real random variable ν with

Pr[ν = k] = 1/2k for k ≥ 1.

This gives rise to probabilistic dynamical systems.

(I) The DS relative to the Binary Algorithm

k = 1 k = 2 k = 1 and k = 2

Two other Euclidean dynamical systems, related to mixed or LSB divisions:

the Binary Algorithm and the LSB Algorithm.

These algorithms use the 2–adic valuation ν only defined on rationals.

The 2–adic valuation ν is extended to a real random variable ν with

Pr[ν = k] = 1/2k for k ≥ 1.

This gives rise to probabilistic dynamic systems.

(II) The DS relative to the LSB Algorithm

Two other Euclidean dynamical systems, related to mixed or LSB divisions:

the Binary Algorithm and the LSB Algorithm.

These algorithms use the 2–adic valuation ν only defined on rationals.

The 2–adic valuation ν is extended to a real random variable ν with

Pr[ν = k] = 1/2k for k ≥ 1.

This gives rise to probabilistic dynamic systems.

(II) The DS relative to the LSB Algorithm

Part I – The Euclidean Algorithms

I-1. Two main Euclid algorithms

I-2. Many variants

I-3.- Algorithmic study

I-4. Some extensions

Why using the Euclidean algorithm? For which computations?

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the Continued Fraction Expansion CFE (u/v)

Often used directly in computation over rationals.

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

or more generally

– the algorithmic version of the Chinese Remainder Theorem

Why using the Euclidean algorithm? For which computations?

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the Continued Fraction Expansion CFE (u/v)

Often used directly in computation over rationals.

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

or more generally

– the algorithmic version of the Chinese Remainder Theorem

Why using the Euclidean algorithm? For which computations?

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the Continued Fraction Expansion CFE (u/v)

Often used directly in computation over rationals.

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

or more generally

– the algorithmic version of the Chinese Remainder Theorem

The extended Euclid Algoritthm.

Also computes Bezout coefficients a and b for which au0+bu1 = gcd(u0, u1)

Execution of the plain algorithm:

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

Compute two sequences ai and bi for which aiu0 + biu1 = ui. (1)

– The pair (ap, bp) is convenient.

– The following sequences satisfy (1) for all i (with an easy recurrence)

a0 = 1, b0 = 0; a1 = 0, b1 = 1;

ai+1 = ai−1 −miai; bi+1 = bi−1 −mibi (i ≥ 1)

–They may be computed during the execution of the plain Algorithm

The extended Euclid Algoritthm.

Also computes Bezout coefficients a and b for which au0+bu1 = gcd(u0, u1)

Execution of the plain algorithm:

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

Compute two sequences ai and bi for which aiu0 + biu1 = ui. (1)

– The pair (ap, bp) is convenient.

– The following sequences satisfy (1) for all i (with an easy recurrence)

a0 = 1, b0 = 0; a1 = 0, b1 = 1;

ai+1 = ai−1 −miai; bi+1 = bi−1 −mibi (i ≥ 1)

–They may be computed during the execution of the plain Algorithm

The extended Euclid Algoritthm.

Also computes Bezout coefficients a and b for which au0+bu1 = gcd(u0, u1)

Execution of the plain algorithm:

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

Compute two sequences ai and bi for which aiu0 + biu1 = ui. (1)

– The pair (ap, bp) is convenient.

– The following sequences satisfy (1) for all i (with an easy recurrence)

a0 = 1, b0 = 0; a1 = 0, b1 = 1;

ai+1 = ai−1 −miai; bi+1 = bi−1 −mibi (i ≥ 1)

–They may be computed during the execution of the plain Algorithm

The extended Euclid Algoritthm.

Also computes Bezout coefficients a and b for which au0+bu1 = gcd(u0, u1)

Execution of the plain algorithm:

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

Compute two sequences ai and bi for which aiu0 + biu1 = ui. (1)

– The pair (ap, bp) is convenient.

– The following sequences satisfy (1) for all i (with an easy recurrence)

a0 = 1, b0 = 0; a1 = 0, b1 = 1;

ai+1 = ai−1 −miai; bi+1 = bi−1 −mibi (i ≥ 1)

–They may be computed during the execution of the plain Algorithm

The extended Euclid Algoritthm.

Also computes Bezout coefficients a and b for which au0+bu1 = gcd(u0, u1)

Execution of the plain algorithm:

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0

up is the gcd of u and v, the mi’s are the digits. p is the depth.

Compute two sequences ai and bi for which aiu0 + biu1 = ui. (1)

– The pair (ap, bp) is convenient.

– The following sequences satisfy (1) for all i (with an easy recurrence)

a0 = 1, b0 = 0; a1 = 0, b1 = 1;

ai+1 = ai−1 −miai; bi+1 = bi−1 −mibi (i ≥ 1)

–They may be computed during the execution of the plain Algorithm

Chinese Remainder Theorem

Consider k integers n1, n2, . . . , nk

for which all the pairs (ni, nj) are coprime for all i 6= j.

Consider n :=
∏k
i=1 ni.

Then, for any k-uple (yi), there exists a unique y ∈ [1, n]

for which y = yi mod ni.

Let qi =
∏
j 6=i nj .

For each j ∈ [1..k], there exists a pair (uj , vj) for which ujnj + vjqj = 1.

The integer wj := vjqj satisfies

wj = 0 mod ni (j 6= i), wi = 1 mod ni.

Then y =

k∑
j=1

wjyj satisfies y mod ni = yi mod ni

Chinese Remainder Theorem

Consider k integers n1, n2, . . . , nk

for which all the pairs (ni, nj) are coprime for all i 6= j.

Consider n :=
∏k
i=1 ni.

Then, for any k-uple (yi), there exists a unique y ∈ [1, n]

for which y = yi mod ni.

Let qi =
∏
j 6=i nj .

For each j ∈ [1..k], there exists a pair (uj , vj) for which ujnj + vjqj = 1.

The integer wj := vjqj satisfies

wj = 0 mod ni (j 6= i), wi = 1 mod ni.

Then y =

k∑
j=1

wjyj satisfies y mod ni = yi mod ni

Chinese Remainder Theorem

Consider k integers n1, n2, . . . , nk

for which all the pairs (ni, nj) are coprime for all i 6= j.

Consider n :=
∏k
i=1 ni.

Then, for any k-uple (yi), there exists a unique y ∈ [1, n]

for which y = yi mod ni.

Let qi =
∏
j 6=i nj .

For each j ∈ [1..k], there exists a pair (uj , vj) for which ujnj + vjqj = 1.

The integer wj := vjqj satisfies

wj = 0 mod ni (j 6= i), wi = 1 mod ni.

Then y =

k∑
j=1

wjyj satisfies y mod ni = yi mod ni

Main algorithmic questions.

– Analyse the behaviour and the efficiency of these various versions

– Compare them with respect to various costs

and particularly the bit–complexity.

Experimental comparison

of bit–complexities. A gaussian law

for the number of steps?

Comparison for five algorithms on the input (2011176, 72001)

Evolution of the remainders

Standard Centered By-Excess Binary LSB

67149 4852 4852 44849 51637

4852 779 779 1697 12485

4073 178 601 1697 2447

779 67 423 125 3733

178 23 245 125 1545

67 2 67 9 547

44 1 23 9 523

23 – 2 5 3

19 – 1 1 65

4 – – – 17

3 – – – 3

1 – – – 1

Comparison for five algorithms on the input (2011176, 72001)

Evolution of the remainders

Standard Centered By-Excess Binary LSB

67149 4852 4852 44849 51637

4852 779 779 1697 12485

4073 178 601 1697 2447

779 67 423 125 3733

178 23 245 125 1545

67 2 67 9 547

44 1 23 9 523

23 – 2 5 3

19 – 1 1 65

4 – – – 17

3 – – – 3

1 – – – 1

Explain the behaviour of algorithms

For instance, an execution of the LSB Algorithm : the Tortoise and the Hare

0 10001100101000001

1 111101011000000101000

2 11001001101101010000

3 110000110001010000000

4 10011000111100000000

5 111010010101000000000

6 110000010010000000000

7 100010001100000000000

8 1000001011000000000000

9 1100000000000000

10 1000001000000000000000

11 100010000000000000000

12 110000000000000000000

13 10000000000000000000000

Analysis of Algorithms

Analysis of the worst-case or of the generic case?

(Probabilistic) Analysis of Algorithms

– An algorithm with a set of inputs Ω:

here Ω := {(u, v) ∈ N2, | 0 ≤ u ≤ v}
– A cost C defined on Ω which describes

– the execution of the algorithm (number of iterations, bit–complexity)

– or the geometry of the output (here: the continued fraction)

– Gather the inputs wrt to their sizes:

here: ΩM := {(u, v) ∈ Ω, 0 ≤ u ≤ v ≤M}
– Study the cost C on ΩM , in an asymptotic way for M →∞

Two possibilities:

– Worst-case study : WM := max{C(u, v) | (u, v) ∈ ΩM},
– Probabilistic study :

– with a distribution on ΩM , study the random variable C on ΩM

– Estimate the mean value of CM := C|ΩM
,

its variance, its distribution...

(Probabilistic) Analysis of Algorithms

– An algorithm with a set of inputs Ω:

here Ω := {(u, v) ∈ N2, | 0 ≤ u ≤ v}
– A cost C defined on Ω which describes

– the execution of the algorithm (number of iterations, bit–complexity)

– or the geometry of the output (here: the continued fraction)

– Gather the inputs wrt to their sizes:

here: ΩM := {(u, v) ∈ Ω, 0 ≤ u ≤ v ≤M}
– Study the cost C on ΩM , in an asymptotic way for M →∞

Two possibilities:

– Worst-case study : WM := max{C(u, v) | (u, v) ∈ ΩM},
– Probabilistic study :

– with a distribution on ΩM , study the random variable C on ΩM

– Estimate the mean value of CM := C|ΩM
,

its variance, its distribution...

(Probabilistic) Analysis of Algorithms

– An algorithm with a set of inputs Ω:

here Ω := {(u, v) ∈ N2, | 0 ≤ u ≤ v}
– A cost C defined on Ω which describes

– the execution of the algorithm (number of iterations, bit–complexity)

– or the geometry of the output (here: the continued fraction)

– Gather the inputs wrt to their sizes:

here: ΩM := {(u, v) ∈ Ω, 0 ≤ u ≤ v ≤M}
– Study the cost C on ΩM , in an asymptotic way for M →∞

Two possibilities:

– Worst-case study : WM := max{C(u, v) | (u, v) ∈ ΩM},
– Probabilistic study :

– with a distribution on ΩM , study the random variable C on ΩM

– Estimate the mean value of CM := C|ΩM
,

its variance, its distribution...

(Probabilistic) Analysis of Algorithms

– An algorithm with a set of inputs Ω:

here Ω := {(u, v) ∈ N2, | 0 ≤ u ≤ v}
– A cost C defined on Ω which describes

– the execution of the algorithm (number of iterations, bit–complexity)

– or the geometry of the output (here: the continued fraction)

– Gather the inputs wrt to their sizes:

here: ΩM := {(u, v) ∈ Ω, 0 ≤ u ≤ v ≤M}
– Study the cost C on ΩM , in an asymptotic way for M →∞

Two possibilities:

– Worst-case study : WM := max{C(u, v) | (u, v) ∈ ΩM},
– Probabilistic study :

– with a distribution on ΩM , study the random variable C on ΩM

– Estimate the mean value of CM := C|ΩM
,

its variance, its distribution...

Some results on the analysis of Euclidean Algorithms.

Worst-case analysis.

For the classical Euclid algorithm, the sequence

F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1

represents the sequence of the smallest possible numbers which possibly

appear in the execution. Then the pair (Fn+1, Fn) is the smallest pair on

which the Euclid Algo performs n+ 1 iterations.

Then (with φ the Golden ratio,)

R(u, v) ≥ n+ 1 =⇒ v ≥ Fn+1 ≥ φn+1/
√

5

The maximum number RM of iterations of the Euclid Algo on ΩM

RM ≤ n+ 1 ≤ logφ(
√

5M)

For the C-Euclid algorithm, the minimal sequence is

A0 = 0, A1 = 1, An+1 = 2An +An−1, An ≥ (1 +
√

2)n−2

Return to the underlying dynamical systems.

V (x) :=
1

x
−
⌊

1

x

⌋
The branches :

V[m] :

]
1

m+ 1
,
1

m

[
−→]0, 1[,

V[m](x) :=
1

x
−m

The inverse branches

h[m] :]0, 1[−→
]

1

m+ 1
,
1

m

[

h[m](x) :=
1

m+ x

The set H of the inverse branches of V builds CF’s
u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

= h[m1] ◦ h[m2] ◦ . . . ◦ h[mp](0)

Return to the underlying dynamical systems.

V (x) :=
1

x
−
⌊

1

x

⌋
The branches :

V[m] :

]
1

m+ 1
,
1

m

[
−→]0, 1[,

V[m](x) :=
1

x
−m

The inverse branches

h[m] :]0, 1[−→
]

1

m+ 1
,
1

m

[

h[m](x) :=
1

m+ x

The set H of the inverse branches of V builds CF’s
u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

= h[m1] ◦ h[m2] ◦ . . . ◦ h[mp](0)

Return to the underlying dynamical systems.

V (x) :=
1

x
−
⌊

1

x

⌋
The branches :

V[m] :

]
1

m+ 1
,
1

m

[
−→]0, 1[,

V[m](x) :=
1

x
−m

The inverse branches

h[m] :]0, 1[−→
]

1

m+ 1
,
1

m

[

h[m](x) :=
1

m+ x

The set H of the inverse branches of V builds CF’s
u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

= h[m1] ◦ h[m2] ◦ . . . ◦ h[mp](0)

Return to the underlying dynamical systems.

V (x) :=
1

x
−
⌊

1

x

⌋
The branches :

V[m] :

]
1

m+ 1
,
1

m

[
−→]0, 1[,

V[m](x) :=
1

x
−m

The inverse branches

h[m] :]0, 1[−→
]

1

m+ 1
,
1

m

[

h[m](x) :=
1

m+ x

The set H of the inverse branches of V builds CF’s
u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

= h[m1] ◦ h[m2] ◦ . . . ◦ h[mp](0)

The Euclidean dynamical system.

Density Transformer:

For a density f on [0, 1], H[f] is the density on [0, 1]

after one iteration of the shift

H[f](x) =
∑
h∈H

|h′(x)| f◦h(x) =
∑
m∈N

1

(m+ x)2
f(

1

m+ x
).

Transfer operator (Ruelle):

Hs[f](x) =
∑
h∈H

|h′(x)|s f ◦ h(x).

The operator Hs is a central tool for the analysis.

For s = 1, it coincides with the density transformer. One has

H

[
1

1 + x

]
=

1

1 + x

The function f(x) = 1/(1 + x) is an eigenfunction for λ = 1.

The Euclidean dynamical system.

Density Transformer:

For a density f on [0, 1], H[f] is the density on [0, 1]

after one iteration of the shift

H[f](x) =
∑
h∈H

|h′(x)| f◦h(x) =
∑
m∈N

1

(m+ x)2
f(

1

m+ x
).

Transfer operator (Ruelle):

Hs[f](x) =
∑
h∈H

|h′(x)|s f ◦ h(x).

The operator Hs is a central tool for the analysis.

For s = 1, it coincides with the density transformer. One has

H

[
1

1 + x

]
=

1

1 + x

The function f(x) = 1/(1 + x) is an eigenfunction for λ = 1.

The Euclidean dynamical system.

Density Transformer:

For a density f on [0, 1], H[f] is the density on [0, 1]

after one iteration of the shift

H[f](x) =
∑
h∈H

|h′(x)| f◦h(x) =
∑
m∈N

1

(m+ x)2
f(

1

m+ x
).

Transfer operator (Ruelle):

Hs[f](x) =
∑
h∈H

|h′(x)|s f ◦ h(x).

The operator Hs is a central tool for the analysis.

For s = 1, it coincides with the density transformer. One has

H

[
1

1 + x

]
=

1

1 + x

The function f(x) = 1/(1 + x) is an eigenfunction for λ = 1.

Here, focus on average-case results on ΩM [input size := logM]

– For the Standard, Centered Euclidean Algorithms,

– the mean number of iterations is

EM [P] ∼ 2

h(S)
logM,

– the mean bit-complexity is quadratic.

EM [B] ∼ 1

h(S)
µ[`] log2M

– The main constant h(S) is the entropy of the Dynamical System.

The entropy is a well-defined mathematical object, computable.

h(S) =
π2

6 log 2
∼ 2.37 [Standard], h(S) =

π2

6 log φ
∼ 3.41 [Centered].

– The constant µ[`] is the mean value of cost c, with respect to the

invariant density. For Centered Euclidean Alg.

µ(`) = 3 +
log 2

log φ
+

1

log φ

∏
k≥3

(2k − 1)φ2 + 2φ

(2k − 1)φ2 − 2

Here, focus on average-case results on ΩM [input size := logM]

– For the Standard, Centered Euclidean Algorithms,

– the mean number of iterations is

EM [P] ∼ 2

h(S)
logM,

– the mean bit-complexity is quadratic.

EM [B] ∼ 1

h(S)
µ[`] log2M

– The main constant h(S) is the entropy of the Dynamical System.

The entropy is a well-defined mathematical object, computable.

h(S) =
π2

6 log 2
∼ 2.37 [Standard], h(S) =

π2

6 log φ
∼ 3.41 [Centered].

– The constant µ[`] is the mean value of cost c, with respect to the

invariant density. For Centered Euclidean Alg.

µ(`) = 3 +
log 2

log φ
+

1

log φ

∏
k≥3

(2k − 1)φ2 + 2φ

(2k − 1)φ2 − 2

Here, focus on average-case results on ΩM [input size := logM]

– For the Standard, Centered Euclidean Algorithms,

– the mean number of iterations is

EM [P] ∼ 2

h(S)
logM,

– the mean bit-complexity is quadratic.

EM [B] ∼ 1

h(S)
µ[`] log2M

– The main constant h(S) is the entropy of the Dynamical System.

The entropy is a well-defined mathematical object, computable.

h(S) =
π2

6 log 2
∼ 2.37 [Standard], h(S) =

π2

6 log φ
∼ 3.41 [Centered].

– The constant µ[`] is the mean value of cost c, with respect to the

invariant density. For Centered Euclidean Alg.

µ(`) = 3 +
log 2

log φ
+

1

log φ

∏
k≥3

(2k − 1)φ2 + 2φ

(2k − 1)φ2 − 2

Part I – The Euclidean Algorithms

I-1. Two main Euclid algorithms

I-2. Many variants

I-3.- Algorithmic study

I-4. Some extensions

Extension I

Mean bit–complexity of fast variants of the Euclid Algorithm

Main principles of Fast Euclid Algorithms:

– Based on a Divide and Conquer principle with two recursive calls.

– Study “slices” of the original Euclid Algorithm

– begin when the data has already lost δn bits.

– end when the data has lost γn additional bits.

– Replace large divisions by small divisions and large multiplications.

– Use fast multiplication algorithms (based on the FFT)

of complexity n log na(n)

with a(n) = log log n [Schönhage Strassen]

now a(n) = 2O(log? n) [Fürer, 2007]

with log? n = the smallest integer k for which log(k) n < 1

We obtain the mean bit-complexity of (variants of) these algorithms

Θ(n(log n)2a(n))

with a precise estimate of the hidden constants

Analysis based on the answer to the question:

What is the distribution of the data
when they have already lost a fraction δ of its bits?

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

De
ns

ity
 p

ro
ba

bi
lity

x

Theoretical
Experimental

Unexpected occurrence

of a particular density ψ

ψ(x) =
12

π2

∑
m≥1

log(m+ x)

(m+ x)(m+ x+ 1)

distinct of the Gauss density

ϕ(x) =
1

log 2

1

1 + x

Extension II

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Extension II

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Extension II

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Extension II

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Extension II

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Examples of limit laws (discrete or continuous)

x-axis: possible values of the cost L(ω) y-axis: probability density x 7→ f(x)

f(x)dx := Pr[ω; L(ω) ∈ [x, x+ dx]]

Gaussian law f(t) � e−t
2/2 Beta law (a, b) f(t) � ta−1(1− t)b−1

Uniform law f(t) � 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

A discrete law: Geometric law f(n) � an

Examples of limit laws (discrete or continuous)

x-axis: possible values of the cost L(ω) y-axis: probability density x 7→ f(x)

f(x)dx := Pr[ω; L(ω) ∈ [x, x+ dx]]

Gaussian law f(t) � e−t
2/2 Beta law (a, b) f(t) � ta−1(1− t)b−1

Uniform law f(t) � 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

A discrete law: Geometric law f(n) � an

