Lattice Reduction Algorithms: EUCLID, GAUSS, LLL Description and Probabilistic Analysis

Brigitte VALLÉE (CNRS and Université de Caen, France)

Mauritanie, February 2016

A lattice of \mathbb{R}^p = a discrete additive subgroup of \mathbb{R}^p . A lattice \mathcal{L} possesses a basis $B := (b_1, b_2, \dots, b_n)$ with $n \leq p$,

$$\mathcal{L} := \{ x \in \mathbb{R}^p; \quad x = \sum_{i=1}^n x_i b_i, \qquad x_i \in \mathbb{Z} \}$$

... and in fact, an infinite number of bases....

If now \mathbb{R}^p is endowed with its (canonical) Euclidean structure, there exist bases (called reduced) with good Euclidean properties: their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice \mathcal{L} given by a basis B, construct from B a reduced basis \widehat{B} of \mathcal{L} .

A lattice of \mathbb{R}^p = a discrete additive subgroup of \mathbb{R}^p . A lattice \mathcal{L} possesses a basis $B := (b_1, b_2, \dots, b_n)$ with $n \leq p$,

$$\mathcal{L} := \{ x \in \mathbb{R}^p; \quad x = \sum_{i=1}^n x_i b_i, \qquad x_i \in \mathbb{Z} \}$$

... and in fact, an infinite number of bases....

If now \mathbb{R}^p is endowed with its (canonical) Euclidean structure, there exist bases (called reduced) with good Euclidean properties: their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice \mathcal{L} given by a basis B, construct from B a reduced basis \widehat{B} of \mathcal{L} .

A lattice of \mathbb{R}^p = a discrete additive subgroup of \mathbb{R}^p . A lattice \mathcal{L} possesses a basis $B := (b_1, b_2, \dots, b_n)$ with $n \leq p$,

$$\mathcal{L} := \{ x \in \mathbb{R}^p; \quad x = \sum_{i=1}^n x_i b_i, \qquad x_i \in \mathbb{Z} \}$$

... and in fact, an infinite number of bases....

If now \mathbb{R}^p is endowed with its (canonical) Euclidean structure, there exist bases (called reduced) with good Euclidean properties: their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice \mathcal{L} given by a basis B, construct from B a reduced basis \widehat{B} of \mathcal{L} .

A lattice of \mathbb{R}^p = a discrete additive subgroup of \mathbb{R}^p . A lattice \mathcal{L} possesses a basis $B := (b_1, b_2, \dots, b_n)$ with $n \leq p$,

$$\mathcal{L} := \{ x \in \mathbb{R}^p; \quad x = \sum_{i=1}^n x_i b_i, \qquad x_i \in \mathbb{Z} \}$$

... and in fact, an infinite number of bases....

If now \mathbb{R}^p is endowed with its (canonical) Euclidean structure, there exist bases (called reduced) with good Euclidean properties: their vectors are short enough and almost orthogonal.

Lattice reduction Problem : From a lattice \mathcal{L} given by a basis B, construct from B a reduced basis \widehat{B} of \mathcal{L} .

Lattice reduction algorithms in the two dimensional case.

n=1 : the Euclid algorithm computes the greatest common divisor $\gcd(u,v)$

n=2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

 $n \geq 3 \ ; \ {\rm the \ LLL \ algorithm}$ computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed as an extension of the previous one

n=1 : the Euclid algorithm computes the greatest common divisor $\gcd(u,v)$

n=2 : the Gauss algorithm

computes a minimal basis of a lattice of two dimensions

 $n \geq 3 \ ; \ {\rm the \ LLL \ algorithm}$ computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed as an extension of the previous one

n = 1: the Euclid algorithm computes the greatest common divisor gcd(u, v)n = 2: the Gauss algorithm computes a minimal basis of a lattice of two dimensions $n \ge 3$: the LLL algorithm computes a reduced basis of a lattice of any dimensions.

Each algorithm can be viewed as an extension of the previous one

II- The Gauss algorithm.

Lattice reduction algorithms in the two dimensional case.

Up to an isometry, the lattice \mathcal{L} is a subset of \mathbb{R}^2 or.... \mathbb{C} . To a pair $(u, v) \in \mathbb{C}^2$, with $u \neq 0$, we associate a unique $z \in \mathbb{C}$:

$$z := \frac{v}{u} = \frac{\langle u \cdot v \rangle}{|u|^2} + i \frac{\det(u, v)}{|u|^2}.$$

Up to a similarity, the lattice $\mathcal{L}(u, v)$ becomes $\mathcal{L}(1, z) =: L(z)$. All the main notions and main operations in lattice reduction can only be expressed with z = v/u.

- Positive basis (u, v) [or det(u, v) > 0] $\rightarrow \Im z > 0$
 - Acute basis (u,v) [or $(u.v) \ge 0$] $o \Re z \ge 0$
 - Skew basis (u,v) [or $|\det(u,v)|$ small wrt $|u|^2$] $o\Im z$ s

Up to an isometry, the lattice \mathcal{L} is a subset of \mathbb{R}^2 or.... \mathbb{C} .

To a pair $(u,v) \in \mathbb{C}^2$, with $u \neq 0$, we associate a unique $z \in \mathbb{C}$:

$$z := \frac{v}{u} = \frac{\langle u \cdot v \rangle}{|u|^2} + i \frac{\det(u, v)}{|u|^2}.$$

Up to a similarity, the lattice $\mathcal{L}(u, v)$ becomes $\mathcal{L}(1, z) =: L(z)$.

All the main notions and main operations in lattice reduction can only be expressed with z=v/u.

- Positive basis (u, v) [or det(u, v) > 0] $\rightarrow \Im z > 0$
 - Acute basis (u, v) [or $(u.v) \ge 0$] $\rightarrow \Re z \ge 0$
- Skew basis (u, v)
- or $|\det(u,v)|$ small wrt $|u|^2] o \Im z$ small

Up to an isometry, the lattice \mathcal{L} is a subset of \mathbb{R}^2 or.... \mathbb{C} .

To a pair $(u, v) \in \mathbb{C}^2$, with $u \neq 0$, we associate a unique $z \in \mathbb{C}$:

$$z := \frac{v}{u} = \frac{\langle u \cdot v \rangle}{|u|^2} + i \frac{\det(u, v)}{|u|^2}.$$

Up to a similarity, the lattice $\mathcal{L}(u, v)$ becomes $\mathcal{L}(1, z) =: L(z)$. All the main notions and main operations in lattice reduction can only be expressed with z = v/u.

- Positive basis (u, v) [or det(u, v) > 0] $\rightarrow \Im z > 0$
 - $[\text{or } (u.v) \ge 0] \qquad \qquad \rightarrow \Re z \ge 0$
- Skew basis (u, v)
- $[\mathrm{or} \; | \det(u,v) | \; \mathrm{small} \; \mathrm{wrt} \; |u|^2] \quad \rightarrow \Im z \; \mathrm{small}$

Up to an isometry, the lattice \mathcal{L} is a subset of \mathbb{R}^2 or.... \mathbb{C} .

To a pair $(u, v) \in \mathbb{C}^2$, with $u \neq 0$, we associate a unique $z \in \mathbb{C}$:

$$z := \frac{v}{u} = \frac{\langle u \cdot v \rangle}{|u|^2} + i \frac{\det(u, v)}{|u|^2}.$$

Up to a similarity, the lattice $\mathcal{L}(u, v)$ becomes $\mathcal{L}(1, z) =: L(z)$.

All the main notions and main operations in lattice reduction can only be expressed with z = v/u.

- Positive basis (u, v)[or det(u, v) > 0] $\rightarrow \Im z > 0$
- Acute basis (u, v) [or (u.v) > 0] $\rightarrow \Re z > 0$
- Skew basis (u, v) [or $|\det(u, v)|$ small wrt $|u|^2$]
- $\rightarrow \Im z \text{ small}$

- The existence of an optimal basis = a minimal basis
- A characterization of an optimal basis.
- An efficient algorithm which finds it = The Gauss Algorithm.

- The existence of an optimal basis = a minimal basis
- A characterization of an optimal basis.
- An efficient algorithm which finds it = The Gauss Algorithm.

- The existence of an optimal basis = a minimal basis
- A characterization of an optimal basis.
- An efficient algorithm which finds it = The Gauss Algorithm.

- The existence of an optimal basis = a minimal basis
- A characterization of an optimal basis.
- An efficient algorithm which finds it = The Gauss Algorithm.

Successive minima.

```
First minimum of \mathcal{L}:
a nonzero vector u \in \mathcal{L} that has a smallest Euclidean norm;
||u|| \leq ||v|| \quad \forall v \in \mathcal{L}
the length of a first minimum of \mathcal{L} is denoted by \lambda_1(\mathcal{L}).
```

Second minimum of \mathcal{L} :

any shortest vector amongst the vectors of $\mathcal L$ that are linearly independent of a first minimum u;

the length of a second minimum is denoted by $\lambda_2(\mathcal{L})$.

A basis is minimal if it comprises a first and a second minimum. For instance, the basis on the left of Figure is minimal.

Successive minima.

```
First minimum of \boldsymbol{\mathcal{L}} :
```

```
a nonzero vector u \in \mathcal{L} that has a smallest Euclidean norm;
```

```
||u|| \le ||v|| \quad \forall v \in \mathcal{L}
```

the length of a first minimum of \mathcal{L} is denoted by $\lambda_1(\mathcal{L})$.

Second minimum of \mathcal{L} :

any shortest vector amongst the vectors of \mathcal{L} that are linearly independent of a first minimum u;

the length of a second minimum is denoted by $\lambda_2(\mathcal{L})$.

A basis is minimal if it comprises a first and a second minimum. For instance, the basis on the left of Figure is minimal.

Successive minima.

```
First minimum of \boldsymbol{\mathcal{L}} :
```

```
a nonzero vector u \in \mathcal{L} that has a smallest Euclidean norm;
```

```
||u|| \le ||v|| \quad \forall v \in \mathcal{L}
```

the length of a first minimum of \mathcal{L} is denoted by $\lambda_1(\mathcal{L})$.

Second minimum of \mathcal{L} :

any shortest vector amongst the vectors of \mathcal{L} that are linearly independent of a first minimum u;

the length of a second minimum is denoted by $\lambda_2(\mathcal{L})$.

A basis is minimal if it comprises a first and a second minimum. For instance, the basis on the left of Figure is minimal.

Characterization of a minimal acute basis.

Let (u,v) be an acute basis. The conditions (a) and (b) are equivalent: (a) the basis (u,v) is minimal;

 $\left(b\right)$ the pair $\left(u,v\right)$ satisfies the two simultaneous inequalities:

$$\left| \frac{v}{u} \right| \ge 1,$$
 and $0 \le \Re\left(\frac{v}{u} \right) \le \frac{1}{2}.$

Then,

- the angle $\theta(u, v)$ between the two vectors u and v of a minimal basis
- and the imaginary part $y := \Im(v/u)$ satisfy

$$|\theta| \in [\pi/3, \pi/2]$$
 $\left|\Im\left(\frac{v}{u}\right)\right| \ge \frac{\sqrt{3}}{2}$

Characterization of a minimal acute basis.

Let (u,v) be an acute basis. The conditions (a) and (b) are equivalent: $(a) \mbox{ the basis } (u,v) \mbox{ is minimal;}$

(b) the pair (u, v) satisfies the two simultaneous inequalities:

$$\left| \frac{v}{u} \right| \ge 1,$$
 and $0 \le \Re\left(\frac{v}{u} \right) \le \frac{1}{2}$

Then,

- the angle $\theta(u, v)$ between the two vectors u and v of a minimal basis
- and the imaginary part $y := \Im(v/u)$ satisfy

$$|\theta| \in [\pi/3, \pi/2]$$
 $\left|\Im\left(\frac{v}{u}\right)\right| \ge \frac{\sqrt{3}}{2}$

Characterization of minimal bases.

An acute basis
$$(u,v)$$
 is minimal iff $z=rac{v}{u}\in ilde{\mathcal{F}}$

$$\mathcal{B} := \{z; |\Re(z)| \le 1/2\}$$
$$\mathcal{F} := \{z; |\Re(z)| \le 1/2, |z| \ge 1\}$$

 $\mathcal{B}^{\epsilon} := \{ z \in \mathcal{B}, \quad \operatorname{sign} \Re(z) = \epsilon \}$

 $\mathcal{F}^{\epsilon} := \{ z \in \mathcal{F}, \quad \operatorname{sign} \Re(z) = \epsilon \}$

With $J: z \mapsto -z$

$$\tilde{\mathcal{B}} := \mathcal{B}^+ \bigcup J\mathcal{B}^-, \ \tilde{\mathcal{F}} := \mathcal{F}^+ \bigcup J\mathcal{F}^-$$

Characterization of minimal bases.

An acute basis
$$(u,v)$$
 is minimal iff $z=rac{v}{u}\in ilde{\mathcal{F}}$

$$\mathcal{B} := \{z; |\Re(z)| \le 1/2\}$$
$$\mathcal{F} := \{z; |\Re(z)| \le 1/2, |z| \ge 1\}$$

 $\mathcal{B}^{\epsilon} := \{ z \in \mathcal{B}, \quad \operatorname{sign} \Re(z) = \epsilon \}$

 $\mathcal{F}^{\epsilon} := \{ z \in \mathcal{F}, \quad \operatorname{sign} \Re(z) = \epsilon \}$

With $J: z \mapsto -z$

$$\tilde{\mathcal{B}} := \mathcal{B}^+ \bigcup J \mathcal{B}^-, \ \tilde{\mathcal{F}} := \mathcal{F}^+ \bigcup J \mathcal{F}^-$$

Characterization of minimal bases.

An acute basis
$$(u,v)$$
 is minimal iff $z=rac{v}{u}\in ilde{\mathcal{F}}$

$$\begin{split} \mathcal{B} &:= \{ z; \quad |\Re(z)| \leq 1/2 \} \\ \mathcal{F} &:= \{ z; \quad |\Re(z)| \leq 1/2, \ |z| \geq 1 \} \end{split}$$

$$\mathcal{B}^{\epsilon} := \{ z \in \mathcal{B}, \quad \operatorname{sign} \Re(z) = \epsilon \}$$

$$\mathcal{F}^{\epsilon} := \{ z \in \mathcal{F}, \quad \operatorname{sign} \Re(z) = \epsilon \}$$

With $J: z \mapsto -z$

$$\tilde{\mathcal{B}} := \mathcal{B}^+ \bigcup J\mathcal{B}^-, \ \tilde{\mathcal{F}} := \mathcal{F}^+ \bigcup J\mathcal{F}^-$$

Vectorial version of the Gauss Algorithm

```
A-Gauss(u, v)
Input. An acute basis (u, v) of \mathcal{L}(u, v)
          with |v| \le |u|, \tau(v, u) \in [0, 1/2].
Output. An acute minimal basis (u, v) of \mathcal{L}(u, v)
          with |v| \geq |u|
```

The replacement operation is done as follows:

$$\begin{aligned} \tau(v, u) &= \Re\left(\frac{v}{u}\right) = \frac{\langle u \cdot v \rangle}{|u|^2} \\ m &:= \lfloor \tau(v, u) \rceil; \epsilon := \operatorname{sign}\left(\tau(v, u) - \lfloor \tau(v, u) \rceil\right); \\ v &:= \epsilon(v - mu); \end{aligned}$$

Vectorial version of the Gauss Algorithm

The replacement operation is done as follows:

$$\begin{aligned} \tau(v, u) &= \Re\left(\frac{v}{u}\right) = \frac{\langle u \cdot v \rangle}{|u|^2} \\ m &:= \lfloor \tau(v, u) \rceil; \epsilon := \operatorname{sign}\left(\tau(v, u) - \lfloor \tau(v, u) \rceil\right); \\ v &:= \epsilon(v - mu); \end{aligned}$$

Vectorial version of the Gauss Algorithm

The replacement operation is done as follows:

$$\begin{split} \tau(v,u) &= \Re\left(\frac{v}{u}\right) = \frac{\langle u \cdot v \rangle}{|u|^2} \\ m &:= \lfloor \tau(v,u) \rceil; \epsilon := \operatorname{sign}\left(\tau(v,u) - \lfloor \tau(v,u) \rceil\right); \\ v &:= \epsilon(v - mu); \end{split}$$

It performs integer translations – seen as "vectorial" divisions–

$$u = mv + \epsilon r$$
 with $m = \left\lfloor \Re\left(rac{u}{v}
ight)
ight
ceil = \left\lfloor rac{\langle u \cdot v
angle}{|v|^2}
ight
ceil$, $0 \le \Re\left(rac{r}{v}
ight) \le rac{1}{2}$

٠

•

Here m = 2and $\epsilon = 1$.

The vector r is the smallest amongst all the vectors which belong to

$$\{w = \epsilon(u - mv); \quad \epsilon = \pm 1, m \in \mathbb{Z}\}$$

It performs integer translations - seen as "vectorial" divisions-

٠

$$u = mv + \epsilon r$$
 with $m = \left\lfloor \Re\left(rac{u}{v}
ight)
ight
ceil = \left\lfloor rac{\langle u \cdot v
angle}{|v|^2}
ight
ceil, \quad 0 \leq \Re\left(rac{r}{v}
ight) \leq rac{1}{2}$

٠

٠

•

Here m = 2and $\epsilon = 1$.

The vector r is the smallest amongst all the vectors which belong to

•

$$\{w = \epsilon(u - mv); \quad \epsilon = \pm 1, m \in \mathbb{Z}\}$$

•

•

It performs integer translations - seen as "vectorial" divisions-

٠

$$u = mv + \epsilon r$$
 with $m = \left\lfloor \Re\left(rac{u}{v}
ight)
ight
ceil = \left\lfloor rac{\langle u \cdot v
angle}{|v|^2}
ight
ceil, \quad 0 \leq \Re\left(rac{r}{v}
ight) \leq rac{1}{2}$

٠

٠

•

Here m = 2and $\epsilon = 1$.

The vector r is the smallest amongst all the vectors which belong to

•

$$\{w = \epsilon(u - mv); \quad \epsilon = \pm 1, m \in \mathbb{Z}\}$$

•

٠

It performs integer translations - seen as "vectorial" divisions-

•

$$u = mv + \epsilon r$$
 with $m = \left\lfloor \Re\left(rac{u}{v}
ight)
ight
ceil = \left\lfloor rac{\langle u \cdot v
angle}{|v|^2}
ight
ceil, \quad 0 \leq \Re\left(rac{r}{v}
ight) \leq rac{1}{2}$

•

٠

•

٠

•

Here m = 2and $\epsilon = 1$.

• The vector r is the smallest amongst all the vectors which belong to

٠

$$\{w = \epsilon(u - mv); \quad \epsilon = \pm 1, m \in \mathbb{Z}\}$$

٠

Complex version of the Gauss Algorithm

 $\begin{array}{l} \texttt{A-Gauss}(z)\\ \texttt{Input. }z \text{ with } |z| \leq 1, \ \Re z \in [0, 1/2], \ \Im z \neq 0\\ \texttt{Output. }z \in \tilde{\mathcal{F}}\\ \texttt{While} \quad |z| \leq 1 \ \texttt{do}\\ z := 1/z;\\ m := \lfloor \Re z \rceil; \epsilon := \texttt{sign}(z - \lfloor \Re z \rceil);\\ z := \epsilon(z - m); \end{array}$

The three steps are summarized as

 $U(z) = \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right)$

Complex version of the Gauss Algorithm

The three steps are summarized as

$$U(z) = \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right)$$
Complex version of the Gauss Algorithm

 $\begin{array}{ll} \texttt{A-Gauss}(z) \\ \texttt{Input. } z \text{ with } |z| \leq 1, \ \Re z \in [0, 1/2], \ \Im z \neq 0 \\ \texttt{Output. } z \in \tilde{\mathcal{F}} \\ \texttt{While} \quad |z| \leq 1 \ \texttt{do} \\ & z := 1/z; \\ & m := \lfloor \Re z \rceil; \epsilon := \texttt{sign} \left(z - \lfloor \Re z \rceil \right); \\ & z := \epsilon(z - m); \end{array}$

The three steps are summarized as

$$U(z) = \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil\right)$$

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations – seen as "vectorial" divisions–, and exchanges.

Euclid's algorithm	Gauss' algorithm
Division between real numbers	Division between complex vectors
$v = mu + \epsilon r$ with $m = \left\lfloor rac{u}{v} ight ceil$ and $rac{r}{v} \leq rac{1}{2}$	$v = mu + \epsilon r$ with $m = \left \Re \left(rac{u}{v} ight) ight]$ and $\Re \left(rac{r}{v} ight) \leq rac{1}{2}$
$Division + exchange (v,u) \to (r,v)$	$Division + exchange \ (v, u) \to (r, v)$
"read" on $x = v/u$ $U(x) = \epsilon \left(\frac{1}{x}\right) \left(\frac{1}{x} - \left\lfloor \frac{1}{x} \right\rceil\right)$	"read" on $z = v/u$ $U(z) = \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right)$
Stopping condition: $x = 0$	Stopping condition: $z\in ilde{\mathcal{F}}$

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations - seen as "vectorial" divisions-, and exchanges.

Euclid's algorithm	Gauss' algorithm
Division between real numbers	Division between complex vectors
with $m = \left\lfloor \frac{u}{v} ight ceil$ and $rac{r}{v} \leq rac{1}{2}$	with $m = \left\lfloor \Re \left(\frac{u}{v} \right) \right\rceil$ and $\Re \left(\frac{r}{v} \right) \leq \frac{1}{2}$
Division + exchange $(v, u) \rightarrow (r, v)$	Division + exchange $(v, u) \rightarrow (r, v)$
"read" on $x = v/u$ $U(x) = \epsilon \left(\frac{1}{x}\right) \left(\frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor\right)$	"read" on $z = v/u$ $U(z) = \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right)$
Stopping condition: $x = 0$	Stopping condition: $z\in ilde{\mathcal{F}}$

The Gauss algorithm is an extension of the Euclid algorithm.

It performs integer translations - seen as "vectorial" divisions-, and exchanges.

Euclid's algorithm	Gauss' algorithm
Division between real numbers	Division between complex vectors
$v = mu + \epsilon r$	$v = mu + \epsilon r$
with $m = \left\lfloor rac{u}{v} ight ceil$ and $rac{r}{v} \leq rac{1}{2}$	with $m = \left\lfloor \Re\left(\frac{u}{v}\right) \right\rceil$ and $\Re\left(\frac{r}{v}\right) \le \frac{1}{2}$
$Division + exchange (v, u) \to (r, v)$	$Division + exchange (v,u) \to (r,v)$
"read" on $x = v/u$	"read" on $z=v/u$
$U(x) = \epsilon \left(\frac{1}{x}\right) \left(\frac{1}{x} - \left\lfloor \frac{1}{x} \right ight ceil ight)$	$U(z) = \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right)$
Stopping condition: $x = 0$	Stopping condition: $z\in ilde{\mathcal{F}}$

An essential difference between the two algorithms

- The continuous extension of the Euclid Algorithm never stops except for rationals.
- The (continuous) Gauss Algorithm always stops except for irrational flat bases zfor which $\Im z = 0$ and $\Re z \notin \mathbb{Q}$

Difference due to the various "holes":

- The Euclid hole $\{0\}$ is of zero measure
- The Gauss hole \mathcal{F} is a fundamental domain

An essential difference between the two algorithms

- The continuous extension of the Euclid Algorithm never stops except for rationals.
- The (continuous) Gauss Algorithm always stops except for irrational flat bases zfor which $\Im z = 0$ and $\Re z \notin \mathbb{Q}$

Difference due to the various "holes":

- The Euclid hole $\{0\}$ is of zero measure
- The Gauss hole $\mathcal F$ is a fundamental domain

An essential difference between the two algorithms

- The continuous extension of the Euclid Algorithm never stops except for rationals.
- The (continuous) Gauss Algorithm always stops except for irrational flat bases zfor which $\Im z = 0$ and $\Re z \notin \mathbb{Q}$

Difference due to the various "holes":

- The Euclid hole $\{0\}$ is of zero measure
- The Gauss hole $\mathcal F$ is a fundamental domain

- On the input (u,v) with $z=rac{v}{u}\in \mathcal{B}\setminus \mathcal{F}$,
- The algorithm begins with vectors $(v_0 := u, v_1 := v)$, it computes the sequence of divisions $v_{i-1} = m_i v_i + \epsilon_i v_{i+1}$; it produces vectors $(v_0, v_1, \dots, v_p, v_{p+1})$ and quotients m_i ,

– and obtains the output basis
$$(\widehat{u}=v_p, \widehat{v}=v_{p+1})$$
 with $\widehat{z}=rac{\widehat{v}}{\widehat{u}}\in ilde{\mathcal{F}}$

- the execution, for instance the number of iterations
- the output, for instance the distribution inside the fundamental domain

– On the input (u,v) with $z=rac{v}{u}\in \mathcal{B}\setminus \mathcal{F}$,

- The algorithm begins with vectors $(v_0 := u, v_1 := v)$, it computes the sequence of divisions $v_{i-1} = m_i v_i + \epsilon_i v_{i+1}$; it produces vectors $(v_0, v_1, \dots, v_p, v_{p+1})$ and quotients m_i ,

– and obtains the output basis
$$(\widehat{u}=v_p, \widehat{v}=v_{p+1})$$
 with $\widehat{z}=rac{\widehat{v}}{\widehat{u}}\in ilde{\mathcal{F}}$

- the execution, for instance the number of iterations
- the output, for instance the distribution inside the fundamental domain

- On the input (u,v) with $z=rac{v}{u}\in\mathcal{B}\setminus\mathcal{F}$,
- The algorithm begins with vectors $(v_0 := u, v_1 := v)$, it computes the sequence of divisions $v_{i-1} = m_i v_i + \epsilon_i v_{i+1}$; it produces vectors $(v_0, v_1, \dots, v_p, v_{p+1})$ and quotients m_i ,

– and obtains the output basis
$$(\widehat{u}=v_p, \widehat{v}=v_{p+1})$$
 with $\widehat{z}=rac{\widehat{v}}{\widehat{u}}\in ilde{\mathcal{F}}$

- the execution, for instance the number of iterations
- the output, for instance the distribution inside the fundamental domain

- On the input (u,v) with $z=rac{v}{u}\in \mathcal{B}\setminus \mathcal{F}$,
- The algorithm begins with vectors $(v_0 := u, v_1 := v)$, it computes the sequence of divisions $v_{i-1} = m_i v_i + \epsilon_i v_{i+1}$; it produces vectors $(v_0, v_1, \dots, v_p, v_{p+1})$ and quotients m_i ,

– and obtains the output basis
$$(\widehat{u}=v_p, \widehat{v}=v_{p+1})$$
 with $\widehat{z}=rac{\widehat{v}}{\widehat{u}}\in ilde{\mathcal{F}}$

- the execution, for instance the number of iterations
- the output, for instance the distribution inside the fundamental domain

- On the input (u,v) with $z=rac{v}{u}\in \mathcal{B}\setminus \mathcal{F}$,
- The algorithm begins with vectors $(v_0 := u, v_1 := v)$, it computes the sequence of divisions $v_{i-1} = m_i v_i + \epsilon_i v_{i+1}$; it produces vectors $(v_0, v_1, \dots, v_p, v_{p+1})$ and quotients m_i ,
- and obtains the output basis $(\widehat{u} = v_p, \widehat{v} = v_{p+1})$ with $\widehat{z} = \frac{\widehat{v}}{\widehat{u}} \in \widetilde{\mathcal{F}}$

- the execution, for instance the number of iterations
- the output, for instance the distribution inside the fundamental domain

Study of the Gauss Algorithm.

To a pair $(u,v) \in \mathbb{C}^2$, we associate a unique $z \in \mathbb{C}$:

$$z := \frac{v}{u} = \frac{\langle u \cdot v \rangle}{|u|^2} + i \frac{\det(u, v)}{|u|^2}.$$

Up to a similarity, the lattice $\mathcal{L}(u, v)$ becomes $\mathcal{L}(1, z) =: L(z)$

- Positive basis (u, v) [or det(u, v) > 0] $\rightarrow \Im z > 0$
- Acute basis (u, v) [or $\langle u \cdot v \rangle \ge 0$] $\rightarrow \Re z \ge 0$
- Skew basis (u, v) [or $|\det(u, v)|$ small wrt $|u|^2$] $\rightarrow \Im z$ small

Our version of the Gauss Algorithm (which uses the shift $U) \hfill deal with acute bases \hfill bases$

Study of the Gauss Algorithm.

To a pair $(u,v) \in \mathbb{C}^2$, we associate a unique $z \in \mathbb{C}$:

$$z := \frac{v}{u} = \frac{\langle u \cdot v \rangle}{|u|^2} + i \frac{\det(u, v)}{|u|^2}.$$

Up to a similarity, the lattice $\mathcal{L}(u,v)$ becomes $\mathcal{L}(1,z)=:L(z)$

- Positive basis (u, v) [or det(u, v) > 0] $\rightarrow \Im z > 0$
- Acute basis (u,v) [or $\langle u\cdot v
 angle\geq 0$] $o \Re z\geq 0$
- Skew basis (u, v) [or $|\det(u, v)|$ small wrt $|u|^2$] $\rightarrow \Im z$ small

Our version of the Gauss Algorithm (which uses the shift U) deal with acute bases

$\label{eq:constraint} \begin{tabular}{lll} The acute version \\ \end{tabular} deals with the transformation U and the fundamental domain $\tilde{\mathcal{F}}$. \end{tabular}$

L

$$\begin{split} \mathcal{F}^+ & U(z) := \epsilon \left(\frac{1}{z}\right) \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right) & \overset{(\textbf{u}.\textbf{D})}{\longrightarrow} \\ \text{with} \quad \epsilon(z) := \operatorname{sign}(\Re(z) - \lfloor \Re(z) \rceil), & \underset{\mathcal{B} \setminus \tilde{\mathcal{F}}}{\longrightarrow} \\ & \text{The hole is } \tilde{\mathcal{F}} := \mathcal{F}^+ \cup J\mathcal{F}^-. & \\ & J: z \mapsto -z & J\mathcal{F}^- \end{split}$$

The acute version

deals with the transformation U and the fundamental domain $\tilde{\mathcal{F}}.$

$$U(z) := \epsilon \left(\frac{1}{z}\right) \, \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right) \quad \text{with} \quad \epsilon(z) := \operatorname{sign}(\Re(z) - \lfloor \Re(z) \rceil)$$

$$U(z) := \epsilon \left(\frac{1}{z}\right) \, \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right) \quad \text{with} \quad \epsilon(z) := \operatorname{sign}(\Re(z) - \lfloor \Re(z) \rceil)$$

$$U(z) := \epsilon \left(\frac{1}{z}\right) \, \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right) \quad \text{with} \quad \epsilon(z) := \operatorname{sign}(\Re(z) - \lfloor \Re(z) \rceil)$$

$$U(z) := \epsilon \left(\frac{1}{z}\right) \, \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right) \quad \text{with} \quad \epsilon(z) := \operatorname{sign}(\Re(z) - \lfloor \Re(z) \rceil)$$

$$U(z) := \epsilon \left(\frac{1}{z}\right) \, \left(\frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z}\right) \right\rceil \right) \quad \text{with} \quad \epsilon(z) := \operatorname{sign}(\Re(z) - \lfloor \Re(z) \rceil)$$

The CoreGauss Alg. is the central part of the AGAUSS Alg.

Since
$$\mathcal{D} =$$
 disk of diameter $[0, 1/2] = \left\{ z; \Re\left(\frac{1}{z}\right) \ge 2 \right\},$

the CoreGauss Alg uses at each step a quotient $(m,\epsilon) \ge (2,+1)$

Exact generalisation of the C-Euclid Algorithm, which deals with the map $[0, 1/2] \rightarrow [0, 1/2],$ $x \mapsto \epsilon \left(\frac{1}{x}\right) \left(\frac{1}{x} - \lfloor \Re \left(\frac{1}{x}\right) \rceil\right)$

The graph of the DS of the Centered Euclid Alg.

The CoreGauss Alg. is the central part of the AGAUSS Alg.

Since
$$\mathcal{D} =$$
 disk of diameter $[0, 1/2] = \left\{z; \Re\left(\frac{1}{z}\right) \ge 2\right\}$,

the CoreGauss Alg uses at each step a quotient $(m,\epsilon) \geq (2,+1)$

Exact generalisation of the C-Euclid Algorithm, which deals with the map $[0, 1/2] \rightarrow [0, 1/2],$ $x \mapsto \epsilon \left(\frac{1}{x}\right) \left(\frac{1}{x} - \left\lfloor \Re \left(\frac{1}{x}\right) \right\rceil \right)$

The graph of the DS of the Centered Euclid Alg.

The CoreGauss Alg. is the central part of the AGAUSS Alg.

Since
$$\mathcal{D} =$$
 disk of diameter $[0, 1/2] = \left\{z; \Re\left(\frac{1}{z}\right) \ge 2\right\}$,

the CoreGauss Alg uses at each step a quotient $(m,\epsilon) \geq (2,+1)$

Exact generalisation of the C-Euclid Algorithm, which deals with the map $[0, 1/2] \rightarrow [0, 1/2],$ $x \mapsto \epsilon \left(\frac{1}{x}\right) \left(\frac{1}{x} - \left\lfloor \Re \left(\frac{1}{x}\right) \right\rceil \right)$

The graph of the DS of the Centered Euclid Alg.

Number of iterations of the Core-Gauss Algorithm

The CoreGauss Alg. is regular and has a nice structure.

It uses at each step a LFT of $\mathcal{H} := \left\{ z \mapsto \frac{1}{m + \epsilon z}; \quad (m, \epsilon) \ge (2, +1) \right\}$

The domain $[R \ge k + 1]$ is a union of disjoint disks, $[R \ge k + 1] = U^{-k}(\mathcal{D}) = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D}),$ Then: $\mathbb{E}[R] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^k} ||h(\mathcal{D})||$ $\mathbb{P}[R \ge k + 1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^k} ||h(\mathcal{D})||$ (Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X})

The domains [R = k]alternatively in black and white

Number of iterations of the Core-Gauss Algorithm

The CoreGauss Alg. is regular and has a nice structure.

It uses at each step a LFT of $\mathcal{H} := \left\{ z \mapsto \frac{1}{m + \epsilon z}; \quad (m, \epsilon) \ge (2, +1) \right\}$

The domain $[R \ge k+1]$ is a union of disjoint disks,

$$[R \ge k+1] = U^{-k}(\mathcal{D}) = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D}),$$

Then:
$$\mathbb{E}[R] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^{\star}} ||h(\mathcal{D})||$$

 $\mathbb{P}[R > k+1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^{\star}} ||h(\mathcal{D})||$

 $\mathbb{P}[K \ge k+1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^k} ||n(\mathcal{D})||$

(Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X})


```
The domains [R = k]
alternatively
in black and white
```

Number of iterations of the Core-Gauss Algorithm

The CoreGauss Alg. is regular and has a nice structure.

It uses at each step a LFT of $\mathcal{H} := \left\{ z \mapsto \frac{1}{m + \epsilon z}; \quad (m, \epsilon) \ge (2, +1) \right\}$

The domain $[R \ge k+1]$ is a union of disjoint disks,

$$[R \ge k+1] = U^{-k}(\mathcal{D}) = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D}),$$

Then:
$$\mathbb{E}[R] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^{\star}} ||h(\mathcal{D})||$$
$$\mathbb{P}[R \ge k+1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^{k}} ||h(\mathcal{D})||$$

(Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X})

The domains [R = k]alternatively in black and white

A worst-case analysis.

For a given k,

– the largest disk $h(\mathcal{D})$ is obtained when all the quotients $(m, \epsilon) = (2, +1)$.

– In this case, the coefficients (c,d) of h are the terms (A_k, A_{k+1}) of the sequence

 $A_0 = 0, \quad A_1 = 1, \quad A_{k+1} = 2A_k + A_{k-1}, \quad (k \ge 1),$

which satisfy $A_k \ge (1+\sqrt{2})^{k-2}$

$$\text{Then:} \ [R \ge k+1] \subset \left\{z; \quad |\Im(z)| \le \frac{1}{2} \, \left(\frac{1}{1+\sqrt{2}}\right)^{2k-2}\right\} \,,$$

For any complex number z non real, the number of iterations of the Core-Gauss Algorithm on the input z satisfies

$$R(z) \le 2 + \frac{1}{2} \log_{1+\sqrt{2}} \frac{1}{|\Im z|}.$$

A worst-case analysis.

For a given k,

– the largest disk $h(\mathcal{D})$ is obtained when all the quotients $(m, \epsilon) = (2, +1)$.

– In this case, the coefficients $(\boldsymbol{c},\boldsymbol{d})$ of h are the terms (A_k,A_{k+1}) of the sequence

 $A_0=0, \quad A_1=1, \quad A_{k+1}=2A_k+A_{k-1}, \quad (k\geq 1),$ which satisfy $A_k\geq (1+\sqrt{2})^{k-2}.$

Then:
$$[R \ge k+1] \subset \left\{ z; \quad |\Im(z)| \le \frac{1}{2} \left(\frac{1}{1+\sqrt{2}} \right)^{2k-2} \right\}$$
,

For any complex number z non real, the number of iterations of the Core-Gauss Algorithm on the input z satisfies

$$R(z) \le 2 + \frac{1}{2} \log_{1+\sqrt{2}} \frac{1}{|\Im z|}.$$

A worst-case analysis.

For a given k,

– the largest disk $h(\mathcal{D})$ is obtained when all the quotients $(m, \epsilon) = (2, +1)$.

– In this case, the coefficients $(\boldsymbol{c},\boldsymbol{d})$ of h are the terms (A_k,A_{k+1}) of the sequence

 $A_0 = 0, \quad A_1 = 1, \quad A_{k+1} = 2A_k + A_{k-1}, \quad (k \ge 1),$

which satisfy $A_k \ge (1 + \sqrt{2})^{k-2}$.

Then:
$$[R \ge k+1] \subset \left\{ z; \quad |\Im(z)| \le \frac{1}{2} \left(\frac{1}{1+\sqrt{2}} \right)^{2k-2} \right\}$$
,

For any complex number z non real, the number of iterations of the Core-Gauss Algorithm on the input z satisfies

$$R(z) \le 2 + \frac{1}{2} \log_{1+\sqrt{2}} \frac{1}{|\Im z|} \,.$$

We first define an interesting class of probabilistic models which takes into account the "geometry" of the events $[R \ge k+1]$

```
The model with valuation r is associated with a density f_r on the disk \mathcal{D} proportional to |y|^{r-1}.
```

```
– The uniform density is obtained for r = 1
```

– The measure of a disk centered on the real axis with diameter d is proportional to d^{r+1}

When $r \rightarrow 0$,

- this model gives more weight to difficult instances:

complex numbers z with small $|\Im z|$, [skew bases]

- it provides a transition to the one-dimensional model [$\Im z = 0$]

We first define an interesting class of probabilistic models which takes into account the "geometry" of the events $[R \ge k + 1]$

The model with valuation r is associated with a density f_r on the disk \mathcal{D} proportional to $|y|^{r-1}$.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is proportional to d^{r+1}

When $r \to 0$,

- this model gives more weight to difficult instances:

complex numbers z with small $|\Im z|$, [skew bases]

– it provides a transition to the one–dimensional model $[\Im z = 0]$

We first define an interesting class of probabilistic models which takes into account the "geometry" of the events $[R \ge k + 1]$

The model with valuation r is associated with a density f_r on the disk \mathcal{D} proportional to $|y|^{r-1}$.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is proportional to d^{r+1}

When $r \rightarrow 0$,

- this model gives more weight to difficult instances:

complex numbers z with small $|\Im z|$, [skew bases]

– it provides a transition to the one–dimensional model $[\Im z = 0]$

We first define an interesting class of probabilistic models which takes into account the "geometry" of the events $[R \ge k + 1]$

The model with valuation r is associated with a density f_r on the disk \mathcal{D} proportional to $|y|^{r-1}$.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is proportional to d^{r+1}

When $r \rightarrow 0$,

- this model gives more weight to difficult instances:

complex numbers z with small $|\Im z|$, [skew bases]

– it provides a transition to the one–dimensional model $[\Im z = 0]$

We first define an interesting class of probabilistic models which takes into account the "geometry" of the events $[R \ge k + 1]$

The model with valuation r is associated with a density f_r on the disk \mathcal{D} proportional to $|y|^{r-1}$.

– The uniform density is obtained for r = 1

– The measure of a disk centered on the real axis with diameter d is proportional to d^{r+1}

When $r \rightarrow 0$,

- this model gives more weight to difficult instances:

complex numbers z with small $|\Im z|$, [skew bases]

- it provides a transition to the one-dimensional model [$\Im z = 0$]

Number of iterations of the Gauss Algorithm (II).

Strongly depends on the distribution near the real axis (described with the valuation)

$$\mathbb{E}[R] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^*} ||h(\mathcal{D})||$$
(Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X}).
For any valuation r , the mean value satisfies

$$\mathbb{E}_{(r)}[R] = \frac{2^{2r+2}}{\zeta(2r+2)} \sum_{\substack{c,d \ge 1 \\ d\phi < c < d\phi^2}} \frac{1}{(cd)^{1+r}}.$$

The domains [R = k]alternatively in black and white
Number of iterations of the Gauss Algorithm (II).

Strongly depends on the distribution near the real axis (described with the valuation)

$$\begin{split} \mathbb{E}[R] &= \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^{\star}} ||h(\mathcal{D})|| \\ \text{(Remark: } ||\mathcal{X}|| \text{ is the measure of the domain } \mathcal{X}\text{)}. \end{split}$$

For any valuation r , the mean value satisfies
$$\mathbb{E}_{(r)}[R] &= \frac{2^{2r+2}}{\zeta(2r+2)} \sum_{\substack{c,d \geq 1 \\ d\phi < c < d\phi^2}} \frac{1}{(cd)^{1+r}}. \end{split}$$

Number of iterations of the Gauss Algorithm (III).

Strongly depends on the distribution near the real axis (described with the valuation)

$$\mathbb{P}[R \ge k+1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^k} ||h(\mathcal{D})||$$

(Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X}).

For any valuation r,

R follows asymptotically a geometric law with a ratio $\lambda(1+r)$ The map $s \mapsto \lambda(s)$ is an important mathematical object, the dominant eigenvalue of the transfer operator \mathbf{H}_s

$$\mathbb{P}_{(r)}[R \ge k] \sim C_r \,\lambda (1+r)^k, \quad \lambda(2) \sim 0.07738$$
$$1 - \lambda (1+r) \sim \frac{\pi^2}{6\log\phi} r \quad (r \to 0)$$

Strongly depends on the distribution near the real axis (described with the valuation)

$$\mathbb{P}[R \ge k+1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^k} ||h(\mathcal{D})||$$

(Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X}).

For any valuation r,

R follows asymptotically a geometric law with a ratio $\lambda(1+r)$,

The map $s\mapsto\lambda(s)$ is an important mathematical object, the dominant eigenvalue of the transfer operator \mathbf{H}_s

$$\mathbb{P}_{(r)}[R \ge k] \sim C_r \,\lambda (1+r)^k, \quad \lambda(2) \sim 0.07738$$
$$1 - \lambda (1+r) \sim \frac{\pi^2}{6\log \phi} r \quad (r \to 0)$$

Strongly depends on the distribution near the real axis (described with the valuation)

$$\mathbb{P}[R \ge k+1] = \frac{1}{||\mathcal{D}||} \sum_{h \in \mathcal{H}^k} ||h(\mathcal{D})||$$

(Remark: $||\mathcal{X}||$ is the measure of the domain \mathcal{X}).

For any valuation r,

R follows asymptotically a geometric law with a ratio $\lambda(1+r)$, The map $s \mapsto \lambda(s)$ is an important mathematical object, the dominant eigenvalue of the transfer operator \mathbf{H}_s

$$\mathbb{P}_{(r)}[R \ge k] \sim C_r \,\lambda (1+r)^k, \quad \lambda(2) \sim 0.07738$$
$$1 - \lambda (1+r) \sim \frac{\pi^2}{6 \log \phi} \, r \quad (r \to 0)$$

Output distribution of the Gauss algorithm. [Vallée and Vera, 2007]

For an initial density of valuation r

the output density on $\mathcal F$ is proportional to $F_{1+r}(x,y)\cdot\eta(x,y),$

– where η is the density of "random lattices". Here, in two dimensions,

$$\eta(x,y) = \frac{3}{\pi} \frac{1}{y^2}$$

- and $F_s(x, y)$ is closely related to the classical Eisenstein series

$$E_s(x,y) := \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ (c,d) \neq (0,0)}} \frac{y^s}{|cz+d|^{2s}}$$

via the relation
$$F_s(x,y) = \frac{1}{\zeta(2s)} E_s(x,y) - y^s$$

When $r \rightarrow 0$, the output distribution relative to the input distribution of valuation r tends to the distribution of random lattices.

Output distribution of the Gauss algorithm. [Vallée and Vera, 2007]

For an initial density of valuation r,

the output density on $\mathcal F$ is proportional to $F_{1+r}(x,y)\cdot\eta(x,y),$

– where η is the density of "random lattices". Here, in two dimensions,

$$\eta(x,y) = \frac{3}{\pi} \frac{1}{y^2}$$

- and $F_s(x, y)$ is closely related to the classical Eisenstein series

$$E_s(x,y) := \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ (c,d) \neq (0,0)}} \frac{y^s}{|cz+d|^{2s}}$$

via the relation $F_s(x,y) = rac{1}{\zeta(2s)} E_s(x,y) - y^s$

When $r \rightarrow 0$, the output distribution relative to the input distribution of valuation r tends to the distribution of random lattices.

Instance of a Dynamical Analysis.

The set
$$\mathcal{H} = \left\{ z \mapsto \frac{1}{m + \epsilon z}; \quad (m, \epsilon) \ge (2, +1) \right\}$$

describes one step of the C-Euclid Alg. or the CoreGauss Alg.

For studying the Euclid Algorithm, a transfer operator is used,

$$\mathbf{H}_s[f](x) := \sum_{(m,\epsilon) \ge (2,1)} \frac{1}{(m+\epsilon x)^{2s}} \cdot f\left(\frac{1}{m+\epsilon x}\right).$$

For s = 1, this is the density transformer. All the recent results about the Euclid Algorithm use this transfer operator as a "generating operator": it generates the generating functions of interest. This is the Dynamical Analysis Method

Dynamical analysis of the Gauss algorithm

The Gauss Alg, is described with an extension of the transfer operator which deals with functions of two variables

$$\underline{\mathbf{H}}_{s}[F](x,y) := \sum_{(m,\epsilon) \ge (2,1)} \frac{1}{(m+\epsilon x)^{s}(m+\epsilon y)^{s}} F\left(\frac{1}{m+\epsilon x}, \frac{1}{m+\epsilon y}\right).$$

All the constants which occur in the analysis are spectral constants, in particular the dominant eigenvalue $\lambda(s)$ of the operator $\underline{\mathbf{H}}_s$ which is the same as for the plain operator \mathbf{H}_s .

The dynamics of the C-Euclid Algorithm is described with s = 1. The dynamics of the A-Gauss Algorithm is described with s = 2. Using a density of valuation r shifts the parameter $s \mapsto s + r$.

Dynamical analysis of the Gauss algorithm

The Gauss Alg, is described with an extension of the transfer operator which deals with functions of two variables

$$\underline{\mathbf{H}}_{s}[F](x,y) := \sum_{(m,\epsilon) \ge (2,1)} \frac{1}{(m+\epsilon x)^{s}(m+\epsilon y)^{s}} F\left(\frac{1}{m+\epsilon x}, \frac{1}{m+\epsilon y}\right).$$

All the constants which occur in the analysis are spectral constants, in particular the dominant eigenvalue $\lambda(s)$ of the operator $\underline{\mathbf{H}}_s$ which is the same as for the plain operator \mathbf{H}_s .

The dynamics of the C-Euclid Algorithm is described with s = 1. The dynamics of the A-Gauss Algorithm is described with s = 2. Using a density of valuation r shifts the parameter $s \mapsto s + r$.