
Lattice Reduction Algorithms:

EUCLID, GAUSS, LLL

Description and Probabilistic Analysis

Brigitte Vallée

(CNRS and Université de Caen, France)

Mauritanie, February 2016

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

The general problem of lattice reduction

A lattice of Rp = a discrete additive subgroup of Rp.

A lattice L possesses a basis B := (b1, b2, . . . , bn) with n ≤ p,

L := {x ∈ Rp; x =

n∑
i=1

xibi, xi ∈ Z}

... and in fact, an infinite number of bases....

If now Rp is endowed with its (canonical) Euclidean structure,

there exist bases (called reduced) with good Euclidean properties:

their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice L given by a basis B,

construct from B a reduced basis B̂ of L.

Many applications of this problem in various domains:

number theory, arithmetics, discrete geometry..... and cryptology.

Lattice reduction algorithms in the two dimensional case.

Three main cases,

according to the increasing dimension n of the lattice.

n = 1 : the Euclid algorithm

computes the greatest common divisor gcd(u, v)

n = 2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

n ≥ 3 : the LLL algorithm

computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed

as an extension of the previous one

Three main cases,

according to the increasing dimension n of the lattice.

n = 1 : the Euclid algorithm

computes the greatest common divisor gcd(u, v)

n = 2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

n ≥ 3 : the LLL algorithm

computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed

as an extension of the previous one

Three main cases,

according to the increasing dimension n of the lattice.

n = 1 : the Euclid algorithm

computes the greatest common divisor gcd(u, v)

n = 2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

n ≥ 3 : the LLL algorithm

computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed

as an extension of the previous one

II- The Gauss algorithm.

Lattice reduction algorithms in the two dimensional case.

Lattice Reduction in two dimensions.

Up to an isometry, the lattice L is a subset of R2 or..... C.

To a pair (u, v) ∈ C2, with u 6= 0, we associate a unique z ∈ C:

z :=
v

u
=
〈u · v〉
|u|2

+ i
det(u, v)

|u|2
.

Up to a similarity, the lattice L(u, v) becomes L(1, z) =: L(z).

All the main notions and main operations in lattice reduction can only be

expressed with z = v/u.

– Positive basis (u, v) [or det(u, v) > 0] → =z > 0

– Acute basis (u, v) [or (u.v) ≥ 0] → <z ≥ 0

– Skew basis (u, v) [or |det(u, v)| small wrt |u|2] → =z small

Lattice Reduction in two dimensions.

Up to an isometry, the lattice L is a subset of R2 or..... C.

To a pair (u, v) ∈ C2, with u 6= 0, we associate a unique z ∈ C:

z :=
v

u
=
〈u · v〉
|u|2

+ i
det(u, v)

|u|2
.

Up to a similarity, the lattice L(u, v) becomes L(1, z) =: L(z).

All the main notions and main operations in lattice reduction can only be

expressed with z = v/u.

– Positive basis (u, v) [or det(u, v) > 0] → =z > 0

– Acute basis (u, v) [or (u.v) ≥ 0] → <z ≥ 0

– Skew basis (u, v) [or |det(u, v)| small wrt |u|2] → =z small

Lattice Reduction in two dimensions.

Up to an isometry, the lattice L is a subset of R2 or..... C.

To a pair (u, v) ∈ C2, with u 6= 0, we associate a unique z ∈ C:

z :=
v

u
=
〈u · v〉
|u|2

+ i
det(u, v)

|u|2
.

Up to a similarity, the lattice L(u, v) becomes L(1, z) =: L(z).

All the main notions and main operations in lattice reduction can only be

expressed with z = v/u.

– Positive basis (u, v) [or det(u, v) > 0] → =z > 0

– Acute basis (u, v) [or (u.v) ≥ 0] → <z ≥ 0

– Skew basis (u, v) [or |det(u, v)| small wrt |u|2] → =z small

Lattice Reduction in two dimensions.

Up to an isometry, the lattice L is a subset of R2 or..... C.

To a pair (u, v) ∈ C2, with u 6= 0, we associate a unique z ∈ C:

z :=
v

u
=
〈u · v〉
|u|2

+ i
det(u, v)

|u|2
.

Up to a similarity, the lattice L(u, v) becomes L(1, z) =: L(z).

All the main notions and main operations in lattice reduction can only be

expressed with z = v/u.

– Positive basis (u, v) [or det(u, v) > 0] → =z > 0

– Acute basis (u, v) [or (u.v) ≥ 0] → <z ≥ 0

– Skew basis (u, v) [or |det(u, v)| small wrt |u|2] → =z small

Three main facts in two dimensions.

– The existence of an optimal basis = a minimal basis

– A characterization of an optimal basis.

– An efficient algorithm which finds it = The Gauss Algorithm.

Three main facts in two dimensions.

– The existence of an optimal basis = a minimal basis

– A characterization of an optimal basis.

– An efficient algorithm which finds it = The Gauss Algorithm.

Three main facts in two dimensions.

– The existence of an optimal basis = a minimal basis

– A characterization of an optimal basis.

– An efficient algorithm which finds it = The Gauss Algorithm.

Three main facts in two dimensions.

– The existence of an optimal basis = a minimal basis

– A characterization of an optimal basis.

– An efficient algorithm which finds it = The Gauss Algorithm.

Successive minima.

First minimum of L :

a nonzero vector u ∈ L that has a smallest Euclidean norm;

||u|| ≤ ||v|| ∀v ∈ L
the length of a first minimum of L is denoted by λ1(L).

Second minimum of L :

any shortest vector amongst the vectors of L that are linearly independent

of a first minimum u;

the length of a second minimum is denoted by λ2(L).

A basis is minimal if it comprises a first and a second minimum.

For instance, the basis on the left of Figure is minimal.

Successive minima.

First minimum of L :

a nonzero vector u ∈ L that has a smallest Euclidean norm;

||u|| ≤ ||v|| ∀v ∈ L
the length of a first minimum of L is denoted by λ1(L).

Second minimum of L :

any shortest vector amongst the vectors of L that are linearly independent

of a first minimum u;

the length of a second minimum is denoted by λ2(L).

A basis is minimal if it comprises a first and a second minimum.

For instance, the basis on the left of Figure is minimal.

Successive minima.

First minimum of L :

a nonzero vector u ∈ L that has a smallest Euclidean norm;

||u|| ≤ ||v|| ∀v ∈ L
the length of a first minimum of L is denoted by λ1(L).

Second minimum of L :

any shortest vector amongst the vectors of L that are linearly independent

of a first minimum u;

the length of a second minimum is denoted by λ2(L).

A basis is minimal if it comprises a first and a second minimum.

For instance, the basis on the left of Figure is minimal.

Characterization of a minimal acute basis.

Let (u, v) be an acute basis. The conditions (a) and (b) are equivalent:

(a) the basis (u, v) is minimal;

(b) the pair (u, v) satisfies the two simultaneous inequalities:∣∣∣ v
u

∣∣∣ ≥ 1, and 0 ≤ <
(v
u

)
≤ 1

2
.

Then,

– the angle θ(u, v) between the two vectors u and v of a minimal basis

– and the imaginary part y := =(v/u) satisfy

|θ| ∈ [π/3, π/2]
∣∣∣=(v

u

)∣∣∣ ≥ √3
2

Characterization of a minimal acute basis.

Let (u, v) be an acute basis. The conditions (a) and (b) are equivalent:

(a) the basis (u, v) is minimal;

(b) the pair (u, v) satisfies the two simultaneous inequalities:∣∣∣ v
u

∣∣∣ ≥ 1, and 0 ≤ <
(v
u

)
≤ 1

2
.

Then,

– the angle θ(u, v) between the two vectors u and v of a minimal basis

– and the imaginary part y := =(v/u) satisfy

|θ| ∈ [π/3, π/2]
∣∣∣=(v

u

)∣∣∣ ≥ √3
2

Characterization of minimal bases.

An acute basis (u, v) is minimal iff z =
v

u
∈ F̃

B := {z; |<(z)| ≤ 1/2}

F := {z; |<(z)| ≤ 1/2, |z| ≥ 1}

Bε := {z ∈ B, sign<(z) = ε}

Fε := {z ∈ F , sign<(z) = ε}

With J : z 7→ −z

B̃ := B+
⋃
JB−, F̃ := F+

⋃
JF−

Characterization of minimal bases.

An acute basis (u, v) is minimal iff z =
v

u
∈ F̃

B := {z; |<(z)| ≤ 1/2}

F := {z; |<(z)| ≤ 1/2, |z| ≥ 1}

Bε := {z ∈ B, sign<(z) = ε}

Fε := {z ∈ F , sign<(z) = ε}

With J : z 7→ −z

B̃ := B+
⋃
JB−, F̃ := F+

⋃
JF−

Characterization of minimal bases.

An acute basis (u, v) is minimal iff z =
v

u
∈ F̃

B := {z; |<(z)| ≤ 1/2}

F := {z; |<(z)| ≤ 1/2, |z| ≥ 1}

Bε := {z ∈ B, sign<(z) = ε}

Fε := {z ∈ F , sign<(z) = ε}

With J : z 7→ −z

B̃ := B+
⋃
JB−, F̃ := F+

⋃
JF−

Vectorial version of the Gauss Algorithm

A-Gauss(u, v)

Input. An acute basis (u, v) of L(u, v)
with |v| ≤ |u|, τ(v, u) ∈ [0, 1/2].

Output. An acute minimal basis (u, v) of L(u, v)
with |v| ≥ |u|

While |v| < |u| do
(u, v) := (v, u);

Replace v by the smallest vector amongst

{w = ε(v −mu) | ε = ±1, m ∈ Z}

The replacement operation is done as follows:

τ(v, u) = <
(v
u

)
=
〈u · v〉
|u|2

m := bτ(v, u)e ; ε := sign (τ(v, u)− bτ(v, u)e);
v := ε(v −mu);

Vectorial version of the Gauss Algorithm

A-Gauss(u, v)

Input. An acute basis (u, v) of L(u, v)
with |v| ≤ |u|, τ(v, u) ∈ [0, 1/2].

Output. An acute minimal basis (u, v) of L(u, v)
with |v| ≥ |u|

While |v| < |u| do
(u, v) := (v, u);

Replace v by the smallest vector amongst

{w = ε(v −mu) | ε = ±1, m ∈ Z}

The replacement operation is done as follows:

τ(v, u) = <
(v
u

)
=
〈u · v〉
|u|2

m := bτ(v, u)e ; ε := sign (τ(v, u)− bτ(v, u)e);
v := ε(v −mu);

Vectorial version of the Gauss Algorithm

A-Gauss(u, v)

Input. An acute basis (u, v) of L(u, v)
with |v| ≤ |u|, τ(v, u) ∈ [0, 1/2].

Output. An acute minimal basis (u, v) of L(u, v)
with |v| ≥ |u|

While |v| < |u| do
(u, v) := (v, u);

Replace v by the smallest vector amongst

{w = ε(v −mu) | ε = ±1, m ∈ Z}

The replacement operation is done as follows:

τ(v, u) = <
(v
u

)
=
〈u · v〉
|u|2

m := bτ(v, u)e ; ε := sign (τ(v, u)− bτ(v, u)e);
v := ε(v −mu);

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–

u = mv + εr with m =
⌊
<
(u
v

)⌉
=

⌊
〈u · v〉
|v|2

⌉
, 0 ≤ <

(r
v

)
≤ 1

2

Here m = 2

and ε = 1.

The vector r is the smallest amongst all the vectors which belong to

{w = ε(u−mv); ε = ±1,m ∈ Z}

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–

u = mv + εr with m =
⌊
<
(u
v

)⌉
=

⌊
〈u · v〉
|v|2

⌉
, 0 ≤ <

(r
v

)
≤ 1

2

Here m = 2

and ε = 1.

The vector r is the smallest amongst all the vectors which belong to

{w = ε(u−mv); ε = ±1,m ∈ Z}

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–

u = mv + εr with m =
⌊
<
(u
v

)⌉
=

⌊
〈u · v〉
|v|2

⌉
, 0 ≤ <

(r
v

)
≤ 1

2

Here m = 2

and ε = 1.

The vector r is the smallest amongst all the vectors which belong to

{w = ε(u−mv); ε = ±1,m ∈ Z}

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–

u = mv + εr with m =
⌊
<
(u
v

)⌉
=

⌊
〈u · v〉
|v|2

⌉
, 0 ≤ <

(r
v

)
≤ 1

2

Here m = 2

and ε = 1.

The vector r is the smallest amongst all the vectors which belong to

{w = ε(u−mv); ε = ±1,m ∈ Z}

Complex version of the Gauss Algorithm

A-Gauss(z)

Input. z with |z| ≤ 1, <z ∈ [0, 1/2], =z 6= 0

Output. z ∈ F̃

While |z| ≤ 1 do

z := 1/z;

m := b<ze ; ε := sign (z − b<ze);
z := ε(z −m);

The three steps are summarized as

U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(
1

z

)⌉)

Complex version of the Gauss Algorithm

A-Gauss(z)

Input. z with |z| ≤ 1, <z ∈ [0, 1/2], =z 6= 0

Output. z ∈ F̃

While |z| ≤ 1 do

z := 1/z;

m := b<ze ; ε := sign (z − b<ze);
z := ε(z −m);

The three steps are summarized as

U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(
1

z

)⌉)

Complex version of the Gauss Algorithm

A-Gauss(z)

Input. z with |z| ≤ 1, <z ∈ [0, 1/2], =z 6= 0

Output. z ∈ F̃

While |z| ≤ 1 do

z := 1/z;

m := b<ze ; ε := sign (z − b<ze);
z := ε(z −m);

The three steps are summarized as

U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(
1

z

)⌉)

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–, and exchanges.

Euclid’s algorithm Gauss’ algorithm

Division between real numbers Division between complex vectors

v = mu+ ε r v = mu+ ε r

with m =
⌊u
v

⌉
and

r

v
≤ 1

2
with m =

⌊
<
(u
v

)⌉
and <

(r
v

)
≤ 1

2

Division + exchange (v, u)→ (r, v) Division + exchange (v, u)→ (r, v)

“read” on x = v/u “read” on z = v/u

U(x) = ε

(
1

x

)(
1

x
−
⌊
1

x

⌉)
U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(
1

z

)⌉)

Stopping condition: x = 0 Stopping condition: z ∈ F̃

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–, and exchanges.

Euclid’s algorithm Gauss’ algorithm

Division between real numbers Division between complex vectors

v = mu+ ε r v = mu+ ε r

with m =
⌊u
v

⌉
and

r

v
≤ 1

2
with m =

⌊
<
(u
v

)⌉
and <

(r
v

)
≤ 1

2

Division + exchange (v, u)→ (r, v) Division + exchange (v, u)→ (r, v)

“read” on x = v/u “read” on z = v/u

U(x) = ε

(
1

x

)(
1

x
−
⌊
1

x

⌉)
U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(
1

z

)⌉)

Stopping condition: x = 0 Stopping condition: z ∈ F̃

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as “vectorial” divisions–, and exchanges.

Euclid’s algorithm Gauss’ algorithm

Division between real numbers Division between complex vectors

v = mu+ ε r v = mu+ ε r

with m =
⌊u
v

⌉
and

r

v
≤ 1

2
with m =

⌊
<
(u
v

)⌉
and <

(r
v

)
≤ 1

2

Division + exchange (v, u)→ (r, v) Division + exchange (v, u)→ (r, v)

“read” on x = v/u “read” on z = v/u

U(x) = ε

(
1

x

)(
1

x
−
⌊
1

x

⌉)
U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(
1

z

)⌉)

Stopping condition: x = 0 Stopping condition: z ∈ F̃

An essential difference between the two algorithms

– The continuous extension of the Euclid Algorithm never stops

except for rationals.

– The (continuous) Gauss Algorithm always stops

except for irrational flat bases z

for which =z = 0 and <z 6∈ Q

Difference due to the various “holes”:

– The Euclid hole {0} is of zero measure

– The Gauss hole F is a fundamental domain

An essential difference between the two algorithms

– The continuous extension of the Euclid Algorithm never stops

except for rationals.

– The (continuous) Gauss Algorithm always stops

except for irrational flat bases z

for which =z = 0 and <z 6∈ Q

Difference due to the various “holes”:

– The Euclid hole {0} is of zero measure

– The Gauss hole F is a fundamental domain

An essential difference between the two algorithms

– The continuous extension of the Euclid Algorithm never stops

except for rationals.

– The (continuous) Gauss Algorithm always stops

except for irrational flat bases z

for which =z = 0 and <z 6∈ Q

Difference due to the various “holes”:

– The Euclid hole {0} is of zero measure

– The Gauss hole F is a fundamental domain

An execution of the Gauss Algorithm

– On the input (u, v) with z =
v

u
∈ B \ F ,

– The algorithm begins with vectors (v0 := u, v1 := v),

it computes the sequence of divisions vi−1 = mivi + εi vi+1;

it produces vectors (v0, v1, . . . , vp, vp+1) and quotients mi,

– and obtains the output basis (û = vp, v̂ = vp+1) with ẑ =
v̂

û
∈ F̃

The main parameters of interest describe

– the execution, for instance the number of iterations

– the output, for instance the distribution inside the fundamental domain

An execution of the Gauss Algorithm

– On the input (u, v) with z =
v

u
∈ B \ F ,

– The algorithm begins with vectors (v0 := u, v1 := v),

it computes the sequence of divisions vi−1 = mivi + εi vi+1;

it produces vectors (v0, v1, . . . , vp, vp+1) and quotients mi,

– and obtains the output basis (û = vp, v̂ = vp+1) with ẑ =
v̂

û
∈ F̃

The main parameters of interest describe

– the execution, for instance the number of iterations

– the output, for instance the distribution inside the fundamental domain

An execution of the Gauss Algorithm

– On the input (u, v) with z =
v

u
∈ B \ F ,

– The algorithm begins with vectors (v0 := u, v1 := v),

it computes the sequence of divisions vi−1 = mivi + εi vi+1;

it produces vectors (v0, v1, . . . , vp, vp+1) and quotients mi,

– and obtains the output basis (û = vp, v̂ = vp+1) with ẑ =
v̂

û
∈ F̃

The main parameters of interest describe

– the execution, for instance the number of iterations

– the output, for instance the distribution inside the fundamental domain

An execution of the Gauss Algorithm

– On the input (u, v) with z =
v

u
∈ B \ F ,

– The algorithm begins with vectors (v0 := u, v1 := v),

it computes the sequence of divisions vi−1 = mivi + εi vi+1;

it produces vectors (v0, v1, . . . , vp, vp+1) and quotients mi,

– and obtains the output basis (û = vp, v̂ = vp+1) with ẑ =
v̂

û
∈ F̃

The main parameters of interest describe

– the execution, for instance the number of iterations

– the output, for instance the distribution inside the fundamental domain

An execution of the Gauss Algorithm

– On the input (u, v) with z =
v

u
∈ B \ F ,

– The algorithm begins with vectors (v0 := u, v1 := v),

it computes the sequence of divisions vi−1 = mivi + εi vi+1;

it produces vectors (v0, v1, . . . , vp, vp+1) and quotients mi,

– and obtains the output basis (û = vp, v̂ = vp+1) with ẑ =
v̂

û
∈ F̃

The main parameters of interest describe

– the execution, for instance the number of iterations

– the output, for instance the distribution inside the fundamental domain

Study of the Gauss Algorithm.

To a pair (u, v) ∈ C2, we associate a unique z ∈ C:

z :=
v

u
=
〈u · v〉
|u|2

+ i
det(u, v)

|u|2
.

Up to a similarity, the lattice L(u, v) becomes L(1, z) =: L(z)

– Positive basis (u, v) [or det(u, v) > 0] → =z > 0

– Acute basis (u, v) [or 〈u · v〉 ≥ 0] → <z ≥ 0

– Skew basis (u, v) [or |det(u, v)| small wrt |u|2] → =z small

Our version of the Gauss Algorithm (which uses the shift U)

deal with acute bases

Study of the Gauss Algorithm.

To a pair (u, v) ∈ C2, we associate a unique z ∈ C:

z :=
v

u
=
〈u · v〉
|u|2

+ i
det(u, v)

|u|2
.

Up to a similarity, the lattice L(u, v) becomes L(1, z) =: L(z)

– Positive basis (u, v) [or det(u, v) > 0] → =z > 0

– Acute basis (u, v) [or 〈u · v〉 ≥ 0] → <z ≥ 0

– Skew basis (u, v) [or |det(u, v)| small wrt |u|2] → =z small

Our version of the Gauss Algorithm (which uses the shift U)

deal with acute bases

The acute version

deals with the transformation U and the fundamental domain F̃ .

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)

with ε(z) := sign(<(z)− b<(z)e),

The hole is F̃ := F+ ∪ JF−.

J : z 7→ −z

The acute version

deals with the transformation U and the fundamental domain F̃ .

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)

with ε(z) := sign(<(z)− b<(z)e),

The hole is F̃ := F+ ∪ JF−.

J : z 7→ −z

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)
with ε(z) := sign(<(z)− b<(z)e)

D := disk with diameter [0, 1/2]

A-Gauss = CoreGauss followed with FinalGauss (at most 2 iterations).

CoreGauss(z)

Input. A complex number in D.

Output. A complex number in B̃ \ D.

While z ∈ D do z := U(z);

FinalGauss(z)

Input. A complex number in B̃ \ D.

Output. A complex number in F̃ .

While z 6∈ F̃ do z := U(z) S(z) = 1/z, T (z) = z + 1

J(z) = −z

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)
with ε(z) := sign(<(z)− b<(z)e)

D := disk with diameter [0, 1/2]

A-Gauss = CoreGauss followed with FinalGauss (at most 2 iterations).

CoreGauss(z)

Input. A complex number in D.

Output. A complex number in B̃ \ D.

While z ∈ D do z := U(z);

FinalGauss(z)

Input. A complex number in B̃ \ D.

Output. A complex number in F̃ .

While z 6∈ F̃ do z := U(z) S(z) = 1/z, T (z) = z + 1

J(z) = −z

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)
with ε(z) := sign(<(z)− b<(z)e)

D := disk with diameter [0, 1/2]

A-Gauss = CoreGauss followed with FinalGauss (at most 2 iterations).

CoreGauss(z)

Input. A complex number in D.

Output. A complex number in B̃ \ D.

While z ∈ D do z := U(z);

FinalGauss(z)

Input. A complex number in B̃ \ D.

Output. A complex number in F̃ .

While z 6∈ F̃ do z := U(z) S(z) = 1/z, T (z) = z + 1

J(z) = −z

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)
with ε(z) := sign(<(z)− b<(z)e)

D := disk with diameter [0, 1/2]

A-Gauss = CoreGauss followed with FinalGauss (at most 2 iterations).

CoreGauss(z)

Input. A complex number in D.

Output. A complex number in B̃ \ D.

While z ∈ D do z := U(z);

FinalGauss(z)

Input. A complex number in B̃ \ D.

Output. A complex number in F̃ .

While z 6∈ F̃ do z := U(z) S(z) = 1/z, T (z) = z + 1

J(z) = −z

U(z) := ε

(
1

z

) (
1

z
−
⌊
<
(
1

z

)⌉)
with ε(z) := sign(<(z)− b<(z)e)

D := disk with diameter [0, 1/2]

A-Gauss = CoreGauss followed with FinalGauss (at most 2 iterations).

CoreGauss(z)

Input. A complex number in D.

Output. A complex number in B̃ \ D.

While z ∈ D do z := U(z);

FinalGauss(z)

Input. A complex number in B̃ \ D.

Output. A complex number in F̃ .

While z 6∈ F̃ do z := U(z) S(z) = 1/z, T (z) = z + 1

J(z) = −z

The CoreGauss Alg. is the central part of the AGauss Alg.

Since D = disk of diameter [0, 1/2] =

{
z; <

(
1

z

)
≥ 2

}
,

the CoreGauss Alg uses at each step a quotient (m, ε) ≥ (2,+1)

Exact generalisation

of the C-Euclid Algorithm,

which deals with the map

[0, 1/2]→ [0, 1/2],

x 7→ ε

(
1

x

) (
1

x
−
⌊
<
(
1

x

)⌉)
The graph of the DS

of the Centered Euclid Alg.

The CoreGauss Alg. is the central part of the AGauss Alg.

Since D = disk of diameter [0, 1/2] =

{
z; <

(
1

z

)
≥ 2

}
,

the CoreGauss Alg uses at each step a quotient (m, ε) ≥ (2,+1)

Exact generalisation

of the C-Euclid Algorithm,

which deals with the map

[0, 1/2]→ [0, 1/2],

x 7→ ε

(
1

x

) (
1

x
−
⌊
<
(
1

x

)⌉)
The graph of the DS

of the Centered Euclid Alg.

The CoreGauss Alg. is the central part of the AGauss Alg.

Since D = disk of diameter [0, 1/2] =

{
z; <

(
1

z

)
≥ 2

}
,

the CoreGauss Alg uses at each step a quotient (m, ε) ≥ (2,+1)

Exact generalisation

of the C-Euclid Algorithm,

which deals with the map

[0, 1/2]→ [0, 1/2],

x 7→ ε

(
1

x

) (
1

x
−
⌊
<
(
1

x

)⌉)
The graph of the DS

of the Centered Euclid Alg.

Number of iterations of the Core-Gauss Algorithm

The CoreGauss Alg. is regular and has a nice structure.

It uses at each step a LFT of H :=

{
z 7→ 1

m+ εz
; (m, ε) ≥ (2,+1)

}

The domain [R ≥ k + 1] is a union of disjoint disks,

[R ≥ k + 1] = U−k(D) =
⋃

h∈Hk
h(D),

Then: E[R] = 1

||D||
∑

h∈H?
||h(D)||

P[R ≥ k + 1] =
1

||D||
∑

h∈Hk
||h(D)||

(Remark: ||X || is the measure of the domain X) The domains [R = k]

alternatively

in black and white

Number of iterations of the Core-Gauss Algorithm

The CoreGauss Alg. is regular and has a nice structure.

It uses at each step a LFT of H :=

{
z 7→ 1

m+ εz
; (m, ε) ≥ (2,+1)

}

The domain [R ≥ k + 1] is a union of disjoint disks,

[R ≥ k + 1] = U−k(D) =
⋃

h∈Hk
h(D),

Then: E[R] = 1

||D||
∑

h∈H?
||h(D)||

P[R ≥ k + 1] =
1

||D||
∑

h∈Hk
||h(D)||

(Remark: ||X || is the measure of the domain X) The domains [R = k]

alternatively

in black and white

Number of iterations of the Core-Gauss Algorithm

The CoreGauss Alg. is regular and has a nice structure.

It uses at each step a LFT of H :=

{
z 7→ 1

m+ εz
; (m, ε) ≥ (2,+1)

}

The domain [R ≥ k + 1] is a union of disjoint disks,

[R ≥ k + 1] = U−k(D) =
⋃

h∈Hk
h(D),

Then: E[R] = 1

||D||
∑

h∈H?
||h(D)||

P[R ≥ k + 1] =
1

||D||
∑

h∈Hk
||h(D)||

(Remark: ||X || is the measure of the domain X) The domains [R = k]

alternatively

in black and white

A worst-case analysis.

For a given k,

– the largest disk h(D) is obtained when all the quotients (m, ε) = (2,+1).

– In this case, the coefficients (c, d) of h are the terms (Ak, Ak+1) of the

sequence

A0 = 0, A1 = 1, Ak+1 = 2Ak +Ak−1, (k ≥ 1),

which satisfy Ak ≥ (1 +
√
2)k−2.

Then: [R ≥ k + 1] ⊂

{
z; |=(z)| ≤ 1

2

(
1

1 +
√
2

)2k−2
}
,

For any complex number z non real, the number of iterations of the

Core-Gauss Algorithm on the input z satisfies

R(z) ≤ 2 +
1

2
log1+

√
2

1

|=z|
.

A worst-case analysis.

For a given k,

– the largest disk h(D) is obtained when all the quotients (m, ε) = (2,+1).

– In this case, the coefficients (c, d) of h are the terms (Ak, Ak+1) of the

sequence

A0 = 0, A1 = 1, Ak+1 = 2Ak +Ak−1, (k ≥ 1),

which satisfy Ak ≥ (1 +
√
2)k−2.

Then: [R ≥ k + 1] ⊂

{
z; |=(z)| ≤ 1

2

(
1

1 +
√
2

)2k−2
}
,

For any complex number z non real, the number of iterations of the

Core-Gauss Algorithm on the input z satisfies

R(z) ≤ 2 +
1

2
log1+

√
2

1

|=z|
.

A worst-case analysis.

For a given k,

– the largest disk h(D) is obtained when all the quotients (m, ε) = (2,+1).

– In this case, the coefficients (c, d) of h are the terms (Ak, Ak+1) of the

sequence

A0 = 0, A1 = 1, Ak+1 = 2Ak +Ak−1, (k ≥ 1),

which satisfy Ak ≥ (1 +
√
2)k−2.

Then: [R ≥ k + 1] ⊂

{
z; |=(z)| ≤ 1

2

(
1

1 +
√
2

)2k−2
}
,

For any complex number z non real, the number of iterations of the

Core-Gauss Algorithm on the input z satisfies

R(z) ≤ 2 +
1

2
log1+

√
2

1

|=z|
.

Now, a probabilistic study.

We first define an interesting class of probabilistic models

which takes into account the “geometry” of the events [R ≥ k + 1]

The model with valuation r is associated with a density fr on the disk D
proportional to |y|r−1.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is

proportional to dr+1

When r → 0,

– this model gives more weight to difficult instances:

complex numbers z with small |=z|, [skew bases]

– it provides a transition to the one–dimensional model [=z = 0]

Now, a probabilistic study.

We first define an interesting class of probabilistic models

which takes into account the “geometry” of the events [R ≥ k + 1]

The model with valuation r is associated with a density fr on the disk D
proportional to |y|r−1.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is

proportional to dr+1

When r → 0,

– this model gives more weight to difficult instances:

complex numbers z with small |=z|, [skew bases]

– it provides a transition to the one–dimensional model [=z = 0]

Now, a probabilistic study.

We first define an interesting class of probabilistic models

which takes into account the “geometry” of the events [R ≥ k + 1]

The model with valuation r is associated with a density fr on the disk D
proportional to |y|r−1.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is

proportional to dr+1

When r → 0,

– this model gives more weight to difficult instances:

complex numbers z with small |=z|, [skew bases]

– it provides a transition to the one–dimensional model [=z = 0]

Now, a probabilistic study.

We first define an interesting class of probabilistic models

which takes into account the “geometry” of the events [R ≥ k + 1]

The model with valuation r is associated with a density fr on the disk D
proportional to |y|r−1.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is

proportional to dr+1

When r → 0,

– this model gives more weight to difficult instances:

complex numbers z with small |=z|, [skew bases]

– it provides a transition to the one–dimensional model [=z = 0]

Now, a probabilistic study.

We first define an interesting class of probabilistic models

which takes into account the “geometry” of the events [R ≥ k + 1]

The model with valuation r is associated with a density fr on the disk D
proportional to |y|r−1.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is

proportional to dr+1

When r → 0,

– this model gives more weight to difficult instances:

complex numbers z with small |=z|, [skew bases]

– it provides a transition to the one–dimensional model [=z = 0]

Number of iterations of the Gauss Algorithm (II).

Strongly depends on the distribution near the real axis (described with the valuation)

E[R] = 1

||D||
∑

h∈H?
||h(D)||

(Remark: ||X || is the measure of the domain X).

For any valuation r, the mean value satisfies

E(r)[R] =
22r+2

ζ(2r + 2)

∑
c,d≥1

dφ<c<dφ2

1

(cd)1+r
.

The domains [R = k]

alternatively

in black and white

Number of iterations of the Gauss Algorithm (II).

Strongly depends on the distribution near the real axis (described with the valuation)

E[R] = 1

||D||
∑

h∈H?
||h(D)||

(Remark: ||X || is the measure of the domain X).

For any valuation r, the mean value satisfies

E(r)[R] =
22r+2

ζ(2r + 2)

∑
c,d≥1

dφ<c<dφ2

1

(cd)1+r
.

The domains [R = k]

alternatively

in black and white

Number of iterations of the Gauss Algorithm (III).

Strongly depends on the distribution near the real axis (described with the valuation)

P[R ≥ k + 1] =
1

||D||
∑

h∈Hk
||h(D)||

(Remark: ||X || is the measure of the domain X).

For any valuation r,

R follows asymptotically a geometric law with a ratio λ(1+r),

The map s 7→ λ(s) is an important mathematical object,

the dominant eigenvalue of the transfer operator Hs

P(r)[R ≥ k] ∼ Cr λ(1 + r)k, λ(2) ∼ 0.07738

1− λ(1 + r) ∼ π2

6 log φ
r (r → 0)

The domains [R = k]

alternatively

in black and white

Number of iterations of the Gauss Algorithm (III).

Strongly depends on the distribution near the real axis (described with the valuation)

P[R ≥ k + 1] =
1

||D||
∑

h∈Hk
||h(D)||

(Remark: ||X || is the measure of the domain X).

For any valuation r,

R follows asymptotically a geometric law with a ratio λ(1+r),

The map s 7→ λ(s) is an important mathematical object,

the dominant eigenvalue of the transfer operator Hs

P(r)[R ≥ k] ∼ Cr λ(1 + r)k, λ(2) ∼ 0.07738

1− λ(1 + r) ∼ π2

6 log φ
r (r → 0)

The domains [R = k]

alternatively

in black and white

Number of iterations of the Gauss Algorithm (III).

Strongly depends on the distribution near the real axis (described with the valuation)

P[R ≥ k + 1] =
1

||D||
∑

h∈Hk
||h(D)||

(Remark: ||X || is the measure of the domain X).

For any valuation r,

R follows asymptotically a geometric law with a ratio λ(1+r),

The map s 7→ λ(s) is an important mathematical object,

the dominant eigenvalue of the transfer operator Hs

P(r)[R ≥ k] ∼ Cr λ(1 + r)k, λ(2) ∼ 0.07738

1− λ(1 + r) ∼ π2

6 log φ
r (r → 0)

The domains [R = k]

alternatively

in black and white

Output distribution of the Gauss algorithm. [Vallée and Vera, 2007]

For an initial density of valuation r,

the output density on F is proportional to F1+r(x, y) · η(x, y),
– where η is the density of “random lattices”. Here, in two dimensions,

η(x, y) =
3

π

1

y2

– and Fs(x, y) is closely related to the classical Eisenstein series

Es(x, y) :=
1

2

∑
(c,d)∈Z2

(c,d)6=(0,0)

ys

|cz + d|2s

via the relation Fs(x, y) =
1

ζ(2s)
Es(x, y)− ys

When r → 0, the output distribution relative to the input distribution of

valuation r tends to the distribution of random lattices.

Output distribution of the Gauss algorithm. [Vallée and Vera, 2007]

For an initial density of valuation r,

the output density on F is proportional to F1+r(x, y) · η(x, y),
– where η is the density of “random lattices”. Here, in two dimensions,

η(x, y) =
3

π

1

y2

– and Fs(x, y) is closely related to the classical Eisenstein series

Es(x, y) :=
1

2

∑
(c,d)∈Z2

(c,d)6=(0,0)

ys

|cz + d|2s

via the relation Fs(x, y) =
1

ζ(2s)
Es(x, y)− ys

When r → 0, the output distribution relative to the input distribution of

valuation r tends to the distribution of random lattices.

Instance of a Dynamical Analysis.

The set H =

{
z 7→ 1

m+ εz
; (m, ε) ≥ (2,+1)

}
describes one step of the C-Euclid Alg. or the CoreGauss Alg.

For studying the Euclid Algorithm, a transfer operator is used,

Hs[f](x) :=
∑

(m,ε)≥(2,1)

1

(m+ εx)2s
· f
(

1

m+ εx

)
.

For s = 1, this is the density transformer.

All the recent results about the Euclid Algorithm

use this transfer operator as a “generating operator”:

it generates the generating functions of interest.

This is the Dynamical Analysis Method

Dynamical analysis of the Gauss algorithm

The Gauss Alg, is described with an extension of the transfer operator

which deals with functions of two variables

Hs[F](x, y) :=
∑

(m,ε)≥(2,1)

1

(m+ εx)s(m+ εy)s
F

(
1

m+ εx
,

1

m+ εy

)
.

All the constants which occur in the analysis are spectral constants,

in particular the dominant eigenvalue λ(s) of the operator Hs

which is the same as for the plain operator Hs.

The dynamics of the C-Euclid Algorithm is described with s = 1.

The dynamics of the A-Gauss Algorithm is described with s = 2.

Using a density of valuation r shifts the parameter s 7→ s+ r.

Dynamical analysis of the Gauss algorithm

The Gauss Alg, is described with an extension of the transfer operator

which deals with functions of two variables

Hs[F](x, y) :=
∑

(m,ε)≥(2,1)

1

(m+ εx)s(m+ εy)s
F

(
1

m+ εx
,

1

m+ εy

)
.

All the constants which occur in the analysis are spectral constants,

in particular the dominant eigenvalue λ(s) of the operator Hs

which is the same as for the plain operator Hs.

The dynamics of the C-Euclid Algorithm is described with s = 1.

The dynamics of the A-Gauss Algorithm is described with s = 2.

Using a density of valuation r shifts the parameter s 7→ s+ r.

