
GENEALOGY OF LATTICE REDUCTION:

ALGORITHMIC DESCRIPTION AND DYNAMICAL ANALYSES

BRIGITTE VALLÉE

Abstract. The present study describes the main algorithms devoted to solving the lattice reduction

problem. This is a central algorithmic problem, due to its intrinsic theoretical interest, together to its

multiple possible applications, located at many various areas in the interface between mathematics and
computer science : computational number theory, integer programming but also complexity theory

and cryptology. We first describe the algorithms themselves, inside their genealogy, and explain

how the main ideas of small dimensions are used in higher dimensions. We are mainly interested in
their probabilistic analysis, and wish to describe in a probabilistic way the main properties of their

execution or the geometry of their outputs. Finally, the methodology that conducts these analyses is

itself a main subject of interest, as it involves an original mixing between probabilistic modelling of the
inputs, analytic combinatorics, and also tools that come from dynamical systems. This method, called

dynamical analysis, is completely fruitful in small dimensions, and well explains the transition between
the two smaller dimensions. For higher dimensions, such a direct approach is no longer possible, but

it can be adapted via the introduction of simplified models.

1. Introduction

1.1. Genealogy of lattice reduction. A lattice is probably the simplest structure of the discrete
linear algebra. A lattice L ⊂ Rn of dimension d is a discrete additive subgroup of Rn. Such a lattice is
generated by integral linear combinations of vectors from a family b := (b1, b2, . . . bd) of d ≤ n linearly
independent vectors of Rn, which is called a basis of the lattice L. A lattice is possibly generated by
infinitely many bases that are related to each other by integer matrices of determinant ±1. However,
when the ambient space is endowed with its Euclidean structure, these bases may strongly differ from
their Euclidean properties (see Figure 1). A lattice reduction algorithm aims at finding, from a given

basis of L, a so-called reduced basis b̂ of L with good Euclidean properties, namely with short enough
and almost orthogonal vectors.

Figure 1. A two-dimensional lattice and three of its bases represented by the parallelogram

they span. The basis on the left is “reduced” whereas the two other ones are skew.

1

2 BRIGITTE VALLÉE

In two dimensions, the Gauss algorithm solves the reduction problem in an optimal sense: it returns a
minimal basis, after a number of iterations which is at most linear with respect to the input size. It
can be viewed as a plain extension of the Centered Euclid algorithm, and it can be generalized itself in
other small dimensions d ≤ 4 (see for instance [68] or [61]). However, algorithms of this optimal quality
no longer exist in higher dimensions where there are various points of view on the lattice reduction.
We focus here on the LLL algorithm, designed in 1982 by Lenstra, Lenstra and Lovász in [43], that can
be viewed as an approximation algorithm which finds a good basis (not optimal generally speaking)
after a polynomial number of iterations (not linear generally speaking). This algorithm coincides with
the Gauss algorithm for d = 2. On a lattice of large dimensions d ≥ 3, it performs a succession of
Gauss reduction steps on two-dimensional sublattices of the input lattice. This is why it is important
to precisely describe and study the case d = 2 and thus, the case d = 1 which is itself very helpful to
understand the case d = 2.

A lattice is clearly a natural objet to model linear structures which arise in algorithmics. In the
context of lattice reduction, the structure is viewed via its embedding in the vectorial space Rn endowed
with its Euclidean structiure, and the lattice reduction problem is a central problem in the interplay
between algebra and metric Euclidean topology. This explains the multiple possible applications of
lattice reduction, for instance in integer programming, computational number theory, or more recently
in cryptology, where lattices are now one of the main tools for designing cryptosystems.

1.2. Probabilistic analysis of lattice reduction algorithms. This survey also describes comple-
mentary approaches which can be adopted in a probabilistic analysis of the main lattice reduction
algorithms.

Probabilistic analysis aims to precisely quantify the generic behavior of an algorithm – for instance
the main characteristics of its execution, or its outputs–. When the set of inputs is endowed with a
given distribution, these characteristics become random variables and may be studied in this way, via
their expectation, their variance, or their distribution, notably when the size of the inputs become
large. Beyond its intrinsic theoretical interest, such an analysis allows a fine understanding of the
algorithm and a justification of many experimental facts observed. It often conditions its algorithmic
improvements in its application areas. This is more important in the present framework, due to the
multiple possible applications of the lattice reduction problem. In this case, there are many experimental
observations, regarding the execution of the algorithms and the geometry of their outputs, that pose
important questions and lead to natural conjectures. The results obtained in this perspective may then
be expected to contribute to a general algorithmic strategy for lattice reduction.

We begin with smaller dimensions, and we first explain how the dynamical methodology is proven fruitful
for small dimensions d, corresponding to the Euclid algorithm (d = 1) and to the Gauss algorithm
(d = 2). Such an approach mixes probabilistic and combinatorial tools, and makes a great use of the
underlying dynamical system. It leads to a precise description of the probabilistic behaviour of the
two algorithms, and explains their resemblances, and their differences. We introduce the notion of
valuation which quantifies the difficulty of the inputs and also provides a precise transition between
the two algorithms, when the basis of the two–dimensional lattice becomes “flat”. Of course, as small
dimensions are strongly used in the algorithmic design in high dimensions, such a study for small
dimensions constitute an important step in the analysis of lattice reduction in any (high) dimension.

However, for higher dimensions, the probabilistic behavior of lattice reduction algorithms is very com-
plex and far from being well understood. There are two main difficulties in such a probabilistic analysis:
the first one comes from the structure of the LLL algorithm itself, which yet gives rise to a dynamical
system, but very difficult to deal with; the second one is due to the needed modelling of the inputs, and,
as the algorithm is used in various domains, one has to design dedicated modelling for each application.
Then, we design simplified models, both for the execution (for which we introduce simplified dynamical
systems) and the probabilistic modelling of the inputs (where we extend the notion of valuation).

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 3

1.3. Plan of the paper. Section 2 is devoted to probabilistic analysis; it introduces and describes the
general features of dynamical analysis. Then, the following two sections focus on smaller dimensions,
first the one-dimensional-case with the Euclid Algorithm (Section 3) then the two dimensional-case with
the Gauss algorithm (Section 4). Each section begins with a description of the algorithm, and then
provides its precise probabilistic analysis, based on dynamical methods. Section 4 also introduces the
notion of valuation which well explains the transition between these two smaller dimensions. Finally,
Section 5 is devoted to higher dimensions: after a precise description of the LLL algorithm, it surveys
the previous existing probabilistic analyses. It then introduces the simplified models, both for the
distribution of the inputs or the execution of the algorithm, that can be used in the first steps of a
(future) more realistic analysis of this central algorithmic process.

1.4. Other relevant surveys. There are other surveys that may be interesting for the reader. Paper
[77] focuses on Sections 2 and 3. The methodology of dynamical analysis is thorougly described and
applied to the whole class of Euclidean Algorithms. For precisions about the Gauss Algorithm and
its analysis, one can read papers [79] or thesis [80]. There is now a large litterature about the LLL
Algorithm. The book [55] is totally devoted to the algorithm, together with its multiple applications.
A shorter paper [67] may also be of interest.
The present survey corresponds to a course given in the Summer School entitled “Natural extension
of arithmetic algorithms and S-adic systems” (20-24 July 2015, Tambara Institute of Mathematical
Sciences, The University of Tokyo).

2. Probabilistic analysis of algorithms and dynamical systems.

This section first introduces the main concepts of the probabilistic analysis of algorithms, first intro-
duced by Knuth in his books [36] and further developed in a genuine scientific domain, called analytic
combinatorics, by Flajolet and Sedgewick in the book [26]. We then explain the particularities of the
algorithms we wish to analyse, due to two main factors: they deal with numbers, and there exists a
dynamical system that underlies the algorithm. The arithmetical operations create carries which per-
turbate the analysis, and do not permit a plain application of analytic combinatorics. On the other side,
the underlying dynamical system is a powerful tool to understand these perturbations, mainly via its
transfer operator. Then, dynamical analysis is based by the conjoint use of tools that come from both
domains –analytic combinatorics and dynamical systems theory – and the transfer operator plays there
a crucial role in the crossroads, the role of a generating operator. As in classical analytic combinatorics,
there are then two steps: a combinatorial step which expresses the main probabilistic objects in terms
of the transfer operator, an analytic step which transfers the analytic properties of the operator into
asymptotic properties.

2.1. Probabilistic analysis of algorithms. We consider an algorithm with its set of inputs Ω, and
a parameter (also called a cost) C defined on Ω which describes

– the execution of the algorithm (number of iterations, bit–complexity)
– or the geometry of the output

We gather the inputs with respect to their size, and consider the family of subsets
Ωn := {ω ∈ Ω, size(ω) = n}.

We then consider a distribution on Ωn(for instance the uniform distribution), and the restriction Cn of
the cost C to Ωn becomes a random variable. We study it in a probabilistic way: we wish to estimate
the mean value of Cn, its variance, its distribution... in an asymptotic way when the size n becomes
large.

2.2. Analytic combinatorics and generating functions. Analytic combinatorics [26] is a modern
basis for the quantitative study of combinatorial structures (such as words, trees, mappings, and graphs),
with applications to probabilistic study of algorithms that are based on these structures. The idea is
to transform a sequence (an) related to the probabilistic analysis of the family (Cn) related to a cost C

4 BRIGITTE VALLÉE

into a unique function A(z) which “gathers” the whole sequence. There exist generating functions of
various types

A(z) :=
∑
n≥0

anz
n, Â(z) :=

∑
n≥0

an
zn

n!
, Ã(s) :=

∑
n≥1

an
ns

The first one is an ordinary generating function, the second one is an exponential generating function,
whereas the third one is a Dirichlet generating function. One then uses two types of methods: symbolic
and analytic. The symbolic side views generating functions as formal objects; it uses combinatorial
tools and derives characterizations of generating functions. The analytic side treats those functions as
functions in the complex plane, uses many various analytic tools and leads to precise characterization
of limit distributions.
These objects are very useful when the distribution of data does not change “too much” during the
execution of the algorithm. In this case, the algorithm gives rise to a precise symbolic description of the
associated generating functions. This is the case for instance for the Euclid Algorithm on polynomials
(see for instance [11]).

Here, we mainly deal with integer numbers, and this is no longer the case. The existence of carries
in the main arithmetical operations changes the distribution of data; as the probabilistic study of the
dynamical system underlying the algorithm explains how the distribution of data evolves during the
execution of the algorithm, it may be of central interest in this case. This leads to the paradigm of

Dynamical Analysis := Analysis of Algorithms + Dynamical Systems

2.3. Dynamical Analysis. Analytic combinatorics can be viewed as an interaction between the dis-
crete world (symbolic view on generating functions) and the continuous word (analytic view on gener-
ating function). But it proves often useful to also operate a more direct interaction on the algorithm
itself and perform the following three main steps.

(a) The discrete algorithm is extended into a continuous process.
(b) This continuous process is studied – more easily, using all the analytic tools.
(c) We wish to return to the discrete algorithm,

Remark that the discrete data are of zero measure amongst the continuous data. This is why Step (c)
is often difficult. We will see in the sequel two methods for Step (c): For the Euclid algorithm (Section
3), this step is performed in an indirect way via generating functions, whereas the analysis of the Gauss
algorithm (Section 4) directly considers an embedding of discrete data inside the continuous data.

We then describe the three steps of a dynamical analysis:

Input. A discrete algorithm.

Step 1. Extend the discrete algorithm into a continuous process, i.e. a dynamical
system. (X,W) X compact, W : X → X: it is for instance possible to replace
integers by rational numbers, and then extend the process to a generic real. We are
then led to a continuous dynamical system, where the discrete algorithm gives rise to
particular trajectories.

Step 2. Study this (continuous) dynamical system, via its generic trajectories with
a main tool associated with the dynamical system, namely the transfer operator.

Step 3. Return to the algorithm: we need comparing the discrete trajectories with
the generic trajectories. We use the transfer operator as a generating operator, which
generates itself the generating functions or more generally the probabilistic tools
used in the analysis of the discrete process.

Output. Probabilistic analysis of the algorithm.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 5

2.4. Dynamical systems.

Definition 1. A dynamical system is a pair formed by a set X and a mapping W : X → X for which
there exists

(a) a (finite or denumerable) set Q, whose elements are called digits,
(b) a topological partition {Xq}q∈Q of the set X into subsets Xq

such that the restriction Wq of W to Xq is of class C2 and injective.
The dynamical system is complete when all maps Wq : Xq → X are surjective.

Here, we deal with the so–called complete dynamical systems, and a special rôle is played by the set H
of branches of the inverse function W−1 of W : we denote by h〈q〉 the inverse of the map Wq, so that

Xq is exactly the image h〈q〉(X). The set Hk is the set of the inverse branches of the iterate W k; its
elements are of the form h〈q1〉 ◦ h〈q2〉 ◦ · · · ◦ h〈qk〉 and are called the inverse branches of depth k. The

set H? := ∪k≥0Hk is the semi-group generated by H.

Given an initial point x in X, the sequence W(x) := (x,Wx,W 2x, . . .) of iterates of x under the action
of W forms the trajectory of the initial point x. We say that the system has a hole Y if any point of X
eventually falls in Y : for any x, there exists p ∈ N such that W p(x) ∈ Y .
We give in Figure 2 four examples of dynamical systems related to Euclidean Algorithms.

Fast Class

Slow Class

Figure 2. Above, dynamical systems associated with Standard and Centered al-
gorithms; on the bottom, dynamical systems associated with By-Excess and Sub-
tractive algorithms where there are indifferent points : x = 1 or 0, for which
U(x) = x, |U ′(x)| = 1.

2.5. Transfer operators. The main study in dynamical systems concerns itself with the interplay
between properties of the transformation W and properties of trajectories under iteration of the trans-
formation. The behavior of typical trajectories of dynamical systems is more easily explained by ex-
amining the flow of densities. The time evolution governed by the map W modifies the density on X,
and the successive densities f0, f1, f2, . . . , fn, . . . describe the global evolution of the system at discrete
times t = 0, t = 1, t = 2,
The density transformer H expresses the new density f1 in terms of the old density f0, as f1 = H[f0].
It involves the jacobians J(h) of the inverse branches h of the set H,

H[f](x) :=
∑
h∈H

J(h)(x) · f ◦ h(x)

6 BRIGITTE VALLÉE

With a parameter s, it gives rise to the (plain) transfer operator Hs

Hs[f](x) :=
∑
h∈H

J(h)(x)s · f ◦ h(x)

and, with a cost c defined on H, it gives rise to tthe weighted transfer operator Hs,w,(c)

Hs,w,(c)[f](x) :=
∑
h∈H

wc(h) J(h)(x)s · f ◦ h(x) .

Due to the multiplicative properties of the Jacobian, its k–iterate deals with the setHk, and the additive
extension of c to Hk,

Hk
s,w,(c)[f](x) :=

∑
h∈Hk

wc(h)J(h)(x)s · f ◦ h(x) ,

and its quasi-inverse deals with the set H?

(I −Hs,w,(c))
−1[f](x) :=

∑
h∈H?

wc(h)J(h)(x)s · f ◦ h(x) .

2.6. Dynamical Analysis. When an algorithm is associated with a dynamical system, it uses at each
step the set H, and, when it always terminates, the set of all its possible executions is described by the
set H?. This is why the quasi-inverse (I −Hs)

−1 plays a central role in the present study and will be
omnipresent in all the expressions which arise in our probabilistic studies. We use the following general
framework:

Geometric properties of the dynamical system
⇓

Spectral properties for the transfer operator Hs

in a convenient functional space.
⇓

Analytical properties of the quasi-inverse (I −Hs)
−1

⇓
Probabilistic analysis of the algorithm

Figure 2 gives an instance of the influence of the geometry on the probabilistic behaviour of the tra-
jectories. The presence of indifferent points in the two dynamical systems of the bottom line creates
intermittent trajectories which remain a long time near these points. These dynamical systems give
rise to slow algorithms. On the contrary, the two dynamical systems of the above line are expansive
and the associated algorithms are fast.

2.7. Historical and bibliographic notes. A readable treatment of dynamical systems of intervals
can be found in [40] and [15], and the book [10] provides a general overview on dynamical systems. The
dynamical systems related with the Euclidean divisions were early studied. For instance, the system
related with the classical division was first studied by Gauss himself. The dynamical system related to
the Centered Euclidean division was studied by Rieger [56, 57]. Later on, the paper [77] introduces a
whole class of Euclidean systems, in relation with Euclidean algorithms. Scweiger [63] also introduces
a general framework for dynamical systems in relation with the Euclidean type.

The density transformer, also known as the Perron-Frobenius operator, was introduced early in the
study of continued fractions (see for instance Lévy [42], Khinchin [34], Kuzmin [37], Wirsing [82] and
Babenko [7]). The density transformer is a special case of a transfer operator, and the general notion of
transfer operators was introduced by Ruelle, in connection with his thermodynamic formalism (see for
instance [58, 59]). In the Euclidean context, it was recently deeply studied by Mayer, in a sequence of
papers [49, 48, 50, 51]. The book of V. Baladi [8] provides a general and complete overview on transfer
operators.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 7

3. The Euclid Algorithm

The present section is devoted to the Euclid algorithm. This is the ancestor in the genealogy: first, it is
the oldest of the three algorithms of interest; second, this is the mother of the Gauss algorithm, which
is the actual first algorithm of the lattice reduction. The first sections, Section 3.1 and 3.2 describe the
algorithm and its parameters of interest, and Section 3.3 presents the underlying dynamical system and
its transfer operator. Then, Section 3.4 introduces the generating functions of interest and relate them
with the (quasi-inverse of the) transfer operator. Then, the analytic study of this transfer operator
performed in Section 3.5 leads to analytic properties of the generating functions, that are transferred
into asymptotic properties of the coefficients. This leads in Section 3.6 to the average-case analysis of
the algorithm. Section 3.7 describes the main ideas that are used in the distributional analysis of the
Euclid algorithm.

3.1. Description of the centered Euclid Algorithm. The classical Euclid algorithm which is “the
grandfather of all the algorithms”, as Knuth says, was discovered as early as 300BC. It was analysed
first in the worst case in 1733 by de Lagny. It uses the classical Euclidean division. On an integer pair
(u, v) with 0 < u < v, this division computes a quotient m and a remainder r, and writes

v = mu+ r, with 0 ≤ r < u .

The (classical) gcd algorithm performs successive (classical) Euclidean divisions followed with exchanges.

Here, in the sequel, we consider another Euclid algorithm1. It is based on another division, the centered
Euclidean division, called here the C-Euclid division. On an integer pair (u, v) with 0 < u ≤ v/2, this
division computes a quotient m, a sign ε = ±1 and a remainder r, and writes

v = mu+ εr, with 0 ≤ r ≤ u/2, ε = ±1 .

The pair (m, ε) is defined by the relations

m :=
⌈ v
u

⌋
ε := sign

(
m− v

u

)
.

On the input (u, v) with 0 < u ≤ v/2, the C-Euclid algorithm has been considered by Rieger [56]; it
starts with (u0 := v;u1 := u), and performs the following steps, each step being formed with a centered
division followed by an exchange:

u0 = m1u1 + ε1 u2 0 < u2 ≤ u1/2, ε1 = ±1
u1 = m2u2 + ε2 u3 0 < u3 ≤ u2/2, ε1 = ±1
. . . = . . . +
up−2 = mp−1up−1 + εp−1 up 0 < up ≤ up−1/2, ε1 = ±1
up−1 = mpup + 0 up+1 = 0

 .

The last non-zero remainder up is the gcd of u and v, the pairs qi := (mi, εi) are the digits, the
remainders ui are the continuants and p is the depth. Such an algorithm also computes the centered
continued fraction expansion (CCFE) of the rational u/v

(1)
u

v
=

1

m1 +
ε1

m2 +
ε2

. . . +
εp−1

mp

.

As well as the gcd, this continued fraction expansion is another actual output of the algorithm, that
can be used as an input for all the computations that directly use this expansion for computing with
the rational u/v.

1In the lattice reduction framework, this is the “natural” division, as we see later on

8 BRIGITTE VALLÉE

This algorithm clearly always terminates. Since the sequence of remainders ui satisfy ui+1 ≤ (1/2)ui,
the number p := P (u, v) of iterations is O(log max(u, v)). We state a more precise worst-case bound in
the next subsection.

3.2. Main costs of interest for the probabilistic analysis. The length of an input (u, v) ∈ N2 is
defined as max(u, v), whereas its size is defined via the binary size ` of integers as max(`(u), `(v)). The
set Ω of the (valid) inputs, together with the set ΩM of the inputs of length at most2 N are defined as

Ω̃ := {(u, v) ∈ N2 | 0 < u ≤ v/2}, Ω̃N := {(u, v) ∈ Ω | v ≤ N} .
In fact, we deal with the untilded version of these input sets, restricted with coprime3 pairs (u, v) with
gcd(u, v) = 1, namely

(2) Ω := {(u, v) ∈ N2 | 0 < u ≤ v/2, gcd(u, v) = 1}, ΩN := {(u, v) ∈ Ω | v ≤ N} .
The main costs of interest are related to the execution of the algorithm or to its ouput. We are first
interested in the number of iterations P (u, v), here equal to p. But, it is also interesting to study the
size of the output, closely related to the sum of the size of the used digits qi = (mi, εi). Generally
speaking, we are interested by additive costs C, which depend on the digits qi = (mi, εi) via a cost
c : Q → R+ and are defined as

C(u, v) :=

p∑
i=1

c(qi) when
u

v
= h(0), h := h1 ◦ h2 ◦ . . . ◦ hp .

There are natural instances of such costs, for instance: – for c = 1, C is the number of iterations, – for
c = 1q, C is the number of digits equal to q, – for c = ` (the binary size), C is the size of the output.

There are also some other costs which are not additive, as the bit-complexity closely related4 to

B(u, v) :=

p∑
i=1

`(qi) log ui .

In the sequel, we shall study these costs in a probabilistic way, as described in Section 2. We now
return for a moment to the worst-case analysis. At each step, the smallest possible quotient (in the
lexicographic order) is q = (2,+1), then the worst-case is associated to the smallest possible sequence5 of
remainders defined by the recurrence A0 = A1 = 1, Ak+1 = 2Ak +Ak−1, itself related to the quadratic
number 1 +

√
2 root of the polynomial x2 − 2x− 1 = 0. This proves that the maximal possible value of

P on ΩN is log1+
√

2N .

3.3. The underlying dynamical system. The trace of the execution of the Euclid Algorithm on
(u1, u0) is described by the sequence of integer pairs,

(u1, u0)→ (u2, u1)→ (u3, u2)→ . . .→ (up−1, up)→ (up+1, up) = (0, up) .

When the integer pair (ui, ui−1) is replaced by the rational xi := ui/ui−1, the division ui−1 = miui +
εi ui+1 is then written as

xi+1 = ε

(
1

xi

)(
1

xi
−
⌊

1

xi

⌉)
with ε(x) := sign(x− bxe) .

2This is not exactly the framework which is described in Section 2.1 and we should deal with the size ωN of the inputs
of length N . However, it does not seem possible to conduct a precise probabilistic analysis on these sets ωn.

3It seems strange to deal with “trivial” inputs on which the algorithm returns 1, but we will explain how these inputs
appear in a natural way and are in a sense generic

4The exact bit-complexity deals with the binary size `(ui), but it is closely related to B.
5For the classical Euclid algorithm, the minimal sequence is A0 = A1 = 1, Ak+1 = Ak + Ak−1 that is related to the

golden ratio φ := (1 +
√

5)/2.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 9

Figure 3. The dynamical system underlying the C-Euclid algorithm

If we introduce the map U : [0, 1/2]→ [0, 1/2] defined as

(3) U(x) = ε

(
1

x

) (
1

x
−
⌊

1

x

⌉)
for x 6= 0, U(0) = 0,

then the division is written as xi+1 = U(xi). An execution of the Euclidean Algorithm leads to the
“trajectory” (x, U(x), U2(x), . . . , 0). This is a particular trajectory since all the points of the trajectory
are rationals and the trajectory ends at the point 0. This is then a particular trajectory of the dynamical
system that we will now define.

We denote by I the interval [0, 1/2] and introduce the dynamical system related to the pair (I, U)
which involves the shift U defined in (3). This is a complete dynamical system represented in Figure 3.
It has a denumerable system of branches (U[m,ε])

(m, ε) ≥ (2, 1), U[m,ε] :

]
1

m
,

2

2m+ ε

[
−→]0, 1[, U[(m,ε)](x) := ε

(
1

x
−m

)
,

and the set H of the inverse branches of U is

H :=

{
h[m,ε] :

]
0,

1

2

[
−→

]
1

m
,

2

2m+ ε

[
, h[m,ε](x) :=

1

m+ εx
, (m, ε) ≥ (2, 1)

}
Then, the set H builds one step of the CF’s, whereas the set Hn of the inverse branches of Un builds
CF’s of depth n. Finally, the set H? :=

⋃Hn builds all the (finite) CF’s, and the continued fraction
expansion in (1) gives rise to the decomposition

u

v
= h[m1,ε1] ◦ h[m2,ε2] ◦ . . . ◦ h[mp,εp](0)

There is a characterization of H+ due to Hurwitz which involves the golden ratio φ = (1 +
√

5)/2:

(4) H+ :=

{
h(z) =

az + b

cz + d
; (a, b, c, d) ∈ Z4, b, d ≥ 1, ac ≥ 0,

|ad− bc| = 1, |a| ≤ |c|
2
, b ≤ d

2
, − 1

φ2
≤ c

d
≤ 1

φ

}
.

The system (I, U) is defined on the real interval I, and the Jacobian J(h)(x) is just equal to |h′(x)|.
Due to the precise expression of the set H, the transfer operator Hs is expressed as, for any x ∈ [0, 1/2],

(5) Hs[f](x) =
∑

(m,ε)≥(2,1)

(
1

m+ εx

)2s

· f
(

1

m+ εx

)
.

10 BRIGITTE VALLÉE

The C-Euclid algorithm is then extended into a continuous dynamical system, which builds centered
continued fraction expansions. However, the discrete process is quite singular since it terminates,
whereas the continuous process never terminates (except for the discrete data). It seems difficult to
recover the behaviour of the discrete process via the qstudy of the continuous process. This is why we
perform an indirect transfer [continuous ↔ discrete] via generating functions.

3.4. Relation between Dirichlet generating functions and transfer operators. The Dirichlet
series relative to a cost X is defined as

(6) SX(s) :=
∑

(u,v)∈Ω

1

v2s
X(u, v), SX(s, w) :=

∑
(u,v)∈Ω

1

v2s
ewX(u,v) .

We consider costs X defined in Section 3.2, namely additive costs C or logUi, where Ui is the i–th
continuant. We will then “mix” these two studies and consider the bit-complexity B.

We now explain why the series SX(s) is a convenient tool for studying the expectations EN [X]. This
is due to two facts. First, we recover the expectations as coefficients6 of generating functions and the
equality

(7) EN [X] =

∑
n≤N

bn∑
n≤N

an

holds: here, the denominator deals with the coefficients (bn) of the series SX(s), whereas the denomi-
nator deals with the coefficients (an) of the series S1(s) (related to the cost X ≡ 1).
Second, the series in (6) admit alternative expressions which involve various versions of the quasi-inverse
(I −Hs)

−1 of the transfer operator, as we now see. As this quasi-inverse is omnipresent, we denote it
by Gs and let Gs := (I −Hs)

−1. We first deal with the bivariate series in (6), and we return to the
first series in (6) with the derivative with respect to w, at w = 0.
The Euclid Algorithm builds a bijection7 between the set Ω of its inputs and the set H? of LFT’s,

(u, v) 7→ h with
u

v
= h(0), so that

1

v
= |h′(0)|1/2 .

The right equality is due to the fact that branches h ∈ H? are LFT’s of determinant 1. It is central in
our analysis, as it implies an alternative expression for the bivariate Dirichlet series, first in the case of
an additive cost C,

(8) SC(s, w) :=
∑

(u,v)∈Ω

1

v2s
ewC(u,v) =

∑
h∈H?

wc(h)|h′(0)|s = (I −Hs,w,(c))
−1[1](0) .

Taking the derivative wrt to w at w = 0 gives an expression of

(9) SC(s) =
∑

(u,v)∈Ω

1

v2s
C(u, v) = Gs ◦H[c]

s ◦Gs[1](0)

6The formula involves sums of coefficients: this is why we deal with the set of inputs of length at most N .
7This is not exactly the case: the last step of the C-Euclid algorithm is particular and it only uses ε = 1. Then, the

LFT used by the algorithm belongs to H? × F where F is the set of LFT’s used in the last step. In fact, any rational
admits two C-CFE’s, the first expansion, built by the Euclid Algorithm, and called proper, ends with an element of F , while

the second one (improper) cannot be produced by the Algorithm. We consider here these two C-CFE’s which generate

together the whole set H?, and we do not study exactly costs X defined in Section 3.2 but their “smoothed version” X̃
which takes into account the two possible CFE’s: it is the average between the cost on the proper extension and the cost

on the improper one. For all the costs which are studied here, the asymptotic behaviour of X and X̃ is the same, and we

shall denote by SX the Dirichlet series relative to this smoothed version X̃.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 11

as a function of the quasi-inverse Gs := (I−Hs)
−1 of the plain operator Hs together with the weighted

operator, defined as

H[c]
s [f](x) =

∑
h∈H

c(h) · |h′(x)|s · f ◦ h(x) .

In the same vein, the continuants ui := Ui(u, v) are also written as derivatives of LFT’s. With an input
(u, v) of Ω on which the algorithm performs p iterations, one associates, as previously, the LFT h of
depth p such that u/v = h(0) which decomposes into two LFT’s g and r of depth i and p− i such that
h = g ◦ r; we thus “recover” ui with the relation |r′(0)| = |ui|−2, and we obtain

SlogUI (s, 2w) =
∑
p≥i

∑
(u,v)∈Ω

P (u,v)=p

u2w
i

v2s
=

∑
p≥i

Hp−i
s−w ◦Hi

s[1](0)

 = (I −Hs−w)−1 ◦Hi
s[1](0) ,

and the generating function of the cost logUi is obtained with the derivative with respect to w, namely

(10) SlogUi(s) = −1

2
Gs ◦H′s ◦Gs ◦Hi

s[1](0)

It is then possible to “mix” the two approaches used for an additive cost and continuants, and obtain
the generating function of the bit-complexity

(11) SB(s) = −1

2
Gs ◦H′s ◦Gs ◦H[c]

s ◦Gs[1](0) .

Proposition 1. The three Dirichlet generating functions SX(s) admit expressions (9)(10)(11) that
involve the quasi-inverse Gs.

Then, as announced in Section 2, the main properties of the C-Euclid algorithm are closely related to
spectral properties of the transfer operator Hs, when it acts on a convenient functional space. As H1

is the density transformer, it admits an eigenvalue equal to 1, and the quasi-inverse Gs is singular at
s = 1. Furthermore, this is a “dominant” pole, and it will be possible to apply a Tauberian theorem due
to Delange to transfer the analytic properties of the Dirichlet series SR(s) into asymptotic properties
of its coefficients, as we now see.

3.5. Functional analysis and Tauberian theorem. We first state the following Tauberian theorem
which will perform the transfer between analytic properties of the series and asymptotic properties of
its coefficients:

Theorem. [Delange] [21] Let F (s) be a Dirichlet series with non negative coefficients such that F (s)
converges for <(s) > σ > 0. Assume that

(i) F (s) is analytic on <(s) = σ, s 6= σ, and
(ii) for some γ ≥ 0, one has F (s) = A(s)(s− σ)−γ−1 +C(s), where A,C are analytic at σ, with

A(σ) 6= 0.

Then, as K →∞, one has:
∑
n≤K

an =
A(σ)

σΓ(γ + 1)
Kσ logγ K [1 + ε(K)], ε(K)→ 0.

We then describe the analytic properties of the transfer operator Hs on a convenient functional space
which is now introduced. Consider the open disk V of diameter [−1/2, 1] and the functional space
A∞(V) of all functions f that are holomorphic in the domain V and continuous on the closure V.
Endowed with the sup-norm, this is a Banach space. We observe that, for any h = h[m,ε] ∈ H the

function x 7→ |h′(x)| defined on the interval I extends into an analytic function ȟ defined in V as
ȟ(z) = 1/(m + εz), and we yet denote by Hs the operator extended in this way. For <(s) > (1/2),
the transfer operator Hs acts on A∞(V) and is compact. Furthermore, when weighted by a cost of
moderate growth [i.e., c(h〈q〉) = O(log q)], for w close enough to 0, and <s > 1/2, the operator Hs,w,(c)

also acts on A∞(V), and is also compact.

12 BRIGITTE VALLÉE

The spectral properties of the transfer operator Hs play a central rôle in the analysis of the algorithm.
For real s, the transfer operator Hs has a unique dominant eigenvalue λ(s), which is real and separated
from the remainder of the spectrum by a spectral gap. THe dominant eigenfunction is denoted by ψs.
For s = 1, the dominant eigenvalue of the density transformer H satisfies λ(1) = 1, and the dominant
eigenfunction ψ := ψ1 (which is then invariant under the action of H) admits a closed form that involves

the golden ratio φ = (1 +
√

5)/2,

ψ(x) =
1

log φ

(
1

φ+ x
+

1

φ2 − x

)
.

This is the analog (for the C-Euclid algorithm) of the celebrated Gauss density associated to the
standard Euclid algorithm and equal to (1/ log 2)1/(1 + x).

Moreover, due to the spectral gap, the quasi-inverse (I −Hs)
−1 has a pôle at s = 1, and satisfies

(12) (I −Hs)
−1[f](x) ∼s→1

1

s− 1

1

h(E)
ψ(x)

∫
I
f(x)dx,

where the constant h(E) is the entropy of the C-Euclid dynamical system, and satisfies

(13) h(E) = |λ′(1)| = π2

6 log φ
≈ 3.41831.

3.6. Average-case analysis of the C-Euclid Algorithm. One now mixes all the tools: one deals
with the Dirichlet series SX(s) relative to cost X defined in Eq (6), together with X ≡ 1. Using
their expressions in terms of Gs given in Proposition 1 together with the spectral relation (12) shows
that Assertion (ii) of Tauberian Theorem is satisfied for σ = 1, with various possible values of γ. We
also need to prove that Gs is analytic on the punctured vertical line <s = 1, s 6= 1. This aperiodicity
property also holds8 but is not proven here. Then, it is possible to apply the Tauberian Theorem to each
of the three Dirichlet series; with Relation (7), this leads to the asymptotic study of the expectations
EN [X], and entails the following result.

Theorem 1. [Vallée, Akhavi and Vallée] (1995-2000) Consider the C-Euclid algorithm on the set ΩN
formed with valid co-prime input pairs of length at most N . Then, the mean number of iterations P ,
the mean value of an additive cost C of moderate growth, the mean value of the bit-complexity B satisfy,
when N →∞,

EN [P] ∼ 2

h(E)
logN, EN [C(c)] ∼

2

h(E)
E[c] logN, EN [B] ∼ 1

h(E)
E[`] log2N.

Here, h(E) denotes the entropy of the C-Euclid dynamical system, described in (13) and E[c] denotes
the mean value of the step-cost c with respect to the invariant density ψ. This is a constant of Khinchin’s
type, of the form

E[c] :=
∑
h∈H

∫
h(I)

c(h)ψ(x)dx.

In particular, when c is the binary length `, there is a nice formula for E[`], namely

E[`] =
1

log φ
log
∏
k≥1

2kφ2 + φ

2kφ2 − 1
≈ 2.02197.

The same asymptotic results hold on the set Ω̃N which gathers all the pairs (u, v).

8It plays an important role in distributional analyses.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 13

3.7. Distributional analysis of the the C-Euclid Algorithm. There exist also distributional results
[9] which show that all these costs P,C(c), together with a regularized version of B, admit asymptotic
Gaussian laws for N →∞.

Such Gaussian laws can be proven when the moment generating function EN (exp[wC]) behaves as a
uniform quasi-power when w is close to 0 and N → ∞. Then, we begin with the bivariate Dirichlet
series SC(s, w) defined in (8), study its analytic properties, related to spectral properties of the transfer
operator Hs,w,(c) and transfer these analytic properties into asymptotic properties of coefficients. Then,
we obtain a good knowledge about the asymptotics of EN (exp[wC]) when N →∞ and w close to 0. The
difficulty lies on the needed uniformity with respect to w, and Tauberian theorems are now useless, as
they do not provide remainder terms. We use instead the Perron Formula which provide such remainder
terms as soon as the quasi-inverse (I −Hs,w,(c))

−1 well behaves in vertical strips, with a polynomial
growth when |=s| becomes large. This can be viewed as a strong version of the aperiodicity property
which was already needed for proving Assertion (i) of Tauberian Theorem to hold. Dolgopyat [23]
explains how geometric properties of the underlying dynamical system may entail such a behaviour for
the plain quasi-inverse Gs = (I −Hs)

−1, and he introduces the UNI condition which states that the
system must be quite different from a system with affine branches. He proves that UNI Conditions
entail the strong aperiodicity property for Gs. As the C-Euclid system satisfies the UNI Condition,
this leads to a general result that we only state here for the number of iterations P :

Theorem 2. (Baladi and Vallée) (2003) Consider the C-Euclid algorithm on the set ΩN formed with
valid co-prime input pairs of length at most N . Then, the number of iterations P asymptotically a
Gaussian law, and there exist two constants µ > 0 and ρ > 0 such that, for any N , and any y ∈ R

PN
[
(u, v);

C(u, v)− µ logN

ρ
√

logN
≤ y
]

=
1√
2π

∫ y

−∞
e−x

2/2 dx+O

(
1√

logN

)
.

Moreover, the two constants µ and ρ are expressed with the pressure function Λ(s) := log λ(s), namely

µ =
2

|Λ′(1)| ρ2 = 2
|Λ′′(1)|
|Λ′(1)3| > 0 .

The constant ρ (called the Hensley constant) does not seem to have a closed form, but it is polynomial-
yime compuyable [45].

3.8. Historical notes.

Euclidean algorithmics. A general description of Euclidean Algorithms is provided in Knuth’s and
Shallit’s vivid accounts [36, 62]. There are many various Euclidean algorithms, and the survey of the
author [77] provides a general description, together with many bibliographic references and designs
a general framework for their dynamical analysis. There are many algorithms which were studied:
a whole class is presented in [76]; but there are many others, as the binary algorithm [73], the α-
Euclidean algorithms [12] or a natural algorithm [17] which may be modelled as a race between a
Lyapounov tortoise and a dyadic dare....

The standard Euclidean Algorithm was analysed first in the average-case around 1969 independently
by Heilbronn [27] and Dixon [22]. The centered algorithm was studied by Rieger [56]. The methods
used till the early 1980’s are quite various, and they range from combinatorial (de Lagny, Heilbronn)
to probabilistic (Dixon).

Euclidean dynamics: the average-case. Inside the Euclidean framework, most of dynamical studies
concern the continuous point of view [metric properties of continued fraction expansions for instance]
(see for instance [33]) and not the discrete analysis of gcd algorithms. The general reference for Euclidean
dynamical analysis is [77]. Papers [24, 25] are themselves survey papers where transfer operators are used
for analysing the Euclid Algorithm together some of its generalization on higher dimensions. A precise
description of Euclidean dynamical analyses can be found in the already cited papers [73, 17, 12]. Papers

14 BRIGITTE VALLÉE

[6, 74] introduce the main parameters: digits, continuants, bit-complexities, and gives a panorama for
their analyses. Paper [18] deeply studies (in the average case) the particular parameter “continuant at
a fraction of the depth”.

The Lehmer-Euclid algorithm is an improvement of the Euclid algorithm when applied for large integers.
It was introduced by Lehmer [41] and first analyzed in the worst–case by Sorenson [65] This is an
Interrupted Euclidean algorithm which depends on some parameter α ∈ [0, 1], and, when running with
an input (u, v), it performs the same steps as the usual Euclidean algorithm, but it stops as soon as the
current integer is smaller than vα. The interrupted algorithm was studied in [18]. Moreover, this point
of view was later used to design a gcd algorithm based on a Divide and Conquer principle which has
been analyzed in [13].

Distributional analysis. Concerning the standard Euclidean algorithm and the number of steps,
Hensley [28] has obtained a Central Limit Theorem, and a Local Limit Theorem with speed of con-
vergence O((logN)−1/24). Hensley has used the transfer operator Hs to obtain distributional results
on rational trajectories upon aproximating discrete measures on rationals by continuous measures. In
particular, his approach avoids parameters s of large imaginary parts.
To the best of our knowledge, the general framework described here and due to Baladi and Vallée
[9] provides the first instance of a dynamical distributional analysis. The authors apply and extend
powerful tools due to Dolgopyat to dynamical systems with infinitely many branches These principles
are later used in [46] to study the Gaussian behaviour of the size of the continuant “at a fraction of the
depth”, together with a smooth version of the bit-complexity.

4. Lattice reduction in two dimensions.

The Gauss algorithm lies in the middle of the genealogy. It inherits many formal features from the
Euclid algorithm, but it is also quite different, due to the ambient topology. The first three sections 4.1,
4.2, 4.3 describe the Gauss Algorithm in its vectorial context. Then, Section 4.4 introduces the complex
framework, and Section 4.5 isolates the core of the algorithm, called the Core-Gauss algorithm, which
can be viewed as an exact extension of the C-Euclid algorithm. The sequel of the Section is then
devoted to the probabilistic analysis of the Core-Gauss Algorithm. Probabilistic models are introduced
in Section 4.6, and in particular the notion of valuation. Then Sections 4.8 and 4.9 explain how the
main probabilistic objects are expressed in terms of the (quasi-inverse of the) transfer operator of the
Core-Gauss system previously described in Section 4.7. Section 4.10 provides the analytic properties of
the transfer operator, that are used in the next three sections, which describe the average-case analysis,
first in the continuous model (Sections 4.11 and 4.12) and finally in the discrete model (Section 4.13).

4.1. Lattice in two dimensions. Up to a possible isometry, a two–dimensional lattice may always be
considered as a subset of R2. With a small abuse of language, we use the same notation for denoting
a complex number z ∈ C and the vector of R2 whose components are (<z,=z). For a complex z, we
denote by |z| both the modulus of the complex z and the Euclidean norm of the vector z; for two
complex numbers u, v, we denote by 〈u, v〉 the scalar product between the two vectors u and v. The
following relation between the two complex numbers u, v and their quotient v/u will be very useful in
the sequel

(14)
v

u
=
〈u, v〉
|u|2 + i

det(u, v)

|u|2 .

We now restrict to a pair (u, v) of R–linearly independent elements of C. Then, due to (14), one has
=(v/u) 6= 0, and the lattice L(u, v) generated by the pair (u, v) is the set of elements of C (also called
vectors) defined by

L(u, v) = Zu⊕ Zv = {au+ bv; a, b ∈ Z} .
In the sequel, we focus on acute bases which for which the scalar product 〈u, v〉 is positive. This is
equivalent to consider bases which satisfy <(v/u) ≥ 0.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 15

Amongst all the bases of a lattice L, some that are called reduced enjoy the property of being formed
with “short” vectors. In dimension 2, the best reduced bases are minimal bases that satisfy optimality
properties: define u to be a first minimum of a lattice L if it is a nonzero vector of L that has smallest
Euclidean norm; the length of a first minimum of L is denoted by λ1(L). A second minimum v is
any shortest vector amongst the vectors of the lattice that are linearly independent of one of the first
minimums u; the Euclidean length of a second minimum is denoted by λ2(L). Then a basis is minimal
if it comprises a first and a second minimum. For instance, the basis on the left of Figure 1 is minimal.

The following (classical) result gives a characterization of a minimal acute basis.
Let (u, v) be an acute basis. Then the conditions (a) and (b) are equivalent:

(a) the basis (u, v) is minimal;
(b) the pair (u, v) satisfies the two simultaneous inequalities:

(15) (A1) :
∣∣∣ v
u

∣∣∣ ≥ 1, and (A2) : 0 ≤ <
(v
u

)
≤ 1

2
.

Then, the angle θ(u, v) between the two vectors u and v of a minimal basis satisfies |θ| ∈ [π/3, π/2] and

the imaginary part y := =(v/u) satisfies |y| ≥
√

3/2.

4.2. The Gaussian reduction scheme. Here, we focus on the reduction process which deals with
acute bases. The acute reduction algorithm called A-Gauss takes as input an arbitrary acute basis and
produces as output an acute minimal basis. It aims at satisfying simultaneously the conditions (A)
described in (15). The condition (A1) is simply satisfied by an exchange, and the condition (A2) is met
by an integer translation of the longest vector v with respect to the shortest one u. This can be viewed
as a “vectorial” division of v by u, which replaces v by a shortest vector amongst all the vectors of the
set

{ε(v − qu), q ∈ Z, ε = ±1}.
The new vector v̌ is then written as

v̌ := ε(v − qu) with q := bτ(v, u)e , ε = sign (τ(v, u)− bτ(v, u)e) ,
where τ(v, u) is defined as

(16) τ(v, u) = <
(v
u

)
=
〈u · v〉
|u|2

The new τ(v̌, u) satisfies τ(v̌, u) ∈ [0, 1/2]. Then, if v̌ is longest than u, the algorithm stops on an acute
minimal basis. If not, the algorithm performs an exchange and continues.

A-Gauss(u, v)

Input. An acute basis (u, v) of C
with |v| ≤ |u|, τ(v, u) ∈ [0, 1/2] and u 6= λv, λ ∈ R.

Output. An acute minimal basis (u, v) of L(u, v) with |v| ≥ |u|
While |v| < |u| do

(u, v) := (v, u);
q := bτ(v, u)e ; ε := sign (τ(v, u)− bτ(v, u)e);
v := ε(v − qu);

Figure 4. Description of the A-Gauss Algorithm

On the input pair (u, v) = (u0, u1), the Gauss Algorithm computes a sequence of vectors (ui)i∈[0..p]

defined by the relations

(17) ui+1 = εi(ui−1 − qi ui) with mi := bτ(ui−1, ui)e , εi = sign (τ(ui−1, ui)− bτ(ui−1, ui)e) .

16 BRIGITTE VALLÉE

Here, each quotient mi is a positive integer, p ≡ P (u, v) denotes the number of iterations, and the final
pair (up, up+1) satisfies Conditions (A) of Eq (15).
Unlike the C-Euclid Algorithm, the A-Gauss algorithm always terminates when the input (u, v) is
made with two non colinear vectors. The fact that the continuous version of the algorithm terminates
is a great difference with the C-Euclid Algorithm. It will make possible to see the discrete data as
embedded inside the continuous data (See Section 4.6).

4.3. Main parameters of interest. The length of an input pair (u, v) ∈ Z[i]×Z[i] is max(|u|2, |v|2) =
|u|2 and its size is `(u, v) := max{`(|u|2), `(|v|2)} = `|u|2 ≈ lg |u|2 where `(x) is the binary length of the
integer x. This is also the size of the Gram matrix G(u, v), defined as

G(u, v) =

(
|u|2 (u · v)

(u · v) |v|2
)
.

In the following, we will consider subsets which gather all the (valid) inputs of length N (or size M
with M = logN), and introduce

ΩN := {(u, v) ∈ Z[i]× Z[i] | |v|2 ≤ |u|2 ≤ N, τ(v, u) ∈ [0, 1/2]}
First, the A-Gauss algorithm is proven to always terminate on an input of ΩN after a polynomial
number of steps. Unlike the C-Euclid Algorithm, the first proof due to Lagarias [38] is not completely
straightforward, and was followed by a more precise study due to Vallée [69]. We return to this worst-
case analysis in Section 4.6. But we now focus on the average-case analysis, where the set ΩN will be
endowed with the uniform probability PN , and the main parameters become random variables defined
on these sets.

All the computations of the Gauss algorithm are done on the Gram matrices G(ui, ui+1) of the pair
(ui, ui+1). The initialization of the Gauss algorithm computes the Gram Matrix of the initial basis, with
the three scalar products, which takes a quadratic9 time Θ(M2) with respect to the length of the input
`(u, v). After this, all the computations of the central part of the algorithm are directly done on these
matrices; more precisely, each step of the process is a Euclidean division between the two coefficients of
the first line of the Gram matrix G(ui, ui−1) of the pair (ui, ui−1) for obtaining the quotient qi = (mi, εi),
followed with the computation of the new coefficients of the Gram matrix G(ui+1, ui), namely

|ui+1|2 := |ui−1|2 − 2mi (ui · ui−1) +m2
i |ui|2, (ui+1 · ui) := mi |ui|2 − (ui−1 · ui).

Then the cost of the i-th step is closely related to to `(qi) · log(|ui−1|2), and the bit-complexity of the
central part of the Gauss Algorithm, one of the main parameters of interest, is closely related to

(18) B(u, v) =

P (u,v)∑
i=1

`(mi) · log(|ui−1|2),

where P (u, v) is the number of iterations of the Gauss Algorithm. The cost B is expressed with two
other costs, the quotient bit-cost Q(u, v) and the cost D(u, v) defined as

(19) Q(u, v) =

P (u,v)∑
i=1

`(qi), D(u, v) :=

P (u,v)∑
i=1

`(mi) log

∣∣∣∣ui−1

u0

∣∣∣∣2 ,
as

(20) B(u, v) = Q(u, v) log |u|2 +D(u, v)

We are then led to study two types of parameters, that may be of independent interest:
(a) The additive costs, which provide a generalization of costs P and Q. They are defined as the sum
of elementary costs, which only depend on the quotients qi := (MI , εi). More precisely, from a positive

9We consider the naive multiplication between integers of size M , whose bit-complexity is O(M2).

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 17

elementary cost c defined on each pair q = (m, ε) we consider the total cost on the input (u, v) defined
as

(21) C(c)(u, v) =

P (u,v)∑
i=1

c(qi) .

When the elementary cost c satisfies c(q) = O(logm), the cost C is said to be of moderate growth.
(b) The sequence of the i-th length decreases di for i ∈ [1..p] (with p := P (u, v)]) and the total length
decrease d := dp, defined as

(22) di :=

∣∣∣∣ uiu0

∣∣∣∣2 , d :=

∣∣∣∣upu0

∣∣∣∣2 .
4.4. The complex framework. We now return to a generic input made of two (non colinear) complex
numbers (u, v). Many structural characteristics of lattices and bases are invariant under linear trans-
formations –similarity transformations in geometric terms– of the form Sλ : u 7→ λu with λ ∈ C \ {0}.

(a) A first instance is the execution of the Gauss algorithm itself: it should be observed that
translations performed by the Gauss algorithms only depend on the quantity τ(v, u) defined in (16),
which equals <(v/u). Furthermore, exchanges depend on the value of |v/u|. Then, if ui is the sequence
computed by the algorithm on the input (u, v), defined in (17), the sequence of vectors computed on
an input pair Sλ(u, v) coincides with the sequence Sλ(ui). This makes it possible to give a formulation
of the Gauss algorithm entirely in terms of complex numbers.

(b) A second instance is the characterization of minimal bases given in (15) that only depends on
the ratio z = v/u.

(c) A third instance are the main parameters of interest X ∈ {Q,D, di} defined in Section 4.3 that
satisfy X(λu, λv) = X(u, v). Their complex version defined as X(z) := X(1, z) satisfies X(λz) = X(z).

It is thus natural to consider lattice bases taken up to equivalence under similarity, and restrict attention
to lattice bases of the form (1, z). We denote by L(z) the lattice L(1, z). In this context, the geometric
transformation effected by each step of the algorithm consists of an inversion-symmetry S : z 7→ 1/z,
followed by a translation z 7→ T−qz with T (z) = z + 1, and a possible sign change J : z 7→ −z. The
right half plane

{z ∈ C; <(z) ≥ 0, =(z) 6= 0}
plays a central rôle. The A-Gauss algorithm brings z into the vertical strip

(23) B̃ :=

{
z ∈ C; =(z) 6= 0, 0 ≤ <(z) ≤ 1

2

}
,

and stops as soon as z belongs to the domain F̃

(24) F̃ =

{
z ∈ C; |z| ≥ 1, 0 ≤ <(z) ≤ 1

2

}
.

The sets B̃ and F̃ are represented in Figure 5 and compared to their usual versions.

While the complex z does not belongs to F̃ the algorithm reduces to the iteration of the mapping

(25) U(z) = ε

(
1

z

) (
1

z
−
⌊
<
(

1

z

)⌉)
with ε(z) := sign(<(z)− b<(z)e) .

From the definition of the two shifts described in (3) and (25), it is clear that the A-Gauss algorithm
can be viewed as a formal extension of the C-Euclid algorithm. However, this not so simple, and the
relations (resemblances and differences) between the two algorithms are made precise in Figure 6.

18 BRIGITTE VALLÉE

B := {z; =(z) 6= 0 |<(z)| ≤ 1/2}
F := {z; |<(z)| ≤ 1/2, |z| ≥ 1}

Bε := {z ∈ B, sign<(z) = ε}
Fε := {z ∈ F , sign<(z) = ε}

B̃ := B+
⋃
JB−, F̃ := F+

⋃
JF−

Figure 5. The sets B̃ and F̃ compared to the “classical” sets B and F .

Euclid’s algorithm Gauss’ algorithm
Division between real numbers Division between complex vectors

v = mu+ ε r v = mu+ ε r

with m =
⌊u
v

⌉
and

r

v
≤ 1

2
with m =

⌊
<
(u
v

)⌉
and <

(r
v

)
≤ 1

2

Division + exchange (v, u)→ (r, v) Division + exchange (v, u)→ (r, v)

“read” on x = v/u “read” on z = v/u

U(x) = ε

(
1

x

)(
1

x
−
⌊

1

x

⌉)
U(z) = ε

(
1

z

)(
1

z
−
⌊
<
(

1

z

)⌉)
Stopping condition: x = 0 Stopping condition: z ∈ F̃

Figure 6. Comparison between the algorithms C-Euclid and A-Gauss.

Remark that the (continuous) C-Euclid Algorithm never stops, except on rational entries. whereas the
(continuous) version of the A-Gauss Algorithm always stops, except for irrational flat bases z for which
=z = 0 and <z 6∈ Q. The main difference is due to the nature of the two “holes”:

– The hole for the C-Euclid Algorithm is {0}, that is of zero measure

– The hole for the A-Gauss Algorithm is F̃ , that is a fundamental domain

4.5. The Core-Gauss Algorithm. The disk D of diameter I = [0, 1/2] plays a special rôle. Figure 7

shows that the domain B̃ \ D decomposes as the union of six transforms of the fundamental domain F̃ ,
namely

(26) B̃ \ D =
⋃
h∈K

h(F̃) with K := {I, S, STJ, ST, ST 2J, ST 2JS}.

Then, there are two main parts in the execution of the A-Gauss Algorithm, according to the position
of the current complex zi with respect to the disk D of diameter I whose alternative equation is

D :=

{
z; <

(
1

z

)
≥ 2

}
.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 19

A-Gauss(z)

Input. A complex number in B̃ \F̃ .

Output. A complex number in F̃ .

CoreGauss (z);
FinalGauss (z);

S(z) = 1/z, T (z) = z + 1, J(z) = −z

Core-Gauss(z)

Input. A complex number in D.

Output. A complex number in B̃ \ D.

While z ∈ D do z := U(z);

Final-Gauss(z)

Input. A complex number in B̃ \D.

Output. A complex number in F̃ .

While z 6∈ F̃ do z := U(z);

Figure 7. The decomposition of the A-Gauss Algorithm into two parts: its core part (the

Core-Gauss Algorithm) and its final part (the Final-Gauss Algorithm). On the right, the

partition of B̃ \ D into six domains KF̃ where K belongs to the set K defined in (26)

While zi belongs to D, the quotient (mi, εi) satisfies (mi, εi) ≥ (2,+1) (wrt the lexicographic order), and
the algorithm uses at each step the set H, that is already central in the C-Euclid Algorithm, namely

H := {h〈m,ε〉; (m, ε) ≥ (2,+1)} ,

so that D can be written as

(27) D =
⋃

h∈H+

h(B̃ \ D) with H+ :=
∑
k≥1

Hk.

The part of the A-Gauss algorithm performed when zi belongs to D is called the Core-Gauss algorithm.
As soon as zi does not any longer belong to D, there remains at most two iterations that constitutes
the Final-Gauss algorithm and uses the set K of LFT’s described in (26).

Finally, we have proven the decomposition of the A-Gauss Algorithm:
A-Gauss = Core-Gauss followed with Final-Gauss (at most 2 iterations).

The Core-Gauss algorithm has a nice structure since it uses at each step the same set H. This set is
exactly the set of LFT’s which is used by the C-Euclid Algorithm, closely related to the dynamical
system C-Euclid defined in the previous Section. Then, the Core-Gauss algorithm is just a lifting of
this C-Euclid Algorithm, whereas the final steps of the A-Gauss algorithm use different LFT’s, and are
not similar to a lifting of a Euclidean Algorithm. This is why the Core-Gauss algorithm is interesting
to study.

The complex numbers which intervene in the Core-Gauss algorithm on the input z0 = u1/u0 are related
to the vectors (ui) defined in (17) via the relation zi = ui+1/ui. They are computed by the relation

20 BRIGITTE VALLÉE

zi+1 := U(zi), so that

zi−1 = h〈mi,εi〉(zi) with h〈m,ε〉(z) :=
1

m+ εz
.

This creates a continued fraction expansion for the initial complex z0, of the form

z0 =
1

m1 +
ε1

m2 +
ε2
. . .

mp + εpzp

= h(zp) with h := h〈m1,ε1〉 ◦ h〈m2,ε2〉 ◦ . . . h〈mp,εp〉.

More generally, the i-th complex number zi satisfies

(28) z0 = hi(zi) with hi := h〈m1,ε1〉 ◦ h〈m2,ε2〉 ◦ . . . h〈mi,εi〉.

Figure 8. On the left, the topological partition of the Core-Gauss dynamical system. The
intersection of this partition with the real axis gives rise to the topological partition of the
C-Euclid dynamical system. On the right, the domains [R = k] alternatively in black and
white. The figure suggests that reduction of almost-collinear bases is likely to require a large
number of iterations.

Consider the number of iterations R of the Core-Gauss algorithm. Then, the domain [R ≥ k + 1]
gathers the complex numbers z for which the transforms Uk(z) are yet in D. Such a domain admits a
nice characterization, as a union of disjoint disks, namely

(29) [R ≥ k + 1] = U−k(D) =
⋃
h∈Hk

h(D),

which is represented in Figure 8. The disk h(D) for h ∈ H+ is the disk whose diameter is the interval
h(I). Inside the C-Euclid dynamical system, the interval h(I) (relative to a LFT h ∈ Hk) is called
a fundamental interval (or a cylinder) of depth k: it gathers all the real numbers of the interval I
which have the same continued fraction expansion of depth k. This is why the disk h(D) is called a
fundamental disk.
We now focus (just for a moment) on the worst-case complexity of the Core-Gauss algorithm on the
set D. The maximum number of iterations arises (in the same vein as in the C-Euclid algorithm) in
relation with the sequence

(30) A0 = A1 = 1, Ak+1 = 2Ak +Ak−1, (k ≥ 1),

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 21

as we shortly explain. With (29), we remark that, for a given depth k, the largest such disk h(D) is
obtained when all the quotients (m, ε) are the smallest ones, i.e., when all (m, ε) = (2,+1). In this case,
the coefficients (c, d) of the LFT h are the terms Ak, Ak+1 of the sequence defined in (30) which satisfy

Ak ≥ (1 +
√

2)k−2. Then, the largest such disk has a radius at most equal to (1/2)(1 +
√

2)1−2k. This
proves the inclusion

(31) [R ≥ k + 1] ⊂
{
z; |=(z)| ≤ 1

2

(
1

1 +
√

2

)2k−1
}
,

that entails the following worst-case bound that holds for any complex number z 6∈ R

R(z) ≤ 1

2
log1+

√
2

1

|=z| .

This shows that the Core-Gauss and thus the A-Gauss Algorithm itself always terminates on a non-real
complex number z. This gives an alternative proof of the result of Vallée [69].

Figure 8 also shows in a striking way the efficiency of the algorithm, and asks natural questions: Is
it possible to estimate the probability of the event [R ≥ k + 1]? Is it true that it is geometrically
decreasing? With which ratio? We return to these questions later on.

4.6. Probabilistic models. We now begin our probabilistic studies. Since we focus on the invariance
of algorithm executions under similarity transformations, we consider densities on pairs of vectors (u, v)
which only depend on the ratio z = v/u. There are two views on these functions, as functions of the
complex variable (z, z) 7→ F (z, z) or as functions defined on R2, of the form (x, y) 7→ f(x, y). The model
M〈f〉 considers as the input set the disk D endowed with a density f .

Discrete models. We fix an integer N and we consider pairs (u, v) with a first vector u of the form
u = (N, 0). The discrete input subset DN is defined as

DN :=
{
z =

v

u
; u = (N, 0), v = (a, b), (a, b,N) ∈ N3, z ∈ D

}
.

The discrete probabilistic model MN 〈f〉 is defined as the restriction to DN of the continuous model
defined on D via the density f . More precisely, with a given density f on D, we associate its restriction
on DN . Normalized by the cardinality |DN |, this gives rise to a density f〈N〉 on DN , that we extend on
D as follows:

f〈N〉(x, y) := f〈N〉(ω) when (x, y) belongs to the square of center ω ∈ DN and edge 1/N .

We obtain, in such a way, a family of functions f〈N〉 defined on D, and we use the Gauss principle which
compares the number of integer points in a domain C with the volume of C (see Section 4.13). When
the integer N tends to ∞, this discrete model MN 〈f〉 := M〈f〈N〉〉“tends” to the continuous model
M〈f〉 relative to f , as we will see.

We first remark that the inclusion (31) also entails the worst-case bound

max{R(u, v) | (u, v) ∈ DN} = log1+
√

2N +O(1).

This proves that the Core-Gauss algorithm and thus the A-Gauss algorithm performs a linear number
of iterations, exactly of the same type as the Euclid Algorithm.

The model with valuation. It is clear that the two variables x := <z, y := =z do not play a role of
the same importance. The main actor is the imaginary part y, and the algorithm aims increasing it.
The real part x plays an auxilliary role, and, during the execution of the algorithm, x remains bounded,
whereas y does not. This is why we now present a family of densities which only depend on y: the
density fr of valuation r (with r > 0) is proportional to |y|r, namely

(32) fr(x, y) =
1

A(r)
|y|r−1 with A(r) =

∫∫
D
|y|r−1dxdy =

1

2r + 2

1

2r+1

[Γ(r/2)]
2

Γ(r)

22 BRIGITTE VALLÉE

When r tends to 0, the density is more and more concentrated near the real axis, where y is small.
Inputs with a small imaginary part represent (informally speaking) hard instances for reducing the
lattice: indeed, such a small y is related to a small modulus |z| or a small angle |θ|, whereas the output

ẑ corresponds to a modulus |ẑ| ≥ 1 and an angle |θ̂| ≥ π/3. We will see in the sequel that the valuation
r is indeed a good tool for quantifying the difficulty of the input instances. When r = 1, we recover the
uniform distribution on D with A(1) = π/16 and we observe A(r) ∼ 1/r for r → 0.

The (continuous) model relative to the density of valuation r is denoted with an index of the form (r)
and is written asM(r). The discrete models of valuation r are defined by two indices, the integer length
N and the index of the valuation, and are written as M(r,N).

What can be expected about the probabilistic behavior of the Core-Gauss Algorithm? On one hand,
there is a strong formal similarity between the two algorithms, since the Core-Gauss Algorithm can be
viewed as a lifting of the C-Euclid Algorithm. On the other hand, important differences appear when
we consider algorithms: the C-Euclid algorithm never terminates, except on rational inputs which fall
in the hole {0}, whereas the Core-Gauss Algorithm always terminates, except for irrational real inputs.
We will see that the model of valuation r is an interesting tool for explaining the “transition” between
the behaviour of the two algorithms.

4.7. Transfer operators. For h ∈ H?, we consider the function h of two real variables which is
induced by the map h : C → C. It is defined as (x, y) 7→ h(x, y) = (<h(x + iy),=h(x + iy)). It is
conjugated to the map (h, h) defined on C2 by the relation (u, v) 7→ (h(u), h(v)) via the map Φ, namely
h = Φ−1 ◦ (h, h) ◦ Φ, where mappings Φ,Φ−1 are linear mappings C2 → C2 defined as

Φ(x, y) = (z = x+ iy, z = x− iy), Φ−1(z, z) =

(
z + z

2
,
z + z

2i

)
.

Since Φ and Φ−1 are linear mappings, and h has real coefficients, the Jacobian J(h) satisfies

(33) J(h)(x, y) = |h′(z) · h′(z)| = |h′(z)|2 = ȟ(z) · ȟ(z) ,

where ȟ is the analytic extension of x 7→ |h′(x)| already used in Section 3. Consider now a density on
D. Viewed as a function of real variables, it is denoted as f : (x, y) 7→ f(x, y) and, viewed as a function
of the complex variable, it is denoted as F (z, z). The density transformer related to the Core-Gauss

system is then defined by

f(x, y) 7→
∑
h∈H

|h′(x+ iy)|2 f(h(x, y)) or F (z, z) 7→
∑
h∈H

|h′(z)| |h′(z)|F (h(z), h(z)) .

It is then convenient to introduce a more general operator which depends on a parameter s and acts
on analytic functions of two variables, namely

(34) Hs[F](z, u) =
∑
h∈H

ȟ(z)s/2 ȟ(u)s/2 F (h(z), h(u))

=
∑

(m,ε)≥(2,1)

(
1

m+ εz

)s(
1

m+ εu

)s
F

(
1

m+ εz
,

1

m+ εu

)
.

With (33), the density transformer exactly coincides with F (z, z) 7→ H2[F](z, z), and the operator
Hs also provides an extension of the density transformer Hs related to the C-Euclid system, via the
“diagonal” relation

(35) Hs[F](x, x) = Hs[diagF](x), where diagF is defined as diagF (x) = F (x, x) .

When applied to the density Fr of valuation r, the equality =h(z) = =z · (deth) · |h′(z)| proves the
relation

(36) Hs[Fr](z, z) =
∑
h∈H

|h′(z)|s|=(h(z))|r−1 = |=(z)|r−1
∑
h∈H

|h′(z)|s+r−1 = |=(z)|r−1Hs+r−1[1](z, z).

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 23

In particular, when r tends to 0, the density Fr is concentrated near the real axis; moreover, if s = 2,
the parameter s+r−1 = 1+r tends to 1, and the operator Hs+r−1 “tends to” the operator H1 which is
itself an extension of the density transformer H1 of the C-Euclid algorithhm. This explains the interest
of the notion of valuation to study the transition between the A-Gauss algorithm and the C-Euclid

algorithm. We return to this fact later on.

4.8. Output and conditional densities. There are two kinds of interesting densities related to the
execution of the algorithm, the output density and the conditional densities.

Output density. We recall that the set H+ = ∪k>0Hk is the set of the transformations describing the
whole executions of the Core-Gauss Algorithm. Then, in the same vein as Section 2, we introduce the
transfer operators G+

s relative to H+ together with Gs relative to H
(37) G+

s = Hs ◦ (I −Hs)−1 = (I −Hs)−1 − I, Gs = (I −Hs)−1 ,

and we describe the output density:

Proposition 2. Consider the Core-Gauss algorithm with the complex version F of its input density on

D. Then, the complex version of the output density is expressed as F̂ = G+
2 [F]. When the input density

is the density Fr of valuation r, then the ouput density is expressed as F̂r(z, z) = |y|r−1G+
1+r[1](z, z).

The Hurwitz characterization gives rise to a nice expression for the output density F̂r

F̂r(z, z) =
1

A(r)

1

ζ(2r + 2)

∑
c,d≥1

dφ<c<dφ2

yr−1

|cz + d|2r+2
.

Conditional densities. We have already mentioned the importance of the invariant density in the
C-Euclid algorithm. No such invariant measure can exist here as the reduction algorithm terminates.
However, a rôle quite similar to the invariant density is played by a function that describes the limit
distribution of successive transforms of the input as the reduction algorithms proceeds.

We begin with an input z0 which is distributed with a density f(x, y) = F (z, z) inside the disk D.
Assume now that the algorithm performs at least k + 1 iterations. Then the kth iterate zk is yet an
element of D. A natural question is to determine its distribution inside D. We call it the conditional
density at depth k, and we denote it by f [k](x, y) = F [k](z, z). The definition of the density transform
H2 leads to an alternative expression for F [k](z, z), namely

F [k](z, z) =
1

P〈F 〉[R ≥ k + 1]
Hk2 [F](z, z) ,

the normalization factor being the probability that the algorithm performs at least k + 1 iterations,
which is the measure (relative to density F) of the set [R ≥ k+ 1] described in (29) which admits itself
an alternative expression

P〈F 〉[R ≥ k + 1] =

∫∫
D
Hk2 [F](z, z)dxdy .

Proposition 3. Consider the Core-Gauss algorithm with the complex version F of its input density
on D. Then, the complex version of the k-th conditional density is expressed in terms of the k-th iterate
of the density transformer H2 as

F [k](z, z) =
1∫∫

D Hk2 [F](z, z)dxdy
Hk2 [F](z, z) ,

When the input density is the density Fr of valuation r, then the conditional density is expressed in
terms of the operator H1+r as

F [k]
r (z, z) =

1∫∫
D |y|r−1Hk1+r[F](z, z)dxdy

|y|r−1Hk1+r[F](z, z) .

24 BRIGITTE VALLÉE

As we will see later, this conditional density is closely related to the dominant eigenfunction of the
operator H1+r.

We now begin the probabilistic analysis of the Core-Gauss algorithm. But we insist on a great difference
with the analysis of the C-Euclid algorithm. This last algorithm admits a continuous version which
never terminates (except on its discrete inputs). It makes the transfer continuous ↔ discrete more
difficult, and generating functions were an (indirect) tool which operate this transfer. Here, the situation
is more simpler, as the continuous version of the A-Gauss algorithm always terminates. This allows
a more direct transfer, and we will see the discrete data as embedded inside the continuous data, as
explained in Section 4.6. We thus begin with the analysis of the Core-Gauss in the continuous model.

4.9. Generating operators for costs C and D. As in the study of the C-Euclid algorithm, we now
modify the transfer operator Hs defined in (34) in such a way that it becomes a “generating operator”
for costs of interest. In fact, these operators generate themselves ... the main objects needed in our
probabilistic study.

Additive costs. An additive cost C(c), defined in (21), is related to an elementary cost c defined
on quotients q. In the same vein as in the Euclid case, such a cost can be defined on H and linearly
extended to the total set H?. This gives rise to another definition for the complex version of cost defined

by C(z) := C(1, z). If an input z ∈ D leads to an output ẑ ∈ B̃ \ D by using the LFT h ∈ H+ with
z = h(ẑ), then C(z) equals c(h).

It is natural to add a new parameter w inside the transfer operator Hs for “marking” the cost, and we
consider the two-parameters operator

(38) Hs,w,(c)[F](z, u) =
∑
h∈H

ewc(h) ȟ(z)s/2 ȟ(u)s/2 F (h(z), h(u))

together with its associated quasi-inverse. As for the C-Euclid algorithm, the operator Hs,w,(c) gen-
erates the moment generating function of the cost C(c), as we will see now. The moment generating
function E〈f〉(exp[wC(c)]) is defined as

E〈f〉(exp[wC(c)]) :=
∑
h∈H+

exp[wc(h)] · P〈f〉[C(z) = c(h)] =
∑
h∈H+

exp[wc(h)]

∫∫
h(B̃\D)

f(x, y)dxdy.

Using a change of variables and the expression of the Jacobian, leads to

E〈f〉(exp[wC(c)]) =
∑
h∈H+

exp[wc(h)]

∫∫
B̃\D
|h′(z)|2F (h(z), h(z))dxdy =

∫∫
B̃\D

G+
2,w,(c)[F](z, z)dxdy.

Now, when the density F is of valuation r, Relation (36) leads to the expression

(39) E(r)(exp[wC(c)]) =

∫∫
B̃\D

yr−1 G+
1+r,w,(c)[1](z, z)dxdy.

The expectation E〈f〉[C(c)] is just obtained by taking the derivative with respect to w (at w = 0). There
appears the operator

(40) Gs,C := Gs ◦H[c]
s ◦Gs

This provides an alternative expression for the expectation of any additive cost:

(41) E〈f〉[C(c)] =

∫∫
B̃\D

G2,C [F](z, z)dxdy =

∫∫
B̃\D
|y|r−1 G1+r,C [1](z, z)dxdy,

the last equality holding for a density F of valuation r.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 25

Cost D. In the same vein as in Section 3.4, the i-th length decrease di defined in (22) can be expressed
with the derivative of the LFT gi := h−1

i (with hi defined in (28)) as

|ui|2
|u0|2

=
1

|g′i(z)|
= |ciz − ai|2 so that 2 log

(|ui|
|u0|

)
= − log |g′i(z)| = − log |ciz − ai|2,

where ai, ci are coefficients of the LFT hi. Finally, the complex versions of cost D is

(42) D(z) =

P (z)∑
i=1

`(|qi|) log |h′i−1(zi−1)| = −2

P (z)∑
i=1

`(|qi|) log |ci−1z − ai−1| .

Then, the operator
Gs,D := Gs ◦H′s ◦Gs ◦H[c]

s ◦Gs
is the “generating operator” of the cost D(z), and the equality holds,
(43)

E〈f〉[D] :=

∫∫
D
D(z)F (z, z)dxdy,=

∫∫
B̃\D

G2,D[F](z, z) dxdy =

∫∫
B̃\D
|y|r−1 G1+r,D[1](z, z) dxdy,

the last equality holding for a density F of valuation r

The present Section may be summarized as follows:

Proposition 4. Consider the Core-Gauss algorithm when its inputs are distributed inside the disk D
with the density of valuation r > 0 Then, the main probabilistic objects described in (39), (41), (43) are
expressed with the operator H1+r, its iterates or its quasi-inverse G1+r = (I −H1+r)

−1

4.10. Functional analysis. We thus need precise information on the operator Hs and its the quasi-
inverse Gs = (I − Hs)−1 which is omnipresent in the expressions of our probabilistic studies as the
quasi-inverse Gs = (I −Hs)

−1 was already omnipresent in the probabilistic analyses of the C-Euclid

Algorithm.

It is first needed to find a convenient functional space where the operator Hs, and its variants Hs,w,(c)
will possess good spectral properties. In the same vein as in Section 3.5, we consider the open disk
V of diameter [−1/2, 1] and the functional space B∞(V) of all functions F (of two variables) that are
holomorphic in the domain V × V and continuous on the closure V × V. Endowed with the sup-norm,
this is a Banach spaces; for <(s) > (1/2), the transfer operator Hs acts on B∞(V), and is compact.
Furthermore, when weighted by a cost of moderate growth [i.e., c(h〈q〉) = O(log q)], for w close enough
to 0, and <s > (1/2), the operator Hs,w,(c) also acts on B∞(V), and is also compact.

The operator Hs,w,(c) also possesses nice spectral properties (see for instance [75]): for a complex
number s close enough to the real axis, with <s > (1/2) and |w| small enough, it has a unique
dominant eigenvalue, denoted by λ(c)(s, w), which is separated from the remainder of the spectrum by
a spectral gap. This implies the following: for any fixed s close enough to the real axis, the quasi–
inverse w 7→ (I−Hs,w,(c))−1 has a dominant pôle located at w = w(c)(s) defined by the implicit equation
λ(c)(s, w(c)(s)) = 1.

When w = 0, one recovers the plain operator Hs, and the diagonal relation (35) shows that the operator
Hs has the same dominant eigenvalue λ(s) as the operator Hs. The dominant eigenfunction Ψs extends
the dominant eigenfunction ψs of Hs and coincides with ψs on the diagonal. For s = 1, it has a
dominant eigenvalue λ(1) = 1 with a dominant eigenfunction Ψ, which is an extension of the invariant
density ψ of the C-Euclid Algorithm, and admits an exact expression,

(44) Ψ(z, u) =
1

log φ

1

u− z

(
log

φ+ u

φ+ z
+ log

φ2 − u
φ2 − z

)
for z 6= u, Ψ(z, z) = ψ(z).

Near s = 1, the quasi-inverse satisfies

(45) (I −Hs)−1[F](z, u) ∼s→1
1

s− 1

1

h(E)
I[F] Ψ(z, u) with I[F] :=

∫
Ĩ
F (x, x)dx.

26 BRIGITTE VALLÉE

4.11. Average-case analysis in the continuous model. We now consider the Core-Gauss algorithm
with an initial density of valuation r. We begin with Proposition 4 which provides expressions in terms
of the transfer operator Hs, its iterates or its quasi-inverse. And we apply the results of the previous
Section. This gives rise to two types of results for the average-case analysis, the first type being devoted
to the particular case of the number of iterations.

Number of iterations and conditional densities. We begin with the description of the event
[R ≥ k + 1] given in (29). This leads to the expression of the probability of the event [R ≥ k + 1],
namely

P(r)[R ≥ k + 1] =
1

A(r)

∑
h∈Hk

∫∫
h(D)

|y|r−1dxdy =
1

A(r)

∫∫
D
|y|r−1 Hk1+r [1](z, z) dxdy,

where A(r) is defined in (32). Using the characterisation due to Hurwitz given in (4) leads to the
following result:

Theorem 3. Consider the Core-Gauss algorithm, when its inputs are distributed inside the disk D
with the density of valuation r > 0. Then the following holds:

(a) The expectation of the number R of iterations admits the following expression

E(r)[R] =
22r+2

ζ(2r + 2)

∑
c,d≥1

dφ<c<dφ2

1

(cd)1+r
.

(b) The number R of iterations asymptotically follows a geometric law of ratio λ(1 + r) where λ(s)
is the dominant eigenvalue of the transfer operator Hs, and

P(r)[R ≥ k + 1] ∼k→∞ b(r)λ(1 + r)k

where b(r) is a strictly positive constant which depends on the valuation r.

(c) The conditional density F
[k]
r (zz) on D tends to |y|r−1Ψ1+r(z, z) where Ψ1+r is the dominant

eigenfunction of the operator H1+r.

It seems that there does not exist any close expression for the dominant eigenvalue λ(s). However, this
dominant eigenvalue is polynomial–time computable, as it is proven by Lhote [45]. In [25], numerical
values are computed in the case of the uniform density, i.e., for λ(2) and E(1)[R],

E(1)[R] ≈ 1.08922, λ(2) ≈ 0.0773853773.

For r → 0, the dominant eigenvalue λ(1 + r) tends to λ(1) = 1 and λ(1 + r) − 1 ∼ rλ′(1). This
explains the evolution of the behavior of the Gauss Algorithm when the data become more and more
concentrated near the real axis.

Distribution of additive costs in the continuous model. We now study any additive cost and
wish to prove that the sequence k 7→ P(r)[C(c) = k] has a geometrical decreasing, with a precise estimate
for the ratio. For this purpose, we use the moment generating function E(r)(exp[wC(c)]) of the cost C(c),
for which we have provided an alternative expression in Eq. (39). The probability P(r)[C(c) = k] (for
k →∞) is obtained by extracting the coefficient of exp[kw] in the moment generating function. Then
the asymptotic behavior of P(r)[C(c) = k] is related to singularities of E(r)(exp[wC(c)]). This series has a

pôle at ew(c)(r+2) where w = w(c)(s) is defined by the spectral equation λ(c)(s, w) = 1 that involves the
dominant eigenvalue λ(c)(s, w) of the operator Hs,w,(c) which is described in (38). Then, with classical
methods of analytic combinatorics, we obtain:

Theorem 4. Consider the Core-Gauss algorithm, when its inputs are distributed inside the disk D
with the density of valuation r. Then, any additive cost C(c) defined in (21), associated to a step-cost
c of moderate growth asymptotically follows a geometric law.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 27

The ratio of this law, equal to exp[−w(c)(r+ 1)] is related to the solution w(c)(s) of the spectral relation
λ(c)(s, w) = 1 which involves the dominant eigenvalue of the transfer operator Hs,w,(c), and

(46) P(r)[C(c) = k] ∼k→∞ a(r) exp[−kw(c)(r + 1)], for k →∞.
where a(r) is a strictly positive constant which depends on cost c and valuation r. When r → 0, the
solution w(c)(r + 1) satisfies w(c)(r + 1) = Θ(r) for any cost c of moderate growth.

We now state three main results: the first one describes the evolution in the continuous model, when the
valuation r tends to 0; the second one describes the evolution of the discrete model, when the integer
length N tends to ∞, the valuation being fixed; finally, the third one describes the evolution of the
discrete model when the valuation r tends to 0 and the integer length N tends to ∞.

4.12. Average-case analysis in the continuous model when r → 0.

Theorem 5. Consider the Core-Gauss Algorithm, where its inputs are distributed inside the input disk
D with the density of valuation r > 0. Then, the mean value E(r)[C] of any additive cost C of moderate
growth, and the mean value E(r)[D] of cost D satisfy when r → 0,

E(r)[C] ∼ 1

r

E[c]

h(E)
, E(r)[D] ∼ − 1

r2

E[`]

h(E)
.

When r tends to 0, the output density, associated to the initial density of valuation r, tends to
1

h(E)

1

y
Ψ,

where Ψ is the invariant density for H1 described in Eq. (44).

Remark that the constants which appear here are closely related to those which appear in the analysis of
the Euclid algorithm described in Section 3. More precisely, the asymptotics are almost the same when
we replace 1/r in the previous theorem by logN . Next theorems will make precise this observation.

4.13. Analyses in the discrete model. It is now possible to transfer this analysis to the discrete
modelM(r,N), that we have already described in Section 4.6. This transfer continuous→ discrete is not
of the same type as in the previous Section. For the Euclid Algorithm, we need generating functions, as
the behaviour of the algorithm is very different on discrete data (on which it stops) and on generic data
(where it does not stop almost surely). Here, the behaviour of the algorithm is essentially the same
on discrete data and on continuous data. This is why it is natural to consider discrete data embedded
in continuous data. We then proceed as described in Section 4.6 and deal with the set DN . We are
led to mainly use the Gauss Principle that relates the number of points of DN in a domain of C ⊂ D
with both the area of C and the length of its frontier ∂C. For instance, a disk of radius ρ included in D
contains πN2ρ2 +O(ρN + 1) points of DN .

We first consider the model M(r,N) for a fixed valuation r > 0, and let N →∞. Then, we let N →∞
together with r → 0.

For fixed r and N → ∞. We describe the behaviour of the Core-Gauss algorithm in the discrete
model M(n,r) when the length N of the data becomes large.

Theorem 6. Consider the Core-Gauss Algorithm, where its integer inputs (u, v) are distributed in D
according to the model (r,N), and denote by X any additive cost C of moderate growth, or cost D.
Then, when N → ∞, the mean value E(r,N)[X] of cost X tends to the mean value E(r)[X]. More
precisely, with M := logN , one has

E(r,N)[X] = E(r)[X] +Me(X)e−Mr O (max{1,Mr}) ,
where the exponent e(X) depends on cost X and satisfies e(C) = 1, e(D) = 2.
The mean value E(r,N)[B] of the bit-complexity B satisfies,

E(r,M)[B] ∼ E(r)[Q] ·M.

28 BRIGITTE VALLÉE

In particular, the mean bit-complexity is linear with respect to the size M .

For r → 0 and N → ∞. Finally, the last result describes the transition between the Core-Gauss

algorithm and the C-Euclid Algorithm, obtained when the valuation r tends to 0, and the integer
length N tends to ∞:

Theorem 7. Consider the Core-Gauss Algorithm, where its integer inputs (u, v) where its integer
inputs (u, v) are distributed in D according to the model (r,N), and denote by X any additive cost C of
moderate growth, or cost D. Let M := logN . When the integer length N tends to ∞ and the valuation
r tends to 0, with Mr = Ω(1), the mean value E(r,N)[X] of cost X satisfies

E(r,N)[X] = E(r)[X]
[
1 +O

(
Me(X)e−Mr

)]
O

(
1

1− e−Mr

)
,

where the exponent e(X) depends on cost X and satisfies e(C) = 1, e(D) = 2.
Then, if we let rM =: Mα →∞ (with 0 < α < 1), then the mean values satisfy

E(r,N)[C] ∼ E[c]

h(E)
M1−α, E(r,N)[D] ∼ − E[`]

h(E)

1

log 2
M2−2α E(r,M)[B] ∼ E[`]

h(E)
M2−α.

If now rM is Θ(1), then

E(r,N)[C] = Θ(M), E(r,M)[D] = Θ(M2), E(r,M)[B] = Θ(M2).

Open question. Provide a precise description of the phase transition for the behavior of the bit-
complexity between the A-Gauss algorithm for a valuation r → 0 and the C-Euclid algorithm: determine
the constant hidden in the Θ term as a function of M r.

4.14. Historical and bibliographic notes. The Gauss algorithm seems to be first described by
Lagrange. Lagarias gave in [38] a first polynomial bound for the number iterations of the discrete
algorithm. This was improved later by Vallée who gave in [69] the best possible bounds. The general
complex framework was described in [20]. The same paper also introduces the Core-Gauss algorithm
and provides a detailed analysis of the Gaussian algorithm, both in the average case and in probability,
in the case where the inputs are uniformly distributed. Then, these results have been extended to study
additive costs, in a general model with valuation (see [78], [80]).
Paper [75] introduces for the first time transfer operators with two variables, together with their func-
tional analysis. The notion of notion of valuation appeared for the first time in [72].

5. The LLL algorithm

This last section is devoted to higher dimensions. We begin to describe the general framework, with some
elements in geometry of numbers (Section 5.1) together with complexity issues for the basic problem
(the Shortest Vector problem, in Section 5.2). We explain in Section 5.3 how the lattice reduction
problem arises in many application areas. Then, we give a precise algorithmic description of the LLL
algorithm; we begin in Section 5.4 with general principles which explain the role of the Gauss Algorithm
inside the LLL algorithm. Then, we describe the algorithm with some of its variants (Sections 5.5 and
5.6), we explain the role plated by the potential in the worst-case analysis (Section 5.7), and finally
describe the properties of the output basis (Section 5.8). The remainder of the Section is devoted to
the probabilistic analysis of the algorithm. We begin with analyses that are performed in the uniform
model (Section 5.9). Unfortunately, this model is not well-adapted to most of applications, and we
design in Section 5.10 a general modelling of the inputs, based on the notion of valuation, that seems to
be both manageable and realistic enough. As the underlying dynamical system is too complex to deal
with, we design three simplified models which describe particular executions : model M1 in Section 5.11,
model M2 in Section 5.12 and finally model M3 in Section 5.13. The model M1 is above all pedagogical,
and is used as a reference model. The model M2 is more realistic, and we prove an asymptotic geometric

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 29

law for the number of iterations when the inputs are distributed along the model described in Section
5.10. The model M3 is just mentioned for a possible future work.

5.1. Geometry of numbers. We now study the case of general dimensions d ≥ 3, What can be
expected about a good basis? As a good basis has to contain short vectors, we begin to focus on short
vectors in a lattice, and we recall the following definitions, about successive minima:

(i) The first minimum λ(L) is the norm of a shortest non-zero vector of the lattice.
(ii) More generally, the k-th minimum λk(L) is the radius of the smallest Euclidean ball that contains

at least k independent vectors of the lattice.
(iii) A minimal system of the lattice L is a system b of independent vectors whose k-th vector satisfies

‖bk‖ = λk(L).

The first difficulty immediately arises as it is not always possible to choose as a basis of the lattice L
a minimal system: generally speaking, a lattice L does not always have a minimal basis. Then, we
restrict our wishes: we only consider the first minimum, and compare it to another parameter of the
lattice, namely the determinant.

For a basis b of the lattice L, the determinant G(b) of the Gram matrix b, whose coefficients are the
scalar products (bi · bj), equals the square of the d-dimensional volume of the parallelotop built on the
system b. As any other basis b′ is written as Ub with a unimodular matrix U , the determinant G(b)
does not depend on the basis b of the lattice L: it is then called the determinant of the lattice and
denoted as detL. This is an integer number.

The main result of geometry of numbers, the Minkowski Theorem, relates these two parameters λ(L)
and detL: For any d, there is a constant γd, such that, for any L of dimension d,

λ(L)2 ≤ γd [detL]
1/d

,

and the Hermite constant γd has a polynomial growth with respect to d.

5.2. The shortest vector problem. However, the two parameters (determinant and shortest vector)
do not play the same algorithmic role. When a lattice L of dimension d is given by an integer basis b of
length M := max ‖bi‖2, the input size is O(d logM), and it is easy to compute the determinant detL,
namely in polynomial-time with respect to the size O(d logM). However, it is (probably) difficult to
compute10 a shortest non zero vector, as we now see. We consider the following problem:

Shortest Vector Problem [SVP]
Given a basis b of a lattice L, find a non-zero vector v of L that satisfies ‖v‖ = λ(L).

This problem is only known to be NP–hard for randomized reductions. But it is closely surrounded
by problems that are proven to be NP–hard, and it is thus conjectured to be NP-hard. It is then
probably not possible to compute a shortest non-zero vector in polynomial-time, and this leads to
consider approximate versions of the SVP Problem:

Problem γ–SVP.
Given a basis b of a lattice L, find a short enough vector v that satisfies ‖v‖ ≤ γλ(L).

There exist algorithms that solve this problem in polynomial-time when the approximation factor is
γ = 2O(d). The LLL algorithm can be viewed as such an approximation algorithm, as we see in the
sequel.

10As most of the results in the classical geometry of numbers, the proof of Minkowski’s theorem is not constructive,

and does not provide any way to obtain a short vector in the lattice.

30 BRIGITTE VALLÉE

5.3. Lattice reduction and applications. A lattice is probably the simplest structure of the discrete
linear algebra, and it is a natural objet to model linear structures which arise in algorithmics. Here, the
structure is viewed via its embedding in the vectorial space Rn endowed with its Euclidean structiure,
and the lattice reduction problem is a central problem in the interplay between algebra and metric
Euclidean topology. Here, we five some examples which are well- described in the book : integer
programming (see [1]), cryptography (see [52, 53]), computational number theory (see [31, 35]), etc...

Integer Programming. Given a lattice L ⊂ Rn and a domain C ⊂ Rn, we wish to describe in an
efficient way the intersection C ∩L. This is the basic problem in integer programming, and this was also
a strong historical motivation to design efficient algorithms for the lattice reduction problem. The two
problems are indeed closely related, as we now see. Consider a lattice L with a good basis b; then, the
lattice L can be defined as a sequence Ln of affine parallel lattices with a large enough spacing between
them. Then there are few such Lk which intersect C, and the intersection C ∩L is just the union of few
intersections Ln ∩ C; one just proceeds in a recursive manner on each intersection Ln ∩ C.

Computational number theory. We describe three applications in this area.

Diophantine approximations. Given a d-uple (α1, α2, . . . , αd) of real numbers, one wishes to find d
integers (p1, p2, . . . , pd) and an integer q such that the rational d-uple (p1/q, p2/q, . . . , pd/q) be a good
approximation of the d-uple (α1, α2, . . . , αd). A non-constructive answer is known due to Dirichlet and
based on Minkowski’s theorem. But, it is possible to give an approximate but constructive version of
this theorem when applying lattice reduction to a particular lattice whose matrix is a bordered unit
matrix

Factoring polynomials in Z[X]. The original LLL algorithm [43] was designed in a paper which was
mainly devoted to factorization of polynomials of Z[X]. The main basic idea is the following: given
a very good approximation α of a root α of a polynomial f , it is possible to determine the minimal
polynomial of α, and thus an irreducible factor of f . In the context of the paper [43], the approximation
α is a p-adic number obtained by the factorization mod p due to Berlekamp, following a lifting by
Hensel’s lemma (see also [35])

Guessing roots mod p. Consider a polynomial f mod p for which we know an approximate value α of
a root α mod p. We wish to recover the exact value α. As soon as the approximation is good enough,
applying the lattice reduction to a convenient lattice allows to recover the exact root. (see [70, 16])

Cryptology. There are two areas in cryptology: a positive side (crytography), where one builds cryp-
tosystems, and a negative side (cryptanalysis), where one breaks cryptosystems. In cryptology, one
needs difficult problems which may become easy in well–specified frameworks. Via the status of the
SVP Problem (a difficult problem, which remains hard on average, and admits good approximation
algorithms), lattices play a central role in both sides.

Cryptanalysis via lattice reduction. The LLL algorithm easily broke all the cryptosystems built on
linear problems (for instance the cryptosystems based on the knapsack problem). But, it was also
succcessful to break cryptosystems based on polynomial problems (after a suitable linearization), and
for instance particular instances of the celebrated RSA cryptosystem.

Lattice-based cryptography. This is a more recent area where lattices allow to create new classes
of cryptosystems, with new interesting features. First, lattices provide an interesting alternative algo-
rithmic area, where the problems probably remain hard even against quantum computers, unlike more
widely used and known public key cryptography such as the RSA cryptosystem. Second, they made
possible to obtain stronger proofs of security [30], based on the average-case hardness of problems.
Finally, they allow a desirable feature in modern communication system architectures, namely homo-
morphic encryption : computations to be carried out on ciphertext, thus generating an encrypted result
which, when decrypted, matches the result of operations performed on the plaintext.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 31

5.4. Principles of the LLL algorithm. The algorithm first computes the Gram-Schmidt orthogonal
basis b? = (b?1, . . . , b

?
d) of b and the Gram-Schmidt matrix Π for which b is written as Πb?. The d × d

square matrix Π = (pi,j)1≤i,j≤d is defined as (see also Figure 9)

pi,i = 1, pi,j = 0 for j > i, pi,j =
(bi · b?j)
‖b?j‖

2 for i > j .

Π :=

b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?d
b1 1 0 . . . 0 0 0 0 0
b2 p2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 pi−1,1 pi−1,2 . . . 1 0 0 0 0
bi pi,1 pi,2 . . . pi,i−1 1 0 0 0
bi+1 pi+1,1 pi+1,2 . . . pi+1,i−1 pi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bd pd,1 pd,2 . . . pd,i−1 pd,i pd,i+1 . . . 1

Main steps
of the LLL algorithm =
Gauss’ reduction steps

on systems Ui

Ui :=

(b?i b?i+1

ui 1 0
vi pi+1,i 1

)

Figure 9. Matrix P and systems Ui.

The LLL algorithm deals with the systems Ui “built on the diagonal” of matrix Π described in Figure
9 and performs the A-Gauss algorithm on these two-dimensional systems Ui, with three differences,

(a) The output test is weaker: with a fixed parameter τ ≤ 1, the test |vi| > |ui| is replaced by
the test |vi| > τ |ui|. Then, the output domain for the complex number zi associated with the
system Ui is the pseudo fondamental domain

Fτ := {z | 0 ≤ <z ≤ 1/2, |z| ≥ τ} ,
which coincides with F̃ for τ = 1.

(b) The operations are “decided” on the system Ui, then reflected on the system (bi, bi+1).
(c) The algorithm is performed on systems Ui step by step. This is due to the fact that the systems

Ui are intersecting and modifications on the system Ui change the systems Ui−1 and Ui+1.

5.5. Description of the LLL algorithm. The norms `i = ‖b?i ‖ of the orthogonal vectors b?i and the
subdiagonal coefficients pi+1,i of matrix Π describe the geometry of the system Ui. Using the complex
number zi associated to Ui, we mainly deal with the two vectors x = (xi) := (<zi) and y = (yi) := (=zi)
which satisfy

yi := `i+1/`i, xi := {{pi+1,i}}, for 1 ≤ i ≤ d− 1,

(where {{t}} is the centered fractional part of t) and play a fundamental role in the LLL algorithm.

With a parameter τ ≤ 1, the LLL(τ) algorithm builds a basis b̂ that satisfies the following conditions
and is then called Lovász–reduced:

(a) For i ∈ [1..d− 1], it fulfills all the Lovász conditions Lτ (i) : x̂2
i + ŷ2

i ≥ τ2.
(b) It is size-reduced: the coefficients p̂i,j satisfy |p̂i,j | ≤ 1/2 for 1 ≤ j < i ≤ d.

The LLL algorithm performs two main operations, of the same type as the A-Gauss Algorithm.

(i) Translations. For j < i, the translations bi := bi − bpi,jebj (where bxe denotes the nearest integer
to x), modify the Gram-Schmidt matrix P whose coefficients now satisfy |pi,j | ≤ 1/2 for j < i. These
translations ensure that the basis b is size-reduced and do not modify b?. They can be performed at
any time of the execution.

32 BRIGITTE VALLÉE

(ii) Exchanges between vectors. This is the main operation, which is performed when the Lovász
condition Lτ (i) is not satisfied for some i. More precisely, the algorithm chooses an index i in the set

Jτ (b) := {i ∈ [1..d− 1]; Lτ (i) is not fulfilled} = {i ∈ [1..d− 1]; x2
i + y2

i < τ2} ,

and it exchanges the two vectors bi and bi+1. As the Gram-Schmidt process depends on the order on
the family b, the exchange modifies the components b?i and b?i+1 of the system b? (See Figure 10). The

new b?i denoted by b̌?i equals the vector b?i+1 + xi b
?
i , and the decreasing factor ρ between the new ‖b̌?i ‖

and the old ‖b?i ‖ satisfies

(47) ρ2 := x2
i + y2

i < τ2 ≤ 1 .

Due to the invariance of the determinant, the product `i · `i+1 does not change, and the new values
y̌i−1, y̌i, y̌i+1 satisfy

(48) y̌i−1 = ρ yi−1, y̌i = ρ−2 yi, y̌i+1 = ρ yi+1 .

Remark that, for extreme indices i = 1 or i = d − 1, the part of the computation that involves y0

or yd is not performed. During an exchange performed at i 6∈ {1, d − 1}, the total product
∏d−1
i=1 yj

remains constant, whereas yi is increasing, and both yi−1 and yi+1 are decreasing. When the exchange
is performed at i = 1 or i = d − 1, the total product increases with the factor ρ−1. We will see that
during any exchange the potential P (y) defined in (50) is itself increasing with the factor ρ−1.

After any exchange, the matrix Π must be updated and size-reduced. There are in particular three new
values x̌i−1, x̌i, x̌i+1, defined as centered fractional parts, and one has for instance x̌i = {{ρ−2xi}}.

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

LLL(τ) Algorithm (τ ≤ 1)

Input. A basis b = (b1, . . . , bd) of a lattice L.

Output. A LLL(τ)-reduced basis b̂ of L
Compute the vector b? and the matrix P ;
Size reduce b;
While the set Jτ (b) is not empty, do

Choose an index i ∈ Jτ (b);
Exchange bi and bi+1;
Update b? and P ;
Size-reduce b

Figure 10. On the left, description of the exchange bi ↔ bi+1 viewed on the basis
Ui. On the right, description of the LLL algorithm.

There are various possible strategies for the choice of the index i ∈ Jτ (b).
(C) The classical strategy chooses i := minJτ (b).
(R) The random strategy chooses i uniformly at random in Jτ (b).
(G) The greedy strategy chooses the index i := argmin{xj + yj}.

A general description of the LLL algorithm is given in Figure 10.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 33

Σ(σ) Algorithm (σ ≤
√

3/2)

Input. A basis b = (b1, . . . , bd) of a lattice L.

Output. A Siegel(σ)-reduced basis b̂ of L
Compute the vector b? and the matrix P ;
Size reduce b;
While the set Kσ(b) is not empty, do

Choose an index i ∈ Kσ(b);
Exchange bi and bi+1;
Update b? and P ;
Size-reduce b

With an additive point of view
ti = − logσ yi, α = − logσ ρ,

and only viewed on the vector t,
the Σ(σ) algorithm is written as:

While ∃ti > 1, do
ťi := ti − 2α;

ťi−1 := ti−1 + α;
ťi+1 := ti+1 + α;

Figure 11. On the left, description of the Siegel version of the LLL algorithm. On
the right, description of the additive point of view. On the bottom, example of the
additive point of view on an input basis (on the left) and the associated output basis
via the Siegel version of the LLL algorithm.

5.6. Other versions of the LLL algorithm. There exist weaker versions of the LLL algorithm which
are perhaps easier to understand: we introduce the Siegel conditions

Sσ(i): ŷi ≥ σ.
With σ2 := τ2 − (1/4), together with inequalities x2

i ≤ 1/4, the conditions Lτ (i) entail the Siegel

conditions Sσ(i). Then, with a parameter σ ≤
√

3/2, we introduce the Siegel algorithm Σ(σ).

The algorithm Σ(σ) builds a basis b̂ that satisfies the following conditions and is called Siegel–reduced:

(a) For i ∈ [1..d− 1], it fulfills all the Siegel conditions Sσ(i) : ŷi ≥ σ.
(b) It is size-reduced: the coefficients p̂i,j satisfy |p̂i,j | ≤ 1/2 for 1 ≤ j < i ≤ d.

The Siegel algorithm has exactly the same structure as the LLL algorithm. It performs translations
which size-reduce the matrix Π, deals with the set

Kσ(b) := {i ∈ [1..d− 1]; Sσ(i) is not fulfilled} = {i ∈ [1..d− 1]; yi < σ},
and, with an index i ∈ Kσ(b), performs the exchange between bi and bi+1. This exchange is “transferred”
on the vector y by the same transform as in (48) which involves the same decreasing factor ρ defined
via the equality ρ2 = x2

i + y2
i ≤ σ2 + (1/4) = τ2.

The output complex domain for each complex number associated with the local basis Ui is now the
domain Rσ that is the union of two rectangles, namely

Rσ := {z | 0 ≤ <z ≤ 1/2, |=z| ≥ σ},
and replaces the pseudo-fondamental domain Fτ in associated with the LLL(τ) algorithm.

We then adopt an additive point of view that is perhaps more pedagogical; it is described in Figure 11.
We may view the components ti as sandpiles. The main action of the Σ algorithm is to increase the
components yi and thus decrease the components ti; the algorithm ends when the vector t has all its
components ti at most equal to 1. At each step of the algorithm, the positive number α := logσ ρ is
computed, and an amount of sand equal to 2α is removed from the sandpile ti, divided into two equal

34 BRIGITTE VALLÉE

parts, each of them being placed on the left and on the right of ti. The total amount of sand remains
thus constant, except for indices i = 1 and i = d − 1, where a sand amount equal to α is placed on t0
or td and thus “disappears”. Then the general strategy can be informally described as follows :

Push the sand towards the borders, where it disappears. Stop when all the sandpiles are
small enough.

It is important to remark that the sand is “more difficult to push” when it is far from the borders.

5.7. Potential of a basis. It is not completely clear that the algorithm terminates, since, when it
“improves” the system Ui, it also “deteriorates” the systems Ui−1 and Ui+1. In fact, the algorithm
terminates due to the evolution of the two (related) types of potentials. The first potential Q(b)
involves the beginning lattices Li, where Li is generated by the system bi := (b1, b2, . . . , bi),

(49) Q(b) :=

d−1∏
i=1

`
2(d−i)
i =

d−1∏
i=1

detLi,

whereas the second potential is a monomial which involves each component yi of y, with an exponent
equal to i(d− i), namely,

(50) P (y) :=

d−1∏
i=1

y
i(d−i)
i = Q(b)−1 det(b)d−1.

These potentials are not modified during the size-reduction steps. During each step of the While loop
that deals with some index j, the potential P (y) is increasing with the factor 1/ρ(j) > 1/τ , where
ρ(j) is the decreasing factor defined in (47), whereas the potential Q(b) is decreasing with the factor
(ρ(j))2 < τ2. Then, as soon as τ < 1, there is an upper bound for the number Kτ of iterations of the
LLL(τ) algorithm on the basis b which involves the geometric mean ρ of the factors ρ(j), at most equal
to τ , via the relations

Kτ (b) =
1

|log ρ| log
P (ŷ)

P (y)
=

2

|log ρ| log
Q(b)

Q(b̂)
with P (ŷ) ≥ σD, D := d(d2 − 1)/12.

The potential Q(b) of an integer basis is an integer. Then, for an integer lattice, the output potential

Q(b̂) is at least equal to 1, while the input potential Q(b) is an integer of size O(d2 logM). Then,
for τ < 1, the number of iterations is O(d2 logM), and thus polynomial with respect to the input size
O(d logM). Moreover, it is also proven (see [43]) that all the rational11 numbers which arise along the
execution also remain of polynomial size. However, it will be much more efficient to deal with floating
numbers. Even if the idea is completely natural, the needed precision is difficult to deal with (see [66]).

Limit case τ = 1. What happens when the parameter τ equals 1? The potential Q(b) is now only
stricly decreasing, and the number of iterations is only proven to be finite. This an important question.
Experiments reported by Lagarias and Odlyzko [39] hint that the number of iterations of the algorithm
LLL(1) seem to remain polynomial with respect to the input size. However, such polynomial bounds are
not proven, and there exist only very crude bounds, exponential with respect to dimension d, exhibited
in [3] or [44] for instance.

Particular case x = 0. In the general case when the component xi is not zero, the exchange between
bi and bi+1 does not induce an exchange between the orthogonalized vector b?i and b?i+1 (see Figure 10).
This is why the LLL algorithm can be viewed as a kind of skew sorting process, where the exchange
... modifies the data. However, in the case xi = 0, the exchange between bi and bi+1 induces an exact
exchange between the orthogonalized vectors b?i and b?i+1. So, when all the used coefficients xi are
always zero, the LLL algorithm can be viewed as a sorting algorithm, which sorts the lengths `i. This
is a exact sorting algorithm when τ = 1 and a kind of “approximate sorting” algorithm when τ < 1.

11Even for an integer input, the Gram-Schmidt process produces rational numbers.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 35

When furthermore the classical strategy (C) is used, this leads for τ = 1 to a classical sorting algorithm,
the InsertionSort algorithm.

5.8. Properties of the output basis. As already mentioned, the Lovász properties for parameter
τ yield the Siegel properties for parameter σ with σ2 := τ2 − (1/4) ≤ 3/4, namely lower bounds on
ratios yi of the form yi > σ, These lower bounds together with the size-reduction entail two main upper

bounds that hold on the output12 basis b̂, and involve the ratio (1/σ) ≥ 2/
√

3,

Length defect. ‖b̂1‖ ≤
(

1

σ

)d−1

λ(L);

Orthogonality defect.

n−1∏
i=1

‖b̂i‖
‖b̂?i ‖

≤
(

1

σ

)d(d−1)

.

The first inequality compares the first vector of the output basis to the length λ(L) of a shortest non-
zero vector of the lattice. Then, the first vector is not too long. Then, with the previous Section, and
for any τ < 1, the LLL(τ) is a polynomial time algorithm which solves the γ-SVP problem with an
approximation rate γ = 2O(d).

The second inequality compares the length of the vectors of the two output systems, the system b̂, and

its orthogonalized b̂
?
. It proves the output basis to be not too far from an orthogonalized basis.

As the factor (1/σ) is at least equal to 2/
√

3 > 1, the ratios which occur in the previous bounds are
exponentially increasing with respect to d.

The remainder of this section is devoted to the probabilistic analysis of the LLL algorithm: we aim
to study in a precise probabilistic way parameters that describe the execution of the algorithm or the
geometry of the output. In small dimensions (1 or 2), such a probabilistic analysis is performed in
the previous two Sections (Sections 3 and 4) and strongly uses the dynamical system that underlies
the algorithm: In the one-dimensional case, this is the Euclidean dynamical system C-Euclid on the
interval I = [0, 1/2] with the centered version of the Gauss map. In two dimensions, this is an extension
of the previous dynamical system to the right complex plane, which is the A-Gauss dynamical system
or its core-part, the Core-Gauss system. In higher dimensions, the dynamical system that underlies
the LLL algorithm is much more involved, and such a precise dynamical analysis seems not possible to
perform.

5.9. Probabilistic analyses of the LLL algorithm in the uniform model. There are first two
natural questions, asked when the ambient space is Rn and b a basis of cardinality d ≤ n:

(i) What is the probability π(d, n, σ) that b be already that σ- Siegel reduced?
(ii) What is the mean number of iterations of the LLL(τ) algorithm? of the Σ(σ) algorithm? What

about the distribution of the number of iterations?

These questions were answered in a spherical model, which is an extension of the uniform model. Here,
we focus on the uniform model U(n, d), where each vector bi is uniformly drawn in the n-dimensional
Euclidean unit ball Bn = {x ∈ Rn : ‖x‖ ≤ 1}. This model is manageable due to two main properties
satisfies by the random variables `2j : first, they are independent; second, they follow β laws.

Probability π(n, d, σ). This first result, due to Akhavi, Marckert and Rouault [4, 5], exhibits an
interesting threshold phenomenon:

Theorem 8. Consider the model U(n, d), denote g = n− d and let n→∞. Then the following holds
for the probability π(n, d, σ) for any σ < 1

(a) For g →∞, the probability π(n, d, σ) tends to 1.
(b) If g is constant, then π(n, d, σ) tends to a constant in the interval]0, 1[.

12These upper bounds are the same for both algorithms LLL(τ) and Σ(σ)

36 BRIGITTE VALLÉE

In particular, in the model U(n, θn) with θ < 1, any basis b is almost surely Σ(σ)-reduced for any value
of σ. Then, in the uniform model, the Siegel algorithm has “not much work to do” as soon as the
dimension of the lattice is far from the ambient dimension.

Number of iterations. The second result, due to Daudé and Vallée [19], provides upper bounds for
the mean number of iterations.

Theorem 9. In the model U(n, d), the mean number of iterations Kτ of the algorithm LLL(τ) on a
basis b satisfies

En,d[Kτ] ≤ d(d− 1)

n− d+ 1

(
1

| log τ |

)[
1

2
log n+ 2

]
.

For d = θn, with θ < 1, one has

En,d[Kτ] ≤ cn

1− c

(
1

| log τ |

)[
1

2
log n+ 2

]
..

When n− d is of order Ω(na) with a ∈ [0, 1[, then En,d[Kτ] = O(n2−a log n),

There also exist estimates for the distribution of Kτ , here described in the case of a full-dimensional-
lattice (d = n) , which show that this distribution admits an exponential tail of geometric type, namely,

Pn,n[K ≥ k] ≤
(

2
√
n τ−1/n

)
τk/n

2

.

We recall that asymptotic geometric laws are proven to hold in two dimensions (see Section 4). For
higher dimensions, we return later on to the study of this distribution in the case of one of our simplified
models (see Section 5.12).

5.10. Towards a more realistic modelling of inputs: the valuation model. The results of the
previous Section are both interesting (from a theoretical point of view) ... and useless from a more
concrete point of view. Anyone who uses the LLL algorithm in the “real algorithmic life” knows that
the previous results do not depict the experimental facts he observes (see also [54]): it is clear that the
uniform model is not well-adapted to most of the applications areas of the algorithm (except perhaps
integer programming).

We have seen in the previous Section 4 that the behaviour of the A-Gauss algorithm strongly depends
on the distribution of the inputs. The situation is probably the same for the LLL algorithm, and it is
important to design particular input models dedicated to particular applications. Here, as previously,
the probabilistic input model is related to the geometry of the input basis b, mainly described by the
geometry of the systems (Ui) which is itself defined via the complex number zi; as in Section 4, difficult
instances are related to complex numbers zi with a small imaginary part yi which lead to high sandpiles
ti := − log yi.

Then, as in Section 4.6, we deal with valuations, and, here, with a valuation vector r := (r1, r2, . . . , rd−1)
where the component ri is the valuation attached to the system Ui (or complex zi) and satisfies ri > 0.
For any given a > 0, we consider the hypercube Ha := [0, a]d−1 and an input density fr on Ha, called

the density of valuation r, which is proportional to yr−1 :=
∏d−1
i=1 y

ri−1
i . This defines the modelMr,a,d.

This model has two advantages: it is both manageable and sufficiently realistic. We have already seen
the expressivity of the valuation in Section 4. We now explain how it may provide a good modelling in
many of applications of the LLL algorithm. We insist in Section 5.3 on the particular shape of the input
bases that are used in applications. They give rise to particular sandpiles, where the distribution of the
sand may vary a lot with the position of the sandpile. For instance, the cryptographic lattices are given
by sandpiles which have very often only one pile; this is the case for the knapsack lattices, or lattices
which model the NTRU system (see [29] for a description of cryptographic lattices). On the opposite,
the lattices used in Ajtai’s proof [2] give rise to sandpiles whose all piles are very high (associated to
completely non reduced lattices) which will be modelled by a vector r with very small components.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 37

With this valuation vector r, it proves convenient to associate the scaled valuation vector s whose
components are si = ri/(i(d − i)). Letting j := |d/2 − i|, we see that the scaling coefficient i(d − i) =
(d2/4) − j2 which already appears in the expression of the potential P given in (50) is maximal when
the index i is close to d/2. With our description via sandpiles, and the definition of the potential given
in (50), we know that the sand contained in the central sandpiles (with an index close to d/2) is more
difficult to be taken out. Then the scaled valuation ri/i(d− 1) is a good measure of the difficulty of the
system (Ui), that comes both from the valuation ri (which measures the height of the sandpile) and
the position of the index i (which locates the dsandpile).

The model Mr,a,d appears to be manageable: it is possible to describe there the distribution of the
potential P (y) which plays a central role in the algoritthm. This distribution in the model Mr,a,d

involves the minimum component of the scaled valuation vector.

Proposition 5. [14] Consider the model M(r,a,d) and let D := D := d(d2 − 1)/6. Denote by s the
scaled valuation vector s whose components are si := ri/(i(d − i)), and by m(s) the minimum of its
components; consider the set B of indices i for which i := argmin{sj} and denote by b its cardinality.
Then, the distribution of the d-dimensional potential P (y) satisfies, for any C ∈ [0, 1]

Pr[P (y) ≤ C aD] = Θ
(
Cm(s)(logC)b−1

)
(C → 0) ,

where the constants hidden in the Θ only depend on s. When the components of vector s are all
distinct, the valuation vector is called irreducible, and there is an exact expression that involves the
monic polynomial S(x) whose roots are the components si, namely

Pr[P (y) ≤ C aD] = −S(0)

d−1∑
i=1

1

siS′(si)
Csi .

We now introduce simplified models for the execution, which would describe particular executions of the
LLL algorithm. We then analyse the behaviour of the LLL algorithm, when it gives rise to particular
trajectories. The underlying system which “produces” such particular trajectories is not defined as a
restriction of the LLL algorithm to particular inputs. It is just a simplified model which is expected to
remain close enough to the “true” algorithm but become more manageable and easier to analyze. We
now describe two possible simplified models for the execution.

5.11. The sandpile model M1. The main observable is the decreasing factor ρ defined in (47). The
first simplified model proposed in [47] is the model M1(ρ) where the factor ρ defined in (47) is assumed
to remain constant all along the execution. If one adopts the additive point of view defined in Figure
11 and consider the logarithms t and α in Figure 11, we are led to a very classical dynamical system,
called sandpile or chip firing game. The main features of these models are very well known, at least
when the input t and the parameter α are integers, and easy to extend to the continuous model. In
this case, it is well-known that both the number of steps and the output configuration are independent
of the strategy. Even if this model is too simple to model all the features of the LLL system, it exhibits
various qualitative phenomena of the “true” algorithm and has many pedagogical advantages. It also
helps to propose some conjectures. The sandpile model was further used in [32] for the analysis of
another lattice reduction algorithm, the BKZ algorithm.

5.12. The model M2. In the second model, called M2, the factor ρ defined in (47) is no longer assumed
to be constant all along the execution. As it is seen in (47), this factor ρ depends on two parameters,
namely yi = =zi and xi = <zi. These two parameters do not play the same role, as we already observed
in our study of the two-dimensional case: The main actor is the vector y, and the whole execution of
the algorithm aims increasing the components of y, whereas the vector x (whose all components always
belongs to the interval [0, 1/2]) only plays an auxiliary role. Moreover, the transformations of the

38 BRIGITTE VALLÉE

vector x involve fractional parts and seem to be difficult to deal with, whereas the transformations on
the vector y appear to be more readable and more manageable.
Finally, we make the two following assumptions (see [29, 14]):

(i) The coefficients xi are constant along the execution and equal to µ > 0;
(ii) The strategy is the greedy strategy, and then i := argmin{yi}, so that the decreasing factor ρ

always satisfies ρ2 = m(y)2 + µ2 where m(y) = min(yi).

We first recall two notations: m(y) := min(yj), D := d(d2 − 1)/6.
Then, with a pair (µ, τ) with µ ∈ [0, 1/2] and τ ∈ [µ, 1], we associate two hypercubes in Rd−1, namely

(51) Iµ = [0, 1/(2µ)]
d−1

, Oµ,τ =
[
(τ2 − µ2)1/2,+∞

[d−1

.

The exchange between the two vectors bi and bi+1 is then described by the map Ti,µ : Rd−1 → Rd−1

which associates to the vector y the vector y̌ which satisfies y̌j = yj for j 6∈ {i− 1, i, i+ 1}, and

(52) y̌i−1 = yi−1 (y2
i + µ2)1/2, y̌i =

yi
y2
i + µ2

, y̌i+1 = yi+1 (y2
i + µ2)1/2.

The function fµ : y 7→ y/(y2 + µ2) is positive on R+ and attains its maximum at x = µ, with
fµ(µ) = 1/(2µ); then, all the maps Ti,µ act on the hypercube Iµ defined in (51). Moreover, in this
context, a basis b is LLL(τ)-reduced if all the components yi of y satisfy y2

i ≥ τ2 − µ2. It is also
Σ(θ)-reduced with θ := (τ2 − µ2)1/2 so that the algorithm stops as soon as y belongs to the hypercube
Oµ,τ defined in (51).

Finally, the executions of the LLL(τ) algorithm, which are governed by the greedy strategy and where
the vector x has all its components equal to a given value µ can be described with the trajectories of
the dynamical system M2(µ, τ). This system acts on the hypercube Iµ, and use maps Ti,µ described in
(52) according to the greedy strategy. Its hole is the hypercube Oµ,τ defined in (51). The algorithm
M2(µ, τ) is described in Figure 12.

For instance, for d = 3, the system M2(µ, τ) uses two maps T1 and T2, and, with θ := (τ2 − µ2)1/2, one
has

T1(y1, y2) =

(
y1

y2
1 + µ2

, y2(y2
1 + µ2)1/2

)
T2(y1, y2) =

(
y1(y2

2 + µ2)1/2,
y2

y2
2 + µ2

)
.

The map T1 is used for y1 < y2 and y1 < θ and T2 when y2 < y1 and y2 < θ.
The algorithm stops when min(y1, y2) > θ. Figure 12 shows an instance of a trajectory. At the
beginning, the point (y1, y2) is close to (0, 0), and this corresponds to a bad-reduced basis. When
the point (y1, y2) attains the hole, the basis is reduced. When the point goes close to the fixed point
(1− µ, 1− µ), the trajectory becomes “slower”.

The last result studies the distribution of the algorithm M2(µ, τ) in the model M(r,a,d) introduced in
Section 5.10. Generally speaking, the distribution is geometric, with an explicit ratio, which depends
on µ and the scaled valuation vector s.

Proposition 6. [14] Consider the model M(r,a,d) associated with a irreducible valuation vector s. For
any µ > 0 and τ < 1, the number of iterations of the algorithm M2(µ, τ) is asymptotically geometric,
namely

P(r,a,d)[K ≥ k] = Θ
(
µkm(s)

)
m(s) := min

i

ri
i(d− i) , (k →∞),

where the constant hidden in the Θ depends on µ and τ . It is uniform for µ ∈ [µ0, 1/2] and τ ∈ [0, τ0]
for any µ0 > 0 and τ0 < 1.

Open question. Describe the transition of the algorithm M2(µ, τ) when µ→ 0 and τ → 1.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 39

Input. A vector y ∈ Iµ;
Output. A vector ŷ ∈ Oτ,µ

While y 6∈ Oτ,µ do
i := argmin{yi};
y := Ti,µ(y);

Figure 12. On the left, description of the dynamical system M2(µ, τ) with parameters
τ ≤ 1 and µ ∈]0, 1/2[. The sets Iµ,Oµ,τ are defined in (51). The map Ti,µ is defined
in (52). On the right, an instance of a trajectory for d = 3.

5.13. The simplified model M3. There exists a natural extension of the model M2 where the real parts
xi are no longer assumed to be constant. But the component xi is assumed to be independent of the
vector y and randomly chosen in the interval [0, 1/2]. Then, the model M2(µ, τ) gives rise in this way to
a random dynamical system M3(τ) which seems to be a good model for the LLL(τ) algorithm, when the
real part xi is no longer computed but randomly chosen. Unfortunately, this system seems also more
difficult to deal with. It is probably convenient in a first study to consider that xi is randomly drawn
in some interval [µ0, 1/2] (with µ0 > 0) and deal with τ < 1.

5.14. Historical and bibliographic notes. There exist algorithms, described in [68] and [61] which
exactly extend the Gauss algorithm for dimensions d = 3 or d = 4: they build directly a minimal basis
and perform a linear number of iterations. The LLL algorithm was created in 1982 and described in
[43]. The book [55] is completely devoted to the algorithm and its numerous applications. There are
other lattice reduction algorithms which provide output bases of better quality, (with of course a worst
complexity). In particular, Schnorr describes in [60] a complete hierarchy of such lattice reduction
algorithms.

Probabilistic analysis of the algorithm is yet in its infancy. It began in the uniform input model, with
the paper [19] which was followed and extended by the works [4, 5]. The new tentatives, with the
introduction of the model with valuation, and the simplified models of execution are described in [47]
[29] and [14].

References

[1] K. Aardal and F. Eisenbrand. The LLL algorithm and integer programming, Chapter 9 (293–314) in the book [55]
[2] M. Ajtai. The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice,

Proceedings of the 35th Symposium on the Theory of Computing (STOC 2003), ACM, 2003, 396–406

[3] A. Akhavi. The optimal LLL algorithm is still polynomial in fixed dimension, Theor. Comput. Sci. 297(1-3): 3-23
(2003)

[4] A. Akhavi. Random lattices, threshold phenomena and efficient reduction algorithms, Theoretical Computer Science,

287 (2002) 359–385
[5] A. Akhavi, J.-F. Marckert and A. Rouault. On the Reduction of a Random Basis, ESAIM Probability and

Statistics Volume 13, January 2009, 437 - 458

[6] A. Akhavi and B. Vallée. Average bit-complexity of Euclidean algorithms, in Proceedings of ICALP’2000 - Genève,
14 pages, Lecture Notes in Computer Science 1853, 373–387.

40 BRIGITTE VALLÉE

[7] K. I Babenko On a problem of Gauss. Soviet Mathematical Doklady 19, 1 (1978), pp 136–140.

[8] V. Baladi. Positive Transfer operators and decay of correlations, Advanced Series in non linear dynamics, World

Scientific, 2000.
[9] V. Baladi and B. Vallée. Euclidean Algorithms are Gaussian, Journal of Number Theory, Volume 110, Issue 2

(2005) 331–386

[10] T. Bedford, M. Keane and C. Series, C, Eds. Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford
University Press, 1991.

[11] V. Berthé, L. Lhote and B. Vallée Probabilistic analyses of the plain multiple GCD algorithm, accepted to Journal

of Symbolic Computation, [50 p] to appear in 2016. http://dx.doi.org/10.1016/j.jsc.2015.08.007
[12] J. Bourdon, B. Daireaux, and B. Vallée. Dynamical analysis of α-Euclidean Algorithms, Journal of Algorithms

44 (2002) 246–285.

[13] E. Cesaratto, J. Clément, B. Daireaux, L. Lhote, V. Maume-Deschamps, and B. Vallée. Regularity of the
Euclid Algorithm: application to the analysis of fast gcd Algorithms, Journal of Symbolic Computation, 44 (2009)

726–767
[14] J. Clément, M. Georgieva, L. Lhote and B. Vallée. Modelling particular trajectories of the greedy LLL algorithm

in preparation

[15] P. Collet. Some ergodic properties of maps of the interval, Dynamical systems, Proceedings of the first UNESCO
CIMPA School on Dynamical and Disordered Systems (Temuco, Chile, 1991), Hermann, 1996.

[16] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities, Journal of

Cryptology, vol 10(4), 1997, 233–260
[17] B. Daireaux, V. Maume-Deschamps and B. Vallée. The Lyapounov Tortoise and the Dyadic hare, Discrete

Mathematics and Theoretical Computer Science 2005, Proceedings of AofA’05, 71-94 (2005).

[18] B. Daireaux and B. Vallée. Dynamical Analysis of the Parametrized Lehmer-Euclid Algorithm, Combinatorics,
Probability, Computing, pp 499–536 (2004).

[19] H. Daudé and B. Vallée. An upper bound on the average number of iterations of the LLL algorithm. TCS 123

(1994) 95–115.
[20] H. Daudé, P. Flajolet and B. Vallée. An average-case analysis of the Gaussian algorithm for lattice Reduction.

Combinatorics, Probability and Computing (1997) 6, 397–433.
[21] H. Delange. Généralisation du Théorème d’Ikehara, Ann. Sc. ENS, (1954) 71, pp 213–242.

[22] J. D Dixon. The number of steps in the Euclidean algorithm, Journal of Number Theory 2 (1970), pp 414–422.

[23] D. Dolgopyat. On decay of correlations in Anosov flows, Ann. of Math. 147 (1998) pp 357–390.
[24] P. Flajolet and B. Vallée. Continued fraction algorithms, functional operators, and structure constants, Theoret-

ical Computer Science (1998), vol 194, 1–2, 1–34.

[25] P. Flajolet and B. Vallée. Continued fractions, Comparison algorithms and Fine structure constants Constructive,
Experimental and Non-Linear Analysis, Michel Thera, Editor, Proceedings of Canadian Mathematical Society, Vol

27 (2000), 53–82

[26] P. Flajolet and R. Sedgewick. Analytic combinatorics, Cambridge University Press (2009).
[27] H. Heilbronn. On the average length of a class of continued fractions, Number Theory and Analysis, ed. by P.

Turan, New-York, Plenum, 1969, pp 87-96.

[28] D. Hensley. The number of steps in the Euclidean algorithm, Journal of Number Theory 49, 2 (1994), pp 142–182.
[29] M. Georgieva Analyse probabiliste de la réduction des réseaux euclidiens cryptographiques, PhD, University of

Caen, December 2013.
[30] C. Gentry. The Geometry of Provable Security: some proofs of Security in which Lattices make a Surprise Appear-

ance, Chapter 12 (391–426) in the book [55]

[31] G. Hanrot. LLL: a tool for Effective Diophantine Approximation, Chapter 6 (215–264) in the book [55]
[32] G. Hanrot, X. Pujol and D. Stehl. Analyzing Blockwise Lattice Algorithms using Dynamical Systems, see the

webpage of Damien Stehlé.
[33] Iosifescu, M. and Kraaicamp, C. Metrical Theory of Continued Fractions. (2002)
[34] A. I Khinchin. Continued Fractions. University of Chicago Press, Chicago, 1964. A translation of the Russian original

published in 1935.

[35] J. Klüners. The van Hoeij algorithm for factoring polynomials, Chapter 8 (283-292) in the book [55]
[36] D.E Knuth. The art of Computer programming, Volume 2, 3rd edition, Addison Wesley, Reading, Massachussets,

1998.
[37] R. O Kuzmin. Sur un problème de Gauss, Atti del Congresso Internationale dei Matematici 6 (Bologna, 1928) pp

83-89.
[38] J. C. Lagarias. Worst–case complexity bounds for algorithms in the theory of integral quadratic forms, Journal

of Algorithms 1, 2 (1980), 142–186.

[39] J. C. Lagarias and A. M. Odlyzko.Solving low-density subset sum problems, Journal ACM, 32(1) (1985), 229-246.

LATTICE REDUCTION ALGORITHMS AND DYNAMICAL ANALYSIS 41

[40] A. Lasota and M. Mackey. Chaos, Fractals and Noise; Stochastic Aspects of Dynamics, Applied Mathematical

Science 97, Springer (1994)

[41] D. H Lehmer. Euclid’s algorithm for large numbers. Am. Math. Mon. (1938) 45 pp 227–233.
[42] P. Lévy. Sur les lois de probabilité dont dépendent les quotients complets et incomplets d’une fraction continue.

Bull. Soc. Math. France 57 (1929) pp 178-194

[43] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische
Annalen 261 (1982), 513–534.

[44] H. W. Lenstra. Flags and lattice basis reduction European Congress of Mathematics, Barcelona, July 10-14, 2000

Volume II, Progress in mathematics, Springer, 37–53
[45] L. Lhote. Computation of a class of Continued Fraction constants. Proceedings of ALENEX-ANALCO’04, 199–210

[46] L. Lhote and B. Vallée. Gaussian laws for the main parameters of the Euclid Algorithm, Algorithmica (2008) 50,

497–554
[47] M. Madritsch and B. Vallée. Modeling the LLL algorithm by sandpiles, Proceedings of LATIN 2010, LNCS 6034

(2010) 267–281
[48] D. H Mayer. On a ζ function related to the continued fraction transformation, Bulletin de la Société Mathématique

de France 104 (1976), pp 195–203.

[49] D. H Mayer. Continued fractions and related transformations, In [10] pp. 175–222.
[50] D. H Mayer. On the thermodynamic formalism for the Gauss Map, Commun. Math. Phys. 130, pp 311-333 (1990)

[51] D. Mayer and G. Roepstorff. On the relaxation time of Gauss’s continued fraction map. I. The Hilbert space

approach, Journal of Statistical Physics 47, 1/2 (Apr. 1987), pp 149–171. II. The Banach space approach (transfer
operator approach, Journal of Statistical Physics 50, 1/2 (Jan. 1988), pp 331–344.

[52] A. May. Using LLL Reduction for solving RSA and Factorization Problems, Chapter 10 (315-348) in the book [55]

[53] J. Hoffstein, N. Howgrave-Graham, J. Pipher, and W. Whyte. NTRUEncrypt and NTRUSign, Chapter 11
(349–390) in the book [55]

[54] P. Nguyen and D. Stehlé, LLL on the average, Proceedings of the 7th Algorithmic Number Theory Symposium

(ANTS VII), Springer LNCS vol. 4076, (2006), 238–256
[55] P. Q. Nguyen and B. Vallée. The LLL algorithm - Survey and Applications, Springer, collection “Information

Security & Cryptography series”, 2010, 496 pages.
[56] G. J. Rieger. Über die mittlere Schrittanzahl bei Divisionalgorithmen, Math. Nachr. (1978) pp 157–180.

[57] G. J. Rieger. Über die Schrittanzahl beim Algorithmus von Harris und dem nach nächsten Ganzen, Archiv der

Mathematik 34 (1980), pp 421–427.
[58] D. Ruelle. Thermodynamic formalism, Addison Wesley (1978)

[59] D. Ruelle. Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval, vol. 4 of CRM Monograph

Series, American Mathematical Society, Providence, 1994.
[60] C. P. Schnorr. A Hierarchy of Polynomial Lattice Basis Reduction Algorithms, Theoretical Computer Science, vol

53, (1987), 201–224
[61] I. Semaev. A 3-dimensional lattice reduction algorithm, Proceedings of the 2001 Cryptography and Lattices Con-

ference (CALC’01), Springer LNCS 2146, 2001, 181–193

[62] Shallit, J. Origins of the analysis of the Euclidean Algorithm, Historia Mathematica 21 (1994) pp 401-419
[63] Schweiger, F. Multidimensional Continued Fractions, Oxford University Press, (2000)

[64] C.L. Siegel. A mean value theorem in geometry of numbers, Annals in Mathematics, 46(2) 340–347, 1945.

[65] Sorenson, J. An analysis of Lehmer’s Euclidean GCD Algorithm, Proceedings of ISSAC 1995, pp 254–258
[66] D. Stehlé. Floating Point LLL: Theoretical and Practical aspects, Chapter 5 (179–215) in the book [55]

[67] B. Vallée. Un problème central en géométrie algorithmique des nombres: la réduction des réseaux. Autour de

l’algorithme LLL, Informatique Théorique et Applications (RAIRO), 1989-3, pp 345-376. (English translation by E.
Kranakis, CWI Quaterly, 1990-3, Amsterdam.)

[68] B. Vallée. An affine point of view on minima finding in integer lattices of lower dimensions. Proceedings of EURO-
CAL’87, Springer LNCS 378 (1987) 376–378

[69] B. Vallée. Gauss’ algorithm revisited. Journal of Algorithms 12 (1991), 556–572.
[70] B. Vallée, M. Girault and P. Toffin. How to guess `-th roots modulo n by reducing lattices bases, Proceedings

of AAECC-88, Rome, Lectures Notes in Computer Science (357), 427–442 (1988)
[71] B. Vallée. Generation of elements with small modular squares and provably fast integer factoring algorithms,

Mathematics of Computation, vol 56, 194, 823–849, 1991.
[72] B. Vallée. Algorithms for computing signs of 2× 2 determinants: dynamics and average–case analysis, Proceedings

of ESA’97 (5th Annual European Symposium on Algorithms) (Graz, September 97), LNCS 1284, 486–499 (1997)
[73] B. Vallée, Dynamics of the Binary Euclidean Algorithm: Functional analysis and operators, Algorithmica, vol 22

(4) (1998), 660–685.

[74] B. Vallée. Digits and Continuants in Euclidean Algorithms. Ergodic Versus Tauberian Theorems, Journal de

Théorie des Nombres de Bordeaux 12 (2000) pp 531-570.

42 BRIGITTE VALLÉE

[75] B. Vallée. Opérateurs de Ruelle-Mayer généralisés et analyse des algorithmes d’Euclide et de Gauss, Acta Arith-

metica 81.2 (1997) pp 101–144.

[76] B. Vallée. Dynamical Analysis of a Class of Euclidean Algorithms, Theoretical Computer Science 297 1-3, 2003,
447–486

[77] B. Vallée. Euclidean Dynamics, Discrete and Continuous Dynamical Systems, 15 (1) May 2006, 281–352.

[78] B. Vallée and A. Vera. Lattice Reduction in two dimensions: analyses under realistic probabilistic models,
Proceedings of the AofA’07 conference, Discrete Mathematics and Theoretical Computer Science, Proc. AH, 2007,

181-216.

[79] B. Vallée and A. Vera. Probabilistic analyses of lattice reduction algorithms, chapter 3 (71-144) of the book [55]
[80] A. Vera, Analyse en moyenne de l’algorithme de Gauss, et applications à l’analyse de l’algorithme LLL, PhD Thesis,

University of Caen, 2009.

[81] G. Villard. Parallel lattice basis reduction. Proceedings of International Symposium on Symbolic and Algebraic
Computation, Berkeley California USA. ACM Press, July 1992.

[82] E. Wirsing. On the theorem of Gauss–Kusmin–Lévy and a Frobenius–type theorem for function spaces. Acta Arith-
metica 24 (1974) pp 507–528.

